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The electric form factor of the neutron, Gn
E, is a parameter of interest among

nuclear physicists, both in providing greater understanding of the nucleon structure,

and for providing values with which to analyze other experiments. There has been

a renewed interest in this quantity as the result of the improved quality of data pro-

vided by double polarization experiments, which have matured in the last decade.

A survey of these double polarization experiments is presented in this paper, as are

the techniques of recoil polarization and target polarization used to make the mea-

surements. Selected models used to interpret the data are also presented. Double

polarization measurements have provided values for the kinematic range of 0.4 to

1.5 GeV/c2, with a current measurement reaching to 3.4 GeV/c2.
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Chapter 1

Physics of the Nucleon

1.1 Introduction to the Nucleon

In 1933 with the discovery that the magnetic moment of the proton (having

mass MN and charge e) was not simply that of a point particle, e
2MN

, nucleons

were known to have internal structure [42]. This structure has been the object of

interest to physicists for over 50 years. Nucleon structure may be examined with

scattering experiments utilizing electromagnetic, hadronic or “weak” probes. The

electromagnetic interaction, by scattering real or virtual photons off the nucleon,

can be used to parametrize the unknown electromagnetic structure into effective

form factors. One set of parametrizations for the electromagnetic form factors are

the Sachs form factors, GE and GM , which relate to the charge and magnetism

distributions of the nucleons. These form factors only depend on the square of the

four-momentum transfer carried by the photon, Q2.

However, the electromagnetic form factors provide more than just a relation to

the charge and magnetization distributions of the nucleon. Any theory of the nucleon

must explain the nucleon’s structure, and the form factors provide an experimental

test of this. The form factors are also important for the analysis of many other

experiments, so having precise measurements can enable better determination of

other quantities.
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This thesis reports on a measurement of the neutron’s electric (otherwise

known as charge) form factor extracted from an asymmetry using polarized electron

scattering from a polarized 3He target. The structure of this thesis is as follows. In

Chapter 1, the nucleon structure is introduced and discussed within the framework

of various models. In Chapter 2, the formalism required for describing the form

factors and the discussion of the measurement is developed. In Chapter 3, previous

measurements of the electric form factor are presented in addition to selected pre-

vious fits within the framework of the models discussed in Chapter 1. In Chapter

4, the experiment is introduced, in addition to a description of the experimental

apparatus. In Chapter 5, the analysis is presented along with the experimental

values for Gn
E. Finally, in Chapter 6 new results are discussed in the context of

the presented models, the flavor form factors are decoupled, and the quark orbital

angular momentum is presented. The remainder of this chapter will have a short

introduction to quantum chromo-dynamics (QCD) presented in section 1.2 and an

introduction to the various models of nucleon structure in section 1.3.

1.2 QCD

The ground state structure of the nucleon can be investigated using momentum

transfer in an elastic scattering experiment, where the initial state of the nucleon is

not changed. In electron scattering, the electromagnetic properties of the nucleon

are probed, and they are characterized by the aforementioned form factors. These

form factors express the difference between scattering from an object with internal
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structure and scattering from a point particle.

In the very successful theory of the strong interaction, quantum chromo-

dynamics (QCD), the nucleon is the lowest energy three-quark bound state. QCD

is similar in structure to quantum electro-dynamics (QED), but where in QED the

strength of interaction is governed by electric charge and the exchange particle is

photon, in QCD the exchange particles are gluons and the interaction strength is

due to color charge. The nucleons are then made up of these gluons and quarks,

with the individual quarks being resolved in the Bjorken limit. The three lightest

quarks are identified in Table 1.1.

The notion of valence versus “sea” quarks, where it is the valence quarks that

define the electromagnetic attributes of the hadron, is useful. For the proton, the

valence quarks are two up quarks and one down quark, for the neutron the valence

quarks are two down quarks and one up quark.

Protons and neutrons, as has been implied here, share many similar proper-

ties. Models and theories have been developed to explain both proton and neutron

properties together, in terms of their shared properties as nucleons. Similar prop-

erties are expected because both nucleons are made up of the same constituents,

and have the same types of valence quarks. Both also have the same spin, are very

close in mass, and are long lived. This allows one to discuss the two nucleons as two

states of a single object, differentiated by the additional quantum number “isospin”.

When the next lightest quark, the strange quark (with strangeness charge −1), is

included an SU(3) symmetry group can be formed, although this symmetry is only

approximate due to the larger mass of the strange quark.
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The charge in QCD is color, with three colors instead of the single electro-

magnetic charge which is familiar from classical physics. A significant distinction

of QCD is that, unlike the photon in QED, the exchange particles (gluons) hold

the property of color themselves. As a result, the gluons can interact with each

other, and a quark of a particular color will be “anti-screened”, causing the force

to increase as distance increases. This phenomenon is results in confinement. The

three color charges of the quark form a SU(3) group as well. This confinement and

the creation of the QCD vacuum implies the existence of “sea quarks” (ūu, d̄d, s̄s)

and gluons within the nucleon [38].

name electric charge isospin strangeness mass

u (up) +2
3

1
2

0 1.5 to 4 MeV

d (down) −1
3

−1
2

0 4 to 8 MeV

s (strange) −1
3

0 −1 80 to 130 MeV

Table 1.1: The three light quarks and their respective charges. Other quarks are the
c (charm), b (beauty), and t (top) quark, but they are too heavy to play a large role
in the experiments described here. These three light quarks form the SU(3) group.

1.2.1 Perturbative QCD

Quantum electrodynamics is a highly successful and calculable theory, in part

because it is perturbative. This is not the case for QCD. At large distances from

the bare charge, the QED coupling is the familiar α(Q2) = 1
137

while the QCD

coupling, αs(Q
2), is ≈ 1 at low momentum transfer making an expansion in αs(Q

2)

impossible. However, the coupling decreases with increasing Q2, the theory is said
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to be “asymptotically free”. The renormalization scale, Λ, defines the energy at

which the effective coupling becomes large. When Q2 is well below this, quarks and

gluons are bound into hadrons [38].

At sufficiently high momentum transfers (Q2 > Λ2), we would expect to be

able to understand the nucleon structure using perturbative QCD. A virtual photon

of high enough transferred momentum will see the nucleon as consisting of three

massless quarks moving collinearly. In (quasi-)elastic scattering the momentum of

the virtual photon is transferred among the three quarks through two hard gluon

exchanges, with each gluon being proportional to Q2. This gives the dominant

scaling of 1/Q4 for the helicity conserving form factor (known as F1(Q
2)). This

power counting is justified by QCD factorization theorems[12].

1.3 Nucleon Structure

When the transferred momentum is below the scale Λ, the QCD interaction

is strong and quarks are confined. In this parameter space there is no clear way

to calculate quantities using QCD analytically. There is much promise for future

calculations using direct computational techniques such as Lattice QCD. In the

meanwhile, various models have been developed to describe the dominant features

of nucleon structure.
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1.3.1 Partons

In deeply inelastic scattering (DIS), where the proton breaks up, the final state

of the interaction cannot be described by a particle in a single final state. Because

of this, a tensor W µν is used to parametrize the unknown final state. In the Bjorken

limit (Q2 →), apparent point particles known as quarks are resolved inside of the

nucleon, each of which is carrying some fraction of the nucleon’s four-momentum.

