Goals:
- Scaling tests of DVCS cross-sections
- Separation of the Re and Im of the DVCS amplitude
- Large kinematic coverage in Q^2, x_B and t

Angular decomposition of $d^4\sigma - |BH|^2$ provides access to different combinations of GPDs:
- $Re (C^l) + C_{DVCS}^{DVCS}$: twist-2
- $Re (C^l + \Delta C^l) + C_{DVCS}^{DVCS}$: twist-2
- $Re (C_{eff}^l)$: twist-3

E07-007 & E08-025 DVCS experiments successfully ran in Fall 2010 with 12 GeV equipment
E12-06-114 : Projections and beamtime request

Luminosity: from $4 \cdot 10^{37}$ to $1 \cdot 10^{38}$ Hz/cm2

$E_b = 8.8$ GeV, $Q^2 = 4.8$ GeV2, $x_B = 0.50$

Helicity-independent cross sections (pb/GeV4)

Helicity-dependent cross sections (pb/GeV4)

Statistical uncertainty: from 3 % to 5 %

Systematic uncertainty: 4 %
- 2.5% : acceptance
- 3% : π^0 subtraction

Beamtime request (days)

<table>
<thead>
<tr>
<th>Q^2 (GeV)</th>
<th>$x_B = 0.36$</th>
<th>$x_B = 0.5$</th>
<th>$x_B = 0.6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Total: 88 + 12 (overhead) = 100 days
1) **Accurate cross-section measurements**
 - **High luminosity** (10^{38} cm$^{-2}$s$^{-1}$): 3-5 % statistical uncertainty
 - **Well-understood acceptance**: 4% systematic uncertainty

2) **High resolution** (HRS determines the virtual photon):
 angular decomposition needed to extract physics

3) **Scaling tests**: Q^2 dependence at several fixed values of x_B
 Separate sin(ϕ) and sin(2ϕ) terms, and isolate leading twist from higher twist in the sin(ϕ) term.

4) **Small bins**: Bethe-Heitler cross section varies very rapidly

5) **Equal statistics in every bin** (even at high Q^2)

Cross-section measurements is the only unambiguous way to separate higher twist contributions to DVCS

All equipment ready: able to take data as soon as beam is available, even at E<11 GeV