Notes about the neutron arm

Monday, October 22, 2007

- Neutron Detector Geometry
 - See documentation by Tim Ngo
 - Some modifications need to be made about Marker Bar location
 - Spreadsheet of values is available.
 - Location of Plumb Bob is taken as center location of neutron arm
 - Z is along the Beam Line
 - Yis horizontal, X is vertical.
- Neutron Detector Electronics
 - F1Fastbus for Neutron Detectors
 - F1 is a multihit TDC
 - \circ 1877 for Veto detectors and sums
 - **1881 for ADC**
 - 1850 for coincidence time info
 - Information about HV located in logbooks
 - HV info <u>http://hallaweb.jlab.org/experiment/E02-013/wiki/tiki-index.php?</u> page=BH+HV&highlight=HV
- Trigger
 - Coincidence time given by D.ctimeL1A
 - See great Wiki article D.ctimeL1A for full information -<u>http://hallaweb.jlab.org/experiment/E02-013/wiki/tiki-index.php?page=D.ctimeL1A</u>
 - Trigger formed of OR of L OR R Sums
 - http://hallaweb.jlab.org/experiment/E02-013/wiki/tiki-index.php?page=GenDocTrigger
- Database
 - THaScintPlane::ReadDatabase is the method
 - Sets up Detector Map (used in decoding) fDetMap
 - Loads in crate, slot, lo, hi, model, refindex for reference channels (first section)
 - Loads in crate, slot, lo, hi, model, refindex for left PMTs (second section)
 - Loads in crate, slot, lo, hi, model, refindex for left PMTs (third section)
 - Finds ADC detector map, loads in usual info (no refindex) for left then right
 - calib section
 - Goes through and reads lres and rres THaScintPMT(1,0,lres/rres)
 - Reads in info for THaScintBar
 - x, y, z, dx, dy, dz
 - General info from geometry
 - xw, yw, zw
 - c, att
 - Igain, Iped, Ires, Itoff, Iwalk, Ilowtdclim, Iuptdclim, Iwrapa
 - rgain, rped, rres, rtoff, rwalk, rlowtdclim, ruptdclim, rwrapa
 - $\circ \quad \text{Other may sections include:} \\$
 - left/right pedistals
 - left/right gain
 - Ieft/right toff
 - speed of light
 - attenuation
 - Ieft/right walkcor
 - Ieft/right walkexp
 - bar_geom
 - Global Database infored in by THaNeutronDetector class
 - .global section
 - Contains plane name and description information

- Creates THaVetoPlane (planename, planedescr, this)
- Creates THaScintPlane (planename, planedescr, this)
- Decoding
 - NA decoding in THaScintPlane :: Decode
 - evdata.IsPhysicsTrigger is false means event isn't decoded
 - Gets reference channel GetNRefCh() for the ID (Integer)
 - ! Should only be 1 hit. GetNumHits(crate, slot, chan)
 - data is given by GetData(crate, slot, chan, 0)
 - Reference channel gets a TDC hit THaTdcHit(pmt, data)
 - Goes through all channels (between hi and lo detector)
 - For each channel, gets number of hits GetNumHits(crate, slot, chan)
 - Loops through hits
 - GetData(crate, slot, chan, hit) returns data
 - If (Adc) fills Adc array THaAdcHit (pmt, data)
 - If (Tdc) fills Tdc array THaTdcHit (pmt, data, timeoff)
 - □ Compares data reference time to wraparound (GetRawWrapAround)
 - For diff<-wrap/2 time off = ref time wrap * resolution</p>
 - □ For diff>wrap/2 time off = ref time + wrap * resolution
 - □ Else time off = ref time
 - □ Time returned in Tdc is Updated Time (real time and includes timeoff and toff)
 - ! Cut on Tdc, reference hit must exist for Tdc hit
 - ! Note all indexs are separate, Adc/Tdc cannot be compared (indexs)
 - Forms 'flat arrays'
 - Index is GetBarNum
 - rawA is GetRawAmpl()
 - pedcA is GetAmplPedCor
 - Eis GetAmpl
 - ! Only first Time is entered
 - Tis GetTime
- Read Out
 - <u>http://hallaweb.jlab.org/experiment/E02-013/wiki/tiki-index.php?</u>
 - page=Neutron+Detector+Analysis
 - http://hallaweb.jlab.org/experiment/E02-013/wiki/tiki-index.php?page=NA+software+variables
 - $\circ~$ As described, raw data information is in the form <code>lthit_bar</code>
 - ? Comment in documentation, 'flat arrays' are depreciated
- CoarseProcess
 - In THaScintPlane Class
 - Sorts Hits by bar number, then value (earliest or highest amplitude first)
 - 2 Versions BuildCompleteBars + CombineHits or BuildAllBars
 - BuildCompleteBars:
 - Loops through Left Hits
 - If hit isn't within time range (pmt->GetRawLowLim() || pmt->GetRawUpLim()) set 0
 - Do same for right time hit
 - If left hit exists and right hit exists, and left/right amplitude exists, hit is 'complete'
 - Times are time walk corrected (TimeWalkCorrection)
 - tdiff = .5 * (rtime ltime)
 - tof = .5 * (rtime + ltime)
 - yt = tdiff * cn (cn is GetC())
 - Iamp/ramp is GetAmpl
 - amp = sqrt (lamp*ramp)
 - ya = log (lamp/ramp) * .5 * att (%GetAtt) + GetYPos()
 - THaScintHit (ptBat (%THaScintBar), 0, bat, yt + GetYPos(), tof, amp, tdiff)
 - CombineHits
 - Sorts by bar number

- Must have a hit
- THaMultiHit
- I Checks to see if GetHitEdep() > fThreshold
- Combines neighboring bars (within a plane) with hits
- FineProcess
 - In THaNeutron Detector Class
 - Loops through planes and hits
 - If GoodHit, then creates a THaScintHit from that hit (in fSingleHits)
 - GoodHit tests to make sure that GetHitYPos GetYPos < fHitLRMatch*GetYWidth
 This makes sure that the values for Left Right are reasonable
 - Creates Clusters
 - Sorts fSingleHits and indexs them
 - Hits are only used in one cluster
 - Creates THaMultiHit from first hit, and AddNeighbors (loops)
 - AddNeighbors is called recursively
 - To be added, must be within fClustTimeWindow
 - Sorts Clusters by Energy
 - Match Clusters to Veto MatchToVeto
 - Points from cluster back to target and looks for related hitsin Veto (2 veto bar window)
 - Checks THaScintHit->GetBarNum versus Veto Bar Number (by geometry)
 - Creates tracks BuildTracks
 - Defines position of hit, position of target, and vector between them
 - Creates track THaNDTrack
 - □ Theta is X/Z
 - Phi is Y/Z
 - ApparatusToLap to get Hall Coordinate Position of hit
 - Sets pathlength (na.tr.pathl variable)
 - Sets p vectors (only direction is correct) na.tr.pz / etc variables
 - ! Beta and Mom here are wrong (but not used?)
- Calibration
 - Veto Time Calibration
 - Neutron Time Calibration
 - Numerous Reports
- Analysis
 - sqrt(na.tr.pathl**2+B.tr.vz**2 -2*na.tr.pathl*B.tr.vz*na.tr.pz/Norm)
 - Norm is the normalized momentum track vectors
 - BetaInv = (na.tr.time (same, and runs with, cluster time) (BB time RF time) +.05*D.ctimeL1A[0] expected time) / pathlength *.3
 - Momentum = .939/sqrt(Betalnv**2 1)
 - Only for BetaInv>1
- Efficiency
 - Veto