The nature of the strong interaction is such that individual quarks are never seen;

instead these “partons” exit the nucleon in jets of colorless hadrons; either qqq

baryons or qq̄ pairs (mesons). At lower momentum transfers where deep inelastic

scattering is not applicable, mesons can also be produced through production and

then decay of a nucleon excited state.

In the infinite momentum frame, where the momentum of the hadron is large

and all masses can be neglected, and in the case that the invariant mass of the system

is large, the tensors W µν can be represented in terms of dimensionless structure

functions. It is useful for these to be expressed in terms of Bjorken x, a dimensionless

kinematic variable of the virtual photon. This variable gives the component (xE)

of the initial energy/momentum carried by the resulting “parton”. In the limit

x → 1, all of the momentum is being carried by the parton, and so the valence

quarks dominate the interaction. As x approaches 0, the sea quarks dominate. The

momentum which is not carried by the quarks and antiquarks is carried by the

gluons [38].

The analysis of partons and the constituents of the nucleon is made more
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complicated because many energetic terms must be included. This means that

relativistic effects should be considered. However, this makes the interpretation of

the wave function unclear, because a Lorentz boost mixes the momentum states. If

QCD is quantized at a fixed light-cone time, τ , where τ = t + z
c
, the challenges of

mixing due to Lorentz boosts is removed along with the complexity of the vacuum

in relativistic quantum field theory. The following models and interpretations of

nucleon structure are mostly considered in such a quantization. Further discussion

on this is in Section 6.1 [53][18][17][19].

In elastic scattering, where the nucleon neither breaks up nor is excited, there

is a single final state. The tensor Wµν then can be reduced to a form factor. Ob-

viously, a complete model of the internal structure of the nucleon must include a

description of form factors. In the case of a spin 1
2

object like a nucleon, there are

two independent form factors, which can be expressed in the form of Sachs electric

and magnetic form factors (GE and GM) or as the Pauli and Dirac form factors,

F1 (helicity conserving) and F2 (helicity-flip) (The relationship between these will

be described in Chapter 2). In addition to elastic and deeply inelastic scattering

other hard exclusive processes such as deeply virtual Compton scattering (DVCS),

can also used to investigate nucleon structure (for a pictorial description see figure

1.1)[38] [20].
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Figure 1.1: Shown is a schematic of the DVCS process, in the framework of gen-
eralized parton distributions (GPDs). Here ξ is the skewness, x is the longitudinal
momentum fraction, N is the nucleon, γ∗ is the virtual photon, and γ is the detected
photon. The skewness gives the longitudinal momentum asymmetry, as shown in
the figure.

1.3.2 The Constituent Quark Model

An early model of nucleon structure is the constituent quark model (CQM).

In this case, the nucleon is a ground state of three massive quarks in a confining

potential. The masses of these quarks are determined by SU(3) flavor symmetry and

it is assumed that the mass of the hadron is held by just the valence quarks. While

relativistic modifications of this model have had some descriptive success, the model

does not satisfy the chiral symmetry of the QCD Lagrangian. Some modifications,

such as goldstone-boson-exchange (GBE) where there is an additional quark-quark

interaction, and the one-gluon exchange (OGE), provide a general fit to the data

for the form factors and the radii of the nucleons.

The long distance behavior of hadronic wave functions should be able to de-

scribed by the exchange of the lightest of the qq̄ states, the pions. As a result,

pion signatures should be seen in the low momentum behavior of hadrons, and the

8



addition of a this pion cloud to the constituent quark model is used to form a better

model of the nucleon. An early model of this type is the cloudy bag model. Here the

pion cloud interacts with the confined quarks such that chiral symmetry is restored.

This cloudy bag model provides a good fit of low Q2 nucleon form factors [63][57].

1.3.3 Generalized Parton Distributions

In a number of reactions, the scattering amplitudes factorize such that they

can be described by a simple diagram known as the hand bag diagram. Here there is

one valence quark interacting with the virtual photon, with the rest of the structure

contained within a generalized parton distribution (GPD). An appealing feature of

GPDs is that, depending on the kinematic limit selected, they can be related to

a wide variety of scattering processes, such as deeply inelastic scattering, deeply

virtual Compton scattering, wide angle compton scattering, and elastic scattering.

Currently, GPDs cannot be measured explicitly, and are instead expressed

by models which are generally simple parametrizations constrained by the GPD

relationship to the form factors, properties of the nucleon, and by the fact that the

GPDs become parton densities in vanishing momentum transfer.

In this framework, hard exclusive reactions (like DVCS) result in an interaction

between the probe and a single quark within the nucleon (see Figure 1.1). At leading

order, the interaction that described by the traditional form factors can also be

described by four Generalized Parton Distributions (GPDs), these GPDs depend

on the longitudinal momentum fractions (light-cone and skewness), and the squared
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four-momentum transfer (Q2) to the nucleon. The four GPDs are Hv and Ev, where

v indicates either an up quark or a down quark. 1

These GPDs depend on Bjorken x, momentum transfer Q2, scewness (ξ), and

a scale parameter µ. The following sum rules, which are independent of ξ, relate

the GPDs and the form factors:

∫ 1

−1

dxHv(x, ξ, Q2) = F v
1 (Q2) , (1.1)

∫ 1

−1

dxEv(x, ξ,Q2) = F v
2 (Q2) . (1.2)

F v
1,2(Q

2) are the flavor form factors, which describe the distribution of that flavor of

quark within the nucleon. These can be expressed in terms of the electromagnetic

form factors as F u
1 = 2F p

1 + F n
1 + F s

1 and F d
1 = 2F n

1 + F p
1 + F s

1 , where F s
1 is the

strangeness form factor of the nucleon. It is assumed, here as in most analyses, that

the strange form factor is 0. Similar relationships exist for the Pauli form factor, F2.

The GPDs must still be modeled in order to predict form factors, and are usually

done so using the sum rules [25][37][24].

1.3.4 Vector meson dominance models

Some of the earliest models of the nucleon were of a virtual photon coupling to

the nucleon both through its internal structure and through exchange of intermediate

vector mesons with a meson cloud. These vector mesons (the ρ, ω, and φ) have the

same quantum numbers as the virtual photon and are the lightest hadrons in the

1There are other GPDs which aren’t related to the electromagnetic form factors such as one to

describe the polarized distribution.
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time-like region (Q2 < 0 in the standard definition), and so could potentially play a

major role in nucleon structure at low Q2. The form factors are commonly described

by a dipole form, resulting from two nearby vector meson resonances (poles) that

have opposite residue. This structure can be written in terms of a photon-meson

coupling strength (CγVi
) and a meson-nucleon vertex (FViN):

F iv,is =
∑ miCγVi

Q2 + m2
i

FViN(Q2). (1.3)

These isovector and isoscalar form factors (F iv and F is) are then written as linear

combinations of the electromagnetic form factors[63][64].

The internal structure coupling is sometimes identified with the three valence

quarks. The initial models had only F1 coupling with the internal structure, but

some of those considered in this thesis include F2 as well[15][54].

