Analysis and Final State Interaction Update

Aidan M. Kelleher The College of William & Mary

April 22, 2009

Student Update

- Last Collaboration Meeting (December 1, 2008)
 - Analyzed Kin 4 and presented result
- Since that time
 - Analyzed kin2a and kin2b
 - Worked with Misak on Final State Interactions
 - Re-analyzed Kin 4 (with replayed data)

Analysis Procedure

$$A_{phys} = \frac{A\Lambda + B}{C\Lambda^2 + D} \tag{1}$$
 where $\Lambda = G_E^n/G_M^n$, and A, B, C and D are kinematic factors.

$$A_{obs} = P_e \cdot P_n \cdot D_{N_2} \cdot D_{background} \cdot D_p \cdot A_{phys}$$
⁽²⁾

 $\quad \text{and} \quad$

$$A_{obs} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \tag{3}$$

Analysis Procedure

Variable	Description	Determination
P_e	Electron beam polarization	Compton and Møller
P_n	Target polarization	AMK and others
D_{N_2}	Nitrogen dilution	from data
D _{background}	Background dilution	from data
D_p	Proton conversion factor	from data
$N_{+,-}$	Number of background subtracted events	from data
D_{FSI}	Dilution due to FSI effects	M. Sargsian

Kinematic 2a and 2b Asymmetry and Error Budget

Kin 2a – 11059 neutral events					
Variable	Value	Uncertainty	% Uncertainty		
A _{obs}	-0.0375	0.010(stat)	25.4%		
D_{N_2}	0.928	0.0186	2.0%		
$P_{^{3}He}$	0.375	0.0165	4.4%		
P_e	0.862	0.011	1.3%		
$D_{background}$	0.926	0.002	0.22%		
$D_{p/n}$	0.819	0.0480	1.9%		
P_n	0.86	0.02	2.3%		
D_{FSI}	0.95	0.05	5.3%		
Aphys	-0.2015	0.016	7.9% (syst.)		

Kin 2b – 26032 neutral events					
Variable	Value	Uncertainty	% Uncertainty		
Aobs	-0.03779	0.006(stat)	16.4%		
D_{N2}	0.951	0.012	1.3%		
$P_{^{3}He}$	0.493	0.0222	4.5%		
P_e	0.848	0.011	1.3%		
$D_{background}$	0.948	0.001	0.1%		
$D_{p/n}$	0.824	0.0262	3.2%		
P_n	0.86	0.02	2.3%		
D_{FSI}	0.95	0.05	5.3%		
A_{phys}	-0.1489	0.012	8.2% (syst)		

Combining asymmetries gives $A_{phys} = -0.1646 \pm 0.023$ (stat) ± 0.014 (syst.) (16.4%) This gives us $\Lambda = -0.188 \pm 0.024(12.7\%)$ (comb.)

Scattering Interactions

There are 4 main classes of interactions: Impulse Approximation, Final State Interactions, Meson Exchange Current, Isobar Current

MEC and IC small for high momentum transfer $(Q^2 \ge 1 GeV)$ FSI remain (determined by NN cross-sections)

Final State Interaction Expansion

Single Rescattering Amplitudes

Final State Interaction Expansion

Double Rescattering Amplitudes

Dominance of FSI

MEC and IC scale with $1/Q^4$. FSI are based on NN cross sections, which are flat above a few GeV.

Charge Exchange

Per Misak, "numerically small, but large contribution to the asymmetry"

Generalized Eikonal Approximation – Relation to Glauber

Rescattering amplitude for deuteron:

$$A_1^{\mu} = -j^{\mu}(p_s + q, p_s) \frac{\sqrt{2E_s}}{2i} \int d^3r \phi(r)\theta(-z)\Gamma^{pn}(\Delta, -z, -b)e^{ip_s r}$$

where $\vec{r} = \vec{r_p} - \vec{r_n}$, and a generalized profile function Γ is defined:

$$\Gamma^{pn}(\Delta, z, b) = \frac{1}{2i} e^{-i\Delta z} \int f_{pn}(k_\perp) e^{-ik\perp b} \frac{d^2k_\perp}{(2\pi)^2}.$$

And, $\Delta = \frac{q_0}{|\mathbf{q}|}(E_s - m).$

Amplitude reduces to the Glauber appromiation in the limit $\Delta \rightarrow 0$

E02013 Collaboration Meeting - April 22, 2009

Generalized Eikonal Approximation – Differences from Glauber

- GEA allows calculations of short range correlations
- GEA and Glauber agree when recoil momentum is small (see next page)

$$T = \frac{\sigma^{IA+FSI}}{\sigma^{IA}}$$

• "The Q^2 dependence of T within GEA can be used as a baseline reference point to study the onset of the color coherence regime in high Q^2 exclusive reactions" (beyond the scope of this presentation)

State of the Calculation

- Recieved FSI and Charge Exchange code from Misak on April 8
 - Test runs okay
 - Longer runs timed out or otherwise cut off by Scientific Computing
- Misak has code running on cluster at FIU
 - With 48 clusters, each event takes 5 minutes
 - On batch farms, each event takes 2 hours
- Single event results somewhat troubling
 - Very large contribution from charge exchange
 - Perhaps related to large calculated E_{miss}

Re-Analysis of Kinematic 4

- Replayed runs (see Jon Miller's update)
- Modified approach to background, target and beam polarization.

Variable	Value	Uncertainty	% Uncertainty
A _{obs}	-0.0549	0.003(stat)	5.5%
D_{N_2}	0.939	0.009	1.0%
$P_{^{3}He}$	0.485	0.022	4.5%
P_e	0.83	0.03	3.6%
$D_{background}$	0.923	0.00008	0.9%
$D_{p/n}$	0.7798	0.014	1.8%
P_n	0.86	0.02	2.3%
D_{FSI}	0.95	0.05	5.3%
Aphys	-0.220	0.018	8.3% (sys.)

Total Number of Neutral Events – 109174

This provides a $\Lambda = -0.1643 \pm 0.015$ (stat - 9.1%) ± 0.03 (sys - 18.3%) With $G_M^n = -0.1728 \pm 0.003$ (Kelly Parameterization)

 $G_E^n = 0.0284 \pm 0.003 \text{(stat)} \pm 0.0052 \text{ (sys)} \text{ or } \pm 0.006 \text{ combined.}$

E02013 Collaboration Meeting - April 22, 2009

Concerns:

- Seem to have too few events need to double check charge ID
- Concerned about error propogation from A_{phys} to Λ mostly due to correlated errors that must be examined
- At this Q^2 can use real data for G^n_M

Plans

- Finish FSI
- Help with PRL (as needed)
- Write Disseration