G_E^n Analysis

Seamus Riordan
Carnegie Mellon University
riordan@jlab.org

E02-013 Collaboration
Hall A Collaboration at Jefferson Lab

September 21, 2007

Outline

- 1. Analysis Changes
- 2. Analysis Parameters
- 3. G_E^n

Analysis Changes

- Vertical cuts on neutron arm
 - $-1.8 \text{m} < x_{\text{NA}} < 2.2 \text{m}$
- Calculation of deadtime and charge reflects beam trips and DC trips

Charge Identification

All clusters potentially caused by quasielastic nucleon in neutron arm within 10ns are combined into single clusters

Each cluster is then attempted to be correlated with veto signal

In space:

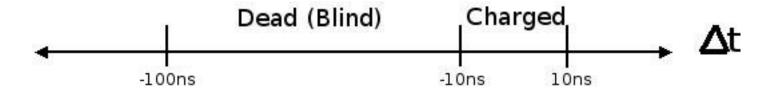
$$|\Delta x = x_{\rm NA} - x_{\rm veto} - x_0| < 0.5$$
m

In time:

$$\Delta t = t_{\text{veto}} - t_{\text{NA}} + c|y_{\text{NA}} - y_0| + t_0$$

$$\Delta t = t_{\text{veto}} - t_{\text{NA}} + c|y_{\text{NA}} - y_0| + t_0$$

Extra condition due to deadtime must be considered:



- 1. If hit in charged region, flag cluster as charged
- 2. If hit in blind region, ignore cluster
- 3. Otherwise, flag as neutral

Cuts

Quasielastic cuts are applied to both charged and uncharged particles

- ullet -0.25 GeV $< p_{
 m miss\parallel} <$ 0.25 GeV
- $p_{
 m miss \perp} <$ 0.15 GeV
- ullet 0.8 GeV $< \mathrm{W} < 1.15$ GeV

Dilution Calculations

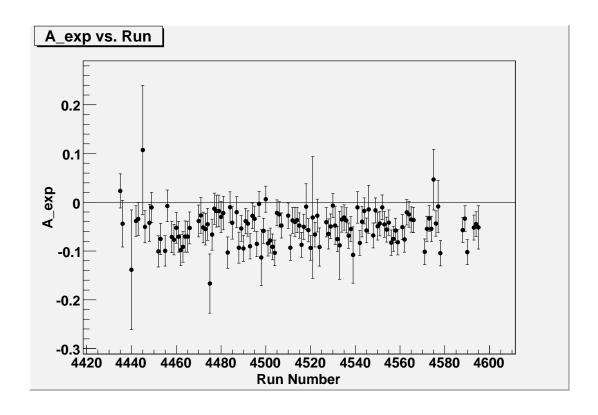
•
$$D_{\text{back}} = 1 - \frac{N_{\text{back}}}{N} = 0.844 \pm 0.005$$

Background determined through inverse beta analysis

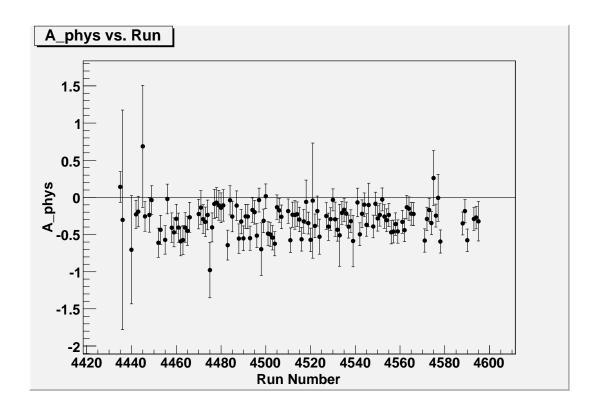
•
$$D_{\text{proton}} = 1 - \frac{\text{unch}}{\text{ch}}|_{\text{H}_2} / \frac{\text{unch}}{\text{ch}}|_{\text{3He}} = 0.605 \pm 0.002$$

•
$$D_{\text{N}_2} = \frac{\text{QERate}(\text{N}_2)}{\text{QERate}(^3\text{He})} \frac{\rho_{^3\text{He}}}{\rho_{\text{N}_2}} = 0.943 \pm 0.077$$

$$A_{\rm exp} -0.0523 \pm 0.0026$$



$$A_{\rm phys} -0.308 \pm 0.017$$



G_E^n Calculation

Numerically solve for G_E^n given:

$$A_{\text{phys}} = \overline{T_0}(\theta^*, \phi^*) + \overline{T_1}(\theta^*, \phi^*)\Lambda + \overline{T_2}(\theta^*, \phi^*)\Lambda^2 + \dots$$
 (1)

where
$$\Lambda = \frac{G_E^n}{G_M^n}$$
 $G_M^n = \mu_n G_D$

and

$$Q^2 = \frac{\overline{T_1 Q^2}}{T_1} \tag{2}$$

$$G_E^n(Q^2 = 1.68 \text{GeV}) = 0.0459 \pm 0.0162$$