1.3.5 Chiral effective field theory

In chiral effective field theory, the electromagnetic form factors are computed

using a chiral Lagrangian with pion, nucleon, and ∆ fields. The short distance

physics is determined by low-energy-constants, which are fit using the measured

nucleon charge radius and moments. While this technique has had some success at

low Q2, by about 0.4 GeV2 the predictions break down, due to an increasing role

of vector mesons. Since this thesis deals with Gn
E at intermediate Q2, such models

can not reliably provide a description of the discussed data. Thus, the focus will

be on models that are more appropriate to the energy regime investigated in this

experiment [63].
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1.3.6 Dyson-Schwinger Equations

As has been expressed earlier, there is a significant difference between the bare

quark and the dressed (or “anti-screened”) quark. All models of nucleon structure

at intermediate Q2 try to describe this difference. In a framework that uses Dyson-

Schwinger equations, the primary cause of this parton behavior is a dense cloud of

gluons which surround the low momentum quark, at low momentum transfer (Q2 <

M2
N). This is a manifestation of dynamical chiral symmetry breaking (DCSB), and

becomes a source for the nucleon’s mass[22].

Describing the relativistic region in a framework that is consistent with this

low energy description is difficult. In terms of these DSE, the nucleon appears as a

pole in a six-point Green’s function. Here, the three dressed quarks are described in

terms of a bystander quark and a quark-quark correlation (diquark) pseudoparticle

in a single color-3̄ channel. The binding depends on the exchange of the bystander

quark and quarks in the diquark pseudoparticle. This framework combines the

descriptions of mesons and nucleons. It is the observation of this diquark description

of the nucleon which is used to truncate the DSE and allow calculations using DSE.

An interesting prediction of models in this framework is that the radius of

the “dressed“ u-quark in the neutron is greater than that of the d-quark [14] [70]

[22]. Another is that since the up and down current quark masses are thought to be

small, the dominant mechanism for the helicity flip behavior in QCD comes from

quark orbital angular momentum and an additional polarized gluon[22].
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1.4 Experimental Investigation

These various models described above provide a description of the nucleon

which is more complete than the simple constituent quark model or dynamical

chiral symmetry breaking. Most of these models share in common as part of their

description a non-zero current quark orbital angular momentum. In this regime,

the constituents of the nucleus are dominated by the up and down quarks (with

possibly a small strange quark component). The simplest probe available of this

structure is the electron. The common experimental techniques used to study this

behavior and to investigate the models are deep inelastic scattering (DIS), deeply

virtual Compton scattering (DVCS), and (quasi-)elastic scattering. By expanding

our knowledge of the nucleon form factors, the pieces needed to complete our picture

of the neutron are brought together. The measurement described in this thesis is

one important piece: the physics of electron scattering will be developed in the next

section.
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Chapter 2

Physics of Electron and Nucleon Scattering

2.1 Introduction to electron scattering

Scattering is the process in which a particle is deflected during an interaction.

There are two main categories of scattering, elastic, where the particles are left

intact and only the momentum changes, and inelastic, where the scattered partices

are modified, excited, or destroyed. The differential scattering cross section is often

written as the product of a cross section for scattering from a spin-0 point particle

and a “form factor” which characterizes the structure of the target

dσ

dΩ
=

(
dσ

dΩ

)

Mott

frec|F (q2, θe)|2 . (2.1)

Here F is the form factor, q is the momentum transfer, the Mott cross section is

that of a spin-1
2

electron scattered from a point-like particle, and frec is a kinematic

factor (to be defined later). For a spin 1
2

particle, F (q2, θe) can be expressed in terms

of the form factors GE and GM , which will be developed later[38].

The neutron is known to have no net charge. With high energy electrons,

distances smaller tahn the size of a nucleon can be probed, allowing the structure

to be described at different scales. Nonetheless, the neutron electric form factor

is small compared to the other nucleon form factors. Various models exist that

provide detailed descriptions of the nucleon over different kinematic ranges; specific

14



k = (E ,

k = (E ,

k )

p = ( ε , p )

q = ( ω ,q )

i

f ff

µ

µ

µ

µ

p = (µ
i

ε , p )

f

i i i

f
k )

f

i

Figure 2.1: Feynman diagram for one interaction between an electron and a nucleon.
The electron has four-momentum kµ and the nucleon has four-momentum pµ.

examples of models giving Gn
E at intermediate Q2 will be given in more detail in

section 3.1.

2.2 Definition of kinematic variables

The interactions of electrons and photons are well understood within the the-

ory of quantum electrodynamics (QED). In this interaction, the properties of the

incident and scattered electron and recoiling nucleon can be measured.

In the Feynman diagram in figure 2.1, the following kinematic variables are

defined. The nucleon four-momentum is pµ = (ε,p), kµ = (E,k) is the electron

four-momentum, and qµ = (ω,q) is the virtual photon four-momentum. The four-

momentum transferred to the nucleon is q2 = qµq
µ = ω2 − q2, and is carried by the

virtual photon. If evaluated in the laboratory frame, pi = 0 and εi = MN , where

15



MN is the recoil nucleon mass. Since q2 in electron scattering is space-like, Q2 is

best defined as Q2 = −q2 = 4EiEf sin2 θe

2
(in the approximation me = 0), where

θe is the angle the electron deviates from its initial direction. Q2 is typically the

quantity used to parametrize the form factors.

2.2.1 Current operator

The current of the electron in Figure 2.1 is arrived at from QED [38]

jµ(kf , ki) = ū(kf )(−ieγµ)u(ki) . (2.2)

Here γµ is the standard Dirac matrix and e is the electric charge. In this expression

u is the Dirac spin 1
2

spinor. For the spinor the following completeness relation is

true

∑
s=1,2

u(s)(p)ū(s)(p) = γµpµ + m . (2.3)

Similarly the current for a structureless, spin 1
2

charged particle can be expressed as

Jµ(pf , pi) = ū(pf )(−ieγµ)u(pi) . (2.4)

These provide the invariant amplitude M using the rules for Feynman diagrams.

Following standard conventions, repeated indices are summed over:

iM = Jµ(pf , pi)
−igµν

Q2
jν(kf , ki) . (2.5)

2.2.2 Dirac and Pauli form factors

The vertex factor for the nucleon-photon interaction is not exactly known,

but rather parametrized in terms of form factors. These form factors must be

16



functions of q2 since it is the only independent Lorentz scalar at the nucleon vertex in

elastic scattering. Generally, the form factors can be constructed with any Lorentz-

invariant constituent; γµ, γ5, or σµν . However, the choices of iσµνqν and γµ are

made to conserve parity. Other possible forms are restricted due to current and

parity conservation. The two terms, γµ and iσµνqν , give a current of

Jµ(pf , pi) = ū(pf )[−ie(γµF1(q
2) +

iσµνqν

2MN

F2(q
2))]u(pi) , (2.6)

where F1 and F2 are known as the Dirac and Pauli form factors. They are normalized

to give the proper charge and magnetic moment at q2 = 0, so that

F p
1 (0) = 1, F p

2 (0) = κp

F n
1 (0) = 0, F n

2 (0) = κn .

(2.7)

where κ is anomalous contribution to the nucleon’s magnetic moment.

The Dirac and Pauli form factors are a parametrization of the electromagnetic

structure in a different basis than the Sachs form factors. The Sachs form factors

can be expressed in terms of F1 and F2 as [47]

GE = F1 − τF2 , GM = F1 + F2 , (2.8)

where τ = Q2

4M2
N

.

2.3 Breit frame

As mentioned previously, the Sachs form factors can be related to the charge

and magnetic moment distribution, in a particular reference frame called the Breit

frame. No energy is transferred, only momentum (pi = −pf ), therefore

Q2 = q2
B . (2.9)
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An important aspect of the Breit frame is that the Fourier transform of the

electric form factor gives the charge density distribution, and that of the magnetic

form factor gives the magnetic current density distribution.

The four components of the hadronic current in this frame are [38] [63]:

J0 = ie2MN ūf (F1 − τF2)ui = ie2MN ūfGEui , (2.10)

−→
J = −eūf (

−→σ × qB)(F1 + F2)ui = −e(−→σ × qB)ūfGMui . (2.11)

Using this, Sachs[74] showed that GE and GM can be expressed as the Fourier

transforms of the nucleon charge and magnetization densities:

GE(Q2) =
4π

Q

∫
rdrρch(r) sin Qr (2.12)

GM(Q2) =
4π

Q

∫
rdrµρmag(r) sin Qr. (2.13)

At low Q, equation 2.12 can be expanded such that

GE(Q2) = 1− 1

6
Q2〈r2

E〉+
Q4

120
〈r4

E〉+ ... (2.14)

From this we can see a simple formula for the charge radius of the neutron. At very

low momentum transfer, the slope of the form factor with respect to Q2 defines the

mean square radius of the distribution[49],

< r2
n >= −6

d(Gn
E)

dQ2

∣∣
Q2→0

. (2.15)

This is obviously only true in the non-relativistic limit. Recently, Miller et al. have

developed a formalism that allows a representation of the transverse charge and

magnetization densities that are not reference frame dependent [58].
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Figure 2.2: Feynman diagram for interaction between an electron and the nucleus.
The electron has four-momentum kµ and the ejected nucleon has momentum pµ

f .

2.4 Quasi-elastic scattering

Rarely in scattering experiments is there an opportunity to scatter from a

single nucleon. This is especially true of the neutron, which is short lived in its

free state. There are many different approximations that can be used to put the

nucleus in terms of elements that are better understood. Some of these are refer-

enced in sections 5.5 and 5.7.1. While discussing all of them is out of the scope

of this thesis, two which allow the final state nucleus to be understood in terms

of a remainder nucleus and a scattered nucleon merit development. These are the

impulse approximation (IA), and the plane wave impulse approximation (PWIA).

Here and throughout much of this thesis, discussion will be formulated in terms of

the one-photon exchange approximation.
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2.4.1 Impulse approximation

In the impulse approximation the virtual (off-shell) photon interacts with a

single nucleon. Afterward, the struck nucleon leaves the nucleus without any further

interaction with the remaining “spectator” nucleons. This approximation can also

be described as the assumption that the current of the nucleus is given by the sum

of the currents of the individual nucleons, where the nucleons are treated as free

particles[23].

The simplest nucleus that can be discussed in such terms is the deuteron.

In the IA, the differential cross section for scattering from a neutron or proton

embedded in the deuteron can be factorized. This allows the contributions of the

neutron and proton to be separated. For an electron to scatter from a nucleon inside

the deuteron, the contributions from the proton and the neutron can be separated

dσed

dΩ
≈ dσep

dΩ
+

dσen

dΩ
. (2.16)

This approximation, however, completely neglects nuclear binding and the inherent

Fermi motion of the bound nucleons. It also neglects that the nucleon might re-

scatter, the virtual photon might couple to a virtual meson exchanged between the

nucleons, or the virtual photon might couple to an excited state of a nucleon (known

as Isobar Configuration or IC). The quasi-elastically scattered nucleon interactions

with the other “spectator” nucleons are known as final state interactions (FSI).
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2.4.2 PWIA

A more detailed simple approximation is the Plane Wave Impulse Approxima-

tion (PWIA). This approximation is a quasi-free one, and is important in discussions

of neutron double polarization experiments, where either the target or the recoiling

nucleon is polarized. In PWIA the polarization of the recoiling nucleon or of the

target is restricted to the scattering plane. The longitudinal component is paral-

lel to the recoiling nucleon’s momentum vector, and the transverse component is

perpendicular[55]. In this approximation the initial and final state of the target

nucleus are represented as products of plane waves for a nucleus and nucleon, where

the nucleon is bound (with momentum pi). The nucleon absorbs the virtual pho-

ton, while the nucleus remains as a spectator. The nucleon then leaves the nucleus,

which is assumed to be free after the absorption of the virtual photon, without any

further interaction.

2.5 Polarization observables

A convenient coordinate system to work with observables when the beam,

target, or recoiling nucleon are polarized is defined by[64]

ẑ ‖ q,

ŷ ‖ ki × kf ,

x̂ = ŷ × ẑ.

(2.17)

It is useful to refer to the polarization vector
−→
P , which can serve as either

the polarization of the nucleon inside the target in beam-target asymmetry mea-
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Figure 2.3: Polarization exchange in the one photon exchange approximation for
polarized-electron, polarized nucleon scattering. θ and φ define the polarization of
the recoiling nucleon.

surements, or the polarization of the ejected nucleon in beam-recoil polarization

experiments.

−→
P = P (sin θ cos φx̂ + sin θ sin φŷ + cos θẑ) (2.18)

In the general case of parity conserving polarized scattering there are 18 in-

dependent response functions. Under the approximations of one photon exchange,

PWIA, and parallel kinematics, only four terms survive. The cross sections of both

a recoiling polarized nucleon and a polarized target share similar forms, and can

be written in terms of products of kinematic quantities and response functions[47].

The kinematic variables (following the development in [47]) for these reduced terms

are

V ′
TL = (1− τ)−1 tan

θe

2
, (2.19)

VT =
1

2(1− τ)
, (2.20)
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VL =
1

(1− τ)2
, (2.21)

V ′
TT =

√
(1− τ)−1 + tan2 θe

2
tan

θe

2
. (2.22)

The response functions depend on the polarization of the recoiling nucleon and

the target nucleus. These kinematic variables arise from the electron tensor in an

alternate basis, where the coefficients refer to the nuclear response function with

which the kinematic variable is associated (L, TL, T or TT ). The response functions

arise from the nuclear response tensor (W µν). The nuclear response tensor serves to

parametrize the increased generality of the nucleus, where the same current doesn’t

exist in the initial and final states [38]. The four reduced response functions are

R′
TT (ẑ), R′

LT (x̂), RL, and RT , the first two of which reflect components associated

with the polarized nature of the cross section. These subscripts L and T correspond

to “longitudinal” and “transverse”.

Two additional response functions exist for nuclei with more than one nu-

cleon. These are RTT and RTL and only appear when the change in total angular

momentum is greater than two units [26] [67].

2.5.1 Recoil polarization

From PWIA it can be shown that the unpolarized nuclear response tensor is

symmetric, W µν = W νµ. This means that the response tensor for recoil polarization

is

W µν(â) = −W νµ(â) = W νµ(−â) . (2.23)

In double-polarization experiments parallel kinematics are often used; under
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these kinematics the nucleon’s final momentum is parallel to the momentum transfer.

Also, at the electron beam energies in the experiments described here, only the

longitudinal component of the electron polarization is relevant.

In the laboratory reference frame there are two response functions that describe

the polarization (in PWIA), R′
TT (ẑ) and R′

LT (x̂). These are the longitudinal and

transverse response functions from which the transverse (Px) and longitudinal (Pz)

components of recoil polarization arise[47].

The general form of the nuclear structure tensor, with a polarized target or

recoiling nucleon, can be written as[63]:

Wµν = JµJ
∗
ν = W 0

µν + Wµν(
−→
P f ) + Wµν(

−→
P i) + Wµν(

−→
P i,

−→
P f ) . (2.24)

In recoil polarization experiments, typically only the final nucleon polarization is

measured, and Wµν reduces to (in the Briet frame):

Wµν =
1

2
TrFµF

†
ν
−→σ · −→P . (2.25)

Here F0 = 2mGE and Fj = imGM~σ×qB · ĵ, where j = x, y, z. This gives Wµν(Px) ∝

2mGEGM and Wµν(Pz) ∝ G2
M .

As an example, this leads, after transformation back to the lab frame, to the

following components of the recoil polarization of a free neutron [77][39]:

Px = −Pe

√
2τε(1− ε)Gn

EGn
M

ε(Gn
E)2 + τ(Gn

M)2
, (2.26)

Py = 0 , (2.27)

Pz = Pe
τ
√

1− ε2(Gn
M)2

ε(Gn
E)2 + τ(Gn

M)2
, (2.28)

where ε = [1 + 2(1 + τ) tan2 θe

2
]−1, and Pe is the polarization of the electron beam.
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2.5.2 Target polarization

The arguments and results are similar for a polarized target, where the de-

tected nucleon is either unpolarized or not detected. Once more, in parallel kine-

matics, the one photon interaction approximation, and PWIA, only the x̂ and ẑ

components of the target polarization vector remain.

In the response function formulation, and with spin-1
2

nucleons, to within a

multiplicative constant, are a function of the components FL = (1 + τ)GE and

FT =
√

2τ(1 + τ)GM . The general expression for a response function is

∑

j,j′
Aj,j′(k)FjFj′ (2.29)

where the Aj,j′(k) has only two terms left for the polarized response, the F 2
T and

FLFT terms. This formulation is developed in general for more complicated systems

than elastic scattering with a polarized nucleon by Donnelly and Raskin [26] [67].

The response functions for the target are then[47]:

RT
LT (x̂) = 2

√
τ(1 + τ)GEGM , (2.30)

RT
TT (ẑ) = 2τG2

M . (2.31)

2.6 Cross section with unpolarized observables

The unpolarized differential cross section is dependent on the square of the

scattering amplitude (spin averaged since it is unpolarized),

dσ

dΩ
=

m2
e

4π2

Ef

Ei

frec
1

4

∑
|M|2, (2.32)
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where frec = [1 + 2Ei

M
sin2 θe

2
]−1. It is useful to define the Mott cross section, which

corresonds to a relativistic electron scaterring from a structured target

dσMott

dΩ
=

α2 cos2 θe

2

4E2
i sin4 θe

2

. (2.33)

Here α is the fine structure constant.

Using the equations 2.2, 2.6, 2.32, and the Feynman rules the following rela-

tionship between the four-momenta, angles, and other elements of the electron and

interacting fermion give the differential cross section. This relationship between the

form factors and the cross section is also known as the Rosenbluth formula.

dσ

dΩ
=

(
α2

4E2 sin4 θe

2

)
Ef

Ei

[(
F 2

1 −
q2

4M2
F 2

2

)
cos2 θe

2
− q2

2M2
(F1 − F2)

2 sin2 θe

2

]

(2.34)

Putting this in terms of the Sachs form factors gives[47]:

dσ

dΩ
= frec

(
dσ

dΩ

)

Mott

[
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2 θe

2
]. (2.35)

This is much simpler than equation 2.34 and readily suggests a method of measure-

ment of the form factors.

2.7 Cross section with polarized observables

The general form for the cross section when the beam of electrons is polarized

and the polarization of the ejected particle is detected is:

d6σh,s

dEfdΩkf
dεfdΩpf

= σunpol
1

2
(1 +

−→
P i · −→σ + h(A +

−→
P T · −→σ )). (2.36)

Here Pi is the induced polarization in the proton, h is the helicity of the incident

electron, A is the beam analyzing power, s is the nucleon spin projection on σ, σunpol
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is the unpolarized cross section, and PT is the polarization transfer coefficient[47].

In coplanar kinematics A = 0, Pi · −→σ = Pi · N̂ , and PT · N̂ = 0. Since Pi · N̂ = 0 in

PWIA, two terms survive to provide the nucleon polarization, and from equations

(??) and (??) an elegant measurement of Gn
E is possible.

This is similar in form to the cross section of polarized electrons on a polarized

target where the recoil polarization is not measured:

d6σ

dEfdΩkf
dεfdΩpf

= σunpol
1

2
(1 +

−→
P t · −→A T + h(A +

−→
P t · −→A ′

T )). (2.37)

The new variables here are Pt which is the target polarization vector, AT which is

the target analyzing power, and A′
T which is the correlation vector[47].

Using a longitudinally polarized electron beam and a polarized target, the

cross section can be written as:

σpol = Σ + h∆, (2.38)

where Σ is the unpolarized cross section from equation 2.35, and ∆ is the helicity

dependent part[26]. Under the approximations of PWIA and one photon exchange,

and in the case of parallel kinematics and relativistic electron beam, the cross section

simplifies to[47]:

σpol = σMottfrec[VLRL + VT RT + hPtarget(V
′
T R′

TT (ẑ) + V ′
TLR′

TL(x̂))]. (2.39)

Using equations 2.19, 2.22, 2.31, 2.30, ∆ is given by

∆ = −2σMottfrec tan
θe

2

√
τ

1 + τ
(

√
τ(1 + (1 + τ) tan2 θe

2
) cos θG2

M+GEGM sin θ cos φ).

(2.40)
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Chapter 3

Form Factors

3.1 Models and fits

While the theory for strong interactions, QCD, is well known, because of

confinement it is impossible to use perturbative techniques to do calculations at low

Q2. Since it is low Q2 that is pertinent to the structure of hadrons, approximate

models must be used to understand this physics. Understanding the form factors,

especially Gn
E since it is relatively unknown, provides assistance in understanding

nuclear structure. Models have been developed to describe the structure of hadrons,

and data is needed to determine which models provide a better description.

There are a large number of models of nuclear form factors, a few classes

of which will be discussed here. Although lattice QCD has the most long term

promise for understanding the physics of strong interactions, since the comparison

of the results with data will show the current limitation in computing power, they

will not be included.

3.1.1 Fits

In the early studies of nucleon form factors, a phenomenological fit was per-

formed to determine the behavior of Gn
E, based upon unpolarized data and the

Rosenbluth technique. This fit of the data is known as the Galster parameteriza-
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tion, and is

Gn
E(Q2) = − µn

1 + 5.6τ
GD(Q2), (3.1)

where GD is the dipole form factor

GD =
1

(1 + Q2

0.71
)2

. (3.2)

The other three form factors (Gp
E,

Gp
M

µp
,

Gn
M

µp
) all show good agreement GD using data

acquired from the Rosenbluth method. As new data have become available, this

simple fit has been updated. See for example the fit by Kelly [48].

3.1.2 Vector meson dominance model

A representative vector dominance model which is in reasonable agreement

with the low Q2 data is one by Bijker et al.[15] This model has pQCD scaling

relations built into the fit, and a phenomenological contribution attributed to the

nucleon’s qqq structure. The added term for F V
2 is g(Q2)

1+γQ2 introduced to reflect pQCD.

The intrinsic form factor used was g(Q2) = (1 + γQ2)−2.

Another representative model, by Lomon et al., also included meson pole terms

and a term with pQCD behavior. This model also includes the additional vector

mesons of ρ′ and ω′ compared to the previously described one, requiring a total of

14 free parameters [54].

3.1.3 Pion cloud and CQM

Miller, et al., expanded the constituent quark model into the light-front cloudy

bag model [57]. Here the three relativistic constituent quarks are surrounded by a
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nonrelativistic cloud of pions. Poincaré invariance provides an additional constraint

needed to fit the Gn
E data. This model has recently been expanded into the light front

cloudy bag model, with the pion cloud contributing through a relativistic π-nucleon

form factor. The corrected form factors are in terms of the form factors without

relativistic effects, and the virtual pion four momentum. An additional parameter

is introduced in the π-nucleon form factor, for the relativitistic correction[57].

3.1.4 Model of Generalized Parton Distributions

The interest in GPDs recently have led to several models being developed.

Among these are models by Guidal et al.[37][63] and Diehl et al. [25]. In these

models, the GPD framework is used to describe observables which are independent

of skewness ξ (see Figure 1.1). Guidal et al. parameterize the GPDs in the following

way

Hq
R2(x, 0, Q2) = qv(x)xα′(1−x)Q2

, (3.3)

Eq
R2(x, 0, Q2) =

κq

N q
(1− x)ηq

qν(x)xα′(1−x)Q2

. (3.4)

Here the α′ is the universal Regge slope, while the ηq govern the behavior for the

helicity-flip GPDs as x approaches 1. This was added to produce a faster falloff at

large Q2 in the x → 1 limit. The model by Diehl et al. is described in Section 6.4.2.

3.1.5 pQCD predictions

As stated in section 1.2.1, perturbative QCD gives the prediction that [12]

F1 ∝ 1

Q4
. (3.5)
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This relationship is also expected to be relevant at moderate Q2 when higher order

QCD terms are included, which treat small-x partons better. The small quark

masses mean that the dominant mechanism for helicity flip in QCD comes from

the quark orbital angular momentum. Generalized power counting including this

orbital angular momentum gives a scaling of

F2 ∝ 1

Q6
. (3.6)

This behavior depends on the leading order and next to leading order light-cone

wave functions, the latter dominated by the probability amplitude for one quark to

carry one unit of orbital angular momentum. It is suggested that the higher order

resummation suppresses the low x contribution, providing an effective cut off for

the integrals is at x ≈ ln2 (Λ2/Q2) [12].

F2

F1

∝ ln2 Q2

Λ2

Q2
. (3.7)

Here Λ is the QCD renormalization scale. While this scaling relation is accurate for

the proton, a rough calculation of Q6F2(Q
2) gives about 1

3
the value of experimental

data for Q2 < 5 GeV2 [12].

3.2 Measuring GEn via the Rosenbluth technique

As mentioned earlier, equation 2.35 suggests one technique to determine the

electric and magnetic form factors. By carrying out multiple measurements at dif-

ferent angles for a given Q2 the two components of the cross section may be in-

dependently determined, allowing a separation of the electric and magnetic form
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for the full set. The Bijker curve is a representative Vector Meson Dominance model,
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a CQM.
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factors. This technique is known as Rosenbluth separation. Experiments to mea-

sure the electric form factor of the neutron that use this Rosenbluth method fall into

two categories: those in which the impulse approximation for quasi-elastic electron

deuteron scattering with the Rosenbluth method is applied directly to the neutron

component, and those where the Rosenbluth method is applied to the deuteron

through elastic scattering, and an NN model is use to extract a value for Gn
E[47].

The latter is described first.

3.2.1 Elastic e-D scattering

The deuteron, containing two nucleons, is spin-1. Because of this, the equation

for the elastic cross section has three form factors, the magnetic GM , the charged

GC , and the quadrupole term GQ [64]:

dσ

dΩ
=

dσMott

dΩ
[G2

C +
8

9
τ 2G2

Q +
2

3
τ(1 + τ)G2

M +
4

3
τ(1 + τ)2G2

M tan2 θe

2
] . (3.8)

While the θe dependence allows GM to be separated out, the charged and quadrupole

terms cannot be separated using the Rosenbluth technique. In addition, it is the

coherent sum of proton and neutron electric form factors which is extracted (Gp
E +

Gn
E). Both of these complications add to the uncertainty in the determination of

Gn
E. The electric form factors must be “unfolded” from GC and GQ using a model,

which makes the results of this technique dependent on the model of the deuteron’s

wave function [63] [71]. The most recent extraction uses high precision data for GC ,

and the Arenhovel model of the deuteron [6] [29].
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3.2.2 Quasi-elastic scattering and the Rosenbluth Technique

Recalling equation 2.16, a technique using quasi-elastic scattering off a nucelon

rather than elastic scattering off a deuteron and the Rosenbluth formula (equation

2.35) directly presents itself. By subtracting the cross section of the proton from that

of the deuteron, or by measuring the neutron in coincidence with the electron, at the

quasi-elastic peak, the cross section of the neutron remains. Then the Rosenbluth

formula can be used to arrive at a value for Gn
E.

Most commonly the neutron is detected in coincidence with the scattered elec-

tron, to identify that the interaction was with the neutron. However, this technique

has also been performed with anti-coincidence measurements, where “no proton” is

required in coincidence with the electron [64]. An additional technique used is to

measure the ratio of the neutron to proton production cross sections in the electro-

disintegration the deuteron. This method has worked very well for the neutron

magnetic form factor.

There have been some serious difficulties with these types of experiments.

Among these are a heavy dependence on the proton form factors and the afore-

mentioned problems with the Impulse Approximation (section 2.4.1). Additionally,

coincidence and anti-coincidence experiments depend on the absolute detection ef-

ficiency, which is difficult to determine for neutrons [64].
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3.2.3 Difficulties with Rosenbluth method

The uncertainties for these measurements based upon unpolarized quasi-elastic

scattering from deuterium are too large to give a definitive nonzero measurement of

Gn
E. The dependence on the proton form factors and the uncertainty directly from

IA dominate the measurement.

The Rosenbluth technique has another inherent problem: the magnetic form

factor is much larger than the electric form factor for the neutron, and the ratio

( GE

τGM
)2 becomes smaller as the transferred momentum increases. This means that

the electric form factor is difficult to decouple from the magnetic form factor, since

both the tangential and constant (relative to angle) portions of the cross section are

proportional to G2
M [76].

3.3 Double polarization techniques

With the difficulties in measuring the electric form factor of the neutron using

the Rosenbluth method, new techniques have been sought. Following the suggestion

of Arnold, Carlson, and Gross [10] a technique using a longitudinally polarized beam

and a recoil polarized neutron has been investigated. The most obvious reaction for

such an experiment would be 2H(−→e , e′−→n )p.

The most important advantage is that the measured term is proportional to

Gn
EGn

M instead of (Gn
E)2. Additionally, only one measurement is needed for a given

Q2 if all interesting components can be measured.

As mentioned earlier, polarized targets can allow the same physics to be ac-
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Figure 3.2: Previous Gn
E data from experiments involving polarization techniques.

The curve is the Galster parametrization [33]. Herberg provided new calculations of
the Ostrick data, while Golak provided a FSI corrected analysis of the Becker data.
For references see Table 3.3.
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cessed as detecting a polarized recoil neutron. Experiments have been carried out

with either recoil polarization, where the polarized neutron is detected in a po-

larimeter, or with a polarized target, either polarized deuterium or polarized 3He,

with a detected unpolarized neutron[55]. Table 3.3 contains a summary of recent

experiments all of these techniques.

All experiments using the double polarization technique are dependent on a

helicity dependent experimental asymmetry,

Aexp =
N+ −N−
N+ + N−

, (3.9)

which can then be related to Gn
E. Here N+ gives the number of events with helicity

aligned with the nucleon polarization or with the beam direction and N− gives

the number of events with helicity with the opposite sign compared to nucleon

polarization or against the beam direction.

3.3.1 Quasi-elastic scattering and (e,e’n)

For PWIA to be applicable, quasi-elastic events must be selected. Even though

the cross section is not being measured, the process of selection of these events

is important, as double polarization techniques depend on asymmetries, which are

diluted by events which are not part of the desired asymmetry. Two useful quantities

for selecting quasi-elastic events in coincidence experiments are the missing energy

(defined by Em = mf + mB −mA+i with A, B, i, and f as shown in figure 2.2) and

the missing momentum (defined by pm = pi − q).

In the experiments that have been carried out to date, the experimental trig-
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Q2 Date Reference target

0.16 1991 Jones-Woodward[44] 3−→He

0.2 1992 Thompson[80] 3He

0.31 1994 Meyerhoff[56] 3−→He

0.255 1994 Eden[28] 2H

0.15, .34 1999 Ostrick[61] 2H

0.4 1999 Becker[11] 3−→He

0.21 1999 Passchier[62] 2−→H

0.67 1999 Rohe[71] 3−→He

0.45, 1.13, 1.45 2003 Madey[55] 2H

0.5, 1 2003 Warren[82] 2−→H

0.3,0.6,0.8 2003 Glazier[35] 2H

0.67 2003 Bermuth [13] 3−→He

Table 3.1: Double polarization experiments to measure the electric form factor of
the neutron that have been carried out to date[64].
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ger was typically formed by coincidence between the scattered electron and recoiling

neutron. The electrons were detected in a spectrometer or granulated calorimeter.

The measured electron kinematics, in concert with large solid angle neutron detec-

tors, allow for event-by-event reconstruction of the particle tracks. For the neutron

detector, in higher Q2 experiments a multi-plane neutron detector was used, with a

layer or two of veto detectors in front. In other experiments, two separated layers

of scintillator were used, with each layer having veto detectors in front.

Recoil polarimetry experiments required a different detection scheme in order

to detect the polarization of the neutron, as it leaves the target. Polarimeters were

set up to measure the “up-down” scattering asymmetry due to the transverse com-

ponent of the recoil polarization. The polarimeters included a plastic or mineral oil

scintillator which determined the neutron time of flight (TOF), and also served as a

scatterer, with the polarized scattering exhibiting an asymmetry that was measured

in a second set of scintillators. Since the spin vector of the neutron could have

any combination of longitudinal and transverse polarizations, a dipole magnet was

sometimes used to precess the neutron’s spin vector.

These detectors provided scattering angles for both neutrons and electrons.

The momentum of the particle(s) provides the needed fifth quantity to select quasi-

free (e, n) scattering, and is determined by considering the time of flight (TOF) for

the particle(s). A missing signal in the veto detectors along with the determination

of the flight time of the particle from the target to the detector provided neutron

detection. Additionally, pulse heights in the neutron detector scintillators can be

used to filter out accidental and inelastic events. Quasi-elastic events can also be

39



selected by comparing the expected time of flight (from the electron energy and the

angles) to the measured time of flight.

Other events, which dilute the quasi-elastic neutron events, were one of the

main sources of uncertainty in these measurements. A major source of background is

proton to neutron conversion in the shielding in front of the neutron detectors. This

can be minimized with a tight time of flight cut at low hadron momentum. Good

time resolution also allows removal of pion events, another source of dilution. Monte

Carlo simulations have been used to determine the proper dilution factor from the

uncertainties and to average out the theoretical asymmetries and the effects of finite

acceptance.

3.3.2 Recoil polarimetry

Four experiments used recoil polarization techniques to measure Gn
E. These

experiments were Madey et al.[55] in Hall C at Jefferson Lab, Glazier et al.[35] at

the Mainz Micotron, Ostrick et al.[61] at the Mainz Microtron, and Eden et al.[28]

at the MIT-Bates laboratory. The first three named experiments (Eden et al. was

a proof of concept experiment) produced published data.

In these experiments, neutrons were produced through electrodisintegration

of deuterons in an unpolarized liquit deuterium target using longitudinally polar-

ized electrons. Contamination from hydrogen within such targets was found to be

small[28] [55].

From equations 2.26 and 2.28 we can develop a relationship between the ratio
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of the components of polarization, and the ratio of the form factors

GE

GM

= −Px

Pz

Ei + Ef

2M
tan

θe

2
. (3.10)

Here Px and Pz are the x and z components of polarization. In order to determine

the up-down asymmetry Ameas must be observed. It follows a sinusoidal dependence

Ameas = Ay|−→P | sin (χ + χ0) . (3.11)

Here Ay is the beam analyzing power, and χ is the spin precision angle, of the

detected particle as it travels through a magnetic field.

tan χ0 =
Px

Pz

= −GE

GM

cos θe

2√
τ + τ 2 sin2 θe

2

. (3.12)

Using this spin precision technique removes the need for absolute calibration of the

electron beam polarization and effective analyzing power [65].

Arenhovel[8][7] showed that for a deuteron target, corrections due to meson

exchange currents and isobar configurations are small, and these have little depen-

dence on Q2. It was found, however, that especially at lower values of Q2, effects

from final state interactions (FSI) can play a large role [61].

Ostrick et al. found at Q2 = 0.35 GeV2 that the neutron polarization was

reduced by less than 4% due to FSI effects, but at Q2 = 0.12 GeV2 the transverse

polarization is reduced by 50%. These final state interactions were calculated to

mostly arise from p − n charge exchange via pion exchange. A model was used to

calculate the change to the polarization by FSI, and a correction was applied [61].

Glazier et al. found that at neutron energies of a few hundred MeV the

scattering in the polarimeter was dominated by quasi-elastic scattering, which added
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to the effective analyzing power of the polarimeter. This means that Ameas, the

effective asymmetry, could not be computed accurately, and the statistical precision

was not exactly known[35].

Madey et al. also used a cross ratio technique, which makes the neutron

polarimeter results independent of any luminosity change based on beam helicity, as

well as of the efficiencies and acceptances of the two halves of the polarimeter. This

experiment used a different technique to account for FSI effects. By using possible

Gn
E values in a simulation, the neutron polarization was calculated which was then

compared to experiment[55].

3.3.3 Polarized target measurement

To measure Gn
E using a polarized target, we measure the asymmetry A

A =
σ+ − σ−
σ+ + σ−

=
∆

Σ
, (3.13)

where σ± are the cross sections (Equation 2.38) with electron helicity ±1. If the

polarization direction of the target is flipped, this changes the sign of the asymmetry.

This asymmetry is not explicitly measured, but rather

Ameas = PePtA , (3.14)

where Pe is the polarization of the electron, Pt is the polarization of the target, and

A = −
2
√

τ(1 + τ)
[
tan θe

2
sin θ cos φGn

EGn
M +

√
τ [1 + (1 + τ) tan2 θe

2
] cos θ(Gn

M)2
]

(Gn
E)2 + τ [1 + 2(1 + τ) tan2 θe

2
](Gn

M)2
.

(3.15)
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Here θ and φ are the angles defined in Figure 2.3. Setting the angles properly

(θ = 90◦ and φ = 0◦) greatly simplifies things, giving the perpendicular asymmetry:

A⊥ =
−2

√
τ(1 + τ) tan θe

2
GE

GM

( GE

GM
)2 + τ [1 + 2(1 + τ) tan2 θe

2
]
. (3.16)

Since the ratio of GE

GM
is small, the perpendicular asymmetry is roughly proportional

to the ratio GE

GM
. The parallel asymmetry can be used to normalize the value, so

that:

Gn
E =

a

b
Gn

M

(PePtV )‖A⊥
(PePtV )⊥A‖

, (3.17)

where a = 2
√

τ(1 + τ)
√

τ [1 + (1 + τ) tan2 θe

2
] and b = 2

√
τ(1− τ) tan θe

2
.

3.3.4 Experiments with polarized deuterium

Two experiments used polarized deuterium targets to measure the value of

Gn
E, one in Hall C at Jefferson Lab (Warren et al.[82]) and the other at NIKHEF in

Amsterdam, the Netherlands (Passchier et al. [62]).

Under PWIA, for deuteron targets with polarization in the scattering plane

and after proper averaging of the asymmetry(symmetrically around q), the measured

asymmetry is

Ameas = V
PeP

d
1 AV

ed

1 + P d
2 AT

d

, (3.18)

where V is the dilution factor, P d
1 is the vector polarization, P d

2 is the tensor po-

larization, AV
ed is the deuteron tensor beam-target asymmetry, and AT

d is the vector

deuteron target asymmetry. For most targets the tensor polarization is small, and

that term can be ignored.
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In these experiments data were compared to predictions by Arenhovel [7] [8] [9],

which accounted for nuclear and FSI effects. This physics model is non-relativistic,

and includes meson exchange, isobar configuration currents, and relativistic correc-

tions. The comparison was done by simulating different observables, like pm, and

plotting them versus the asymmetry, all using different values of Gn
E within the

confines of the model[62] [82].

In the experiment performed by Warren et al., polarized deuterated ammonia

was used as the target. The ammonia granules were submerged in liquid helium and

aligned with 5 T magnetic field resulting in a typical polarization of 24%. Good

agreement with MC predictions showed that quasi-elastic scattering dominated the

scattering reaction. This experiment had a narrow range of acceptance, so it was

fairly insensitive to Q2 dependence [82].

In the experiment performed by Passchier et al., polarized electrons were in-

jected into a recirculating storage ring, allowing for large beam currents. An atomic

beam source injected a flux of polarized deuterium atoms into a cell in the storage

ring with an electromagnet used to orient the polarization axis. This was created

by deuteron atoms in two hyperfine states, with an electromagnet to orient the

polarization axis [62].

3.3.5 Experiments with polarized helium-3

Another class of experiments to measure Gn
E have used 3−→He as the target. Var-

ious experiments were carried out at the Mainz Microtron (MAMI) [11][71][13][56]
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and at the MIT-Bates laboratory[44][80]. The results presented in [13] include those

from the experiment reported in [71]. Additionally, experiment E02-013 is of this

type and in early 2006 ran at Jefferson Lab in Hall A. The analysis of this experi-

ment, with data up to Q2 = 3.5 GeV2, is being presented in this thesis.

Optical pumping techniques are used to polarize the 3He either through metasta-

bility exchange where the 3He is pumped directly, or through spin exchange. In the

latter, the valence electron in rubidium is optically pumped and the polarization is

transferred to the 3He nucleus through collisions. The polarization process for 3He

generally does not take place in the target chamber, rather a pumping chamber is

used and the polarized helium-3 diffuses into the target cell or is forced in with a

compressor. The polarization vector inside of the 3He target can then be measured

with NMR.

One of the advantages of a polarized 3He target is that in the ground state the

spins of the protons are to a large extent aligned antiparallel to each other. This

means that most of the spin of the helium nucleus is carried by the neutron; the

polarization of the neutron is ≈ 86% of the polarization of the nucleus [16]. Further

details about polarized 3He targets will be presented in section 4.4.

At low Q2, the complications due to the nuclear wave function can be ac-

counted for with calculations. However, at Q2 > 0.6 GeV2 this proves difficult,

and extrapolation was used in these earlier experiments. Data for Gn
M is used, or

a parametrization, in order to arrive at a value of Gn
E from the experimental asym-

metry (equation 3.16). A Monte Carlo simulation was used to determine radiative

loss and neutron energy loss before the detector, as well as other corrections.
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It is possible to select the kinematics such that the measured asymmetry is

expressed as:

Aexp = PbeamPtargetDneutronVotherA⊥. (3.19)

Here D accounts for dilution from sources related to the target (such as it not being

a free neutron), and V is the dilution caused from other sources and from reactions

other than quasi-elastic scattering. This formula assumes that the angles in equation

3.15 are exactly such that A‖ = 0; in practice this isn’t possible.

The experiment performed by Becker et al. used circulated 3He which was

compressed into the target cell by a Toepler compressor. An experiment using

deuterium provided a parallel measurement, using the same equipment, pointed to

a significant role for FSI that decreases as Q2 increases. The work by Golak et al.

expanded upon the analysis of Becker et al. by summing the cross sections before

forming asymmetries using Faddeev calculations. It was discovered that even at

the quasi-elastic peak FSI effects played a significant role. Using theoretical ratios

determined from models and comparing to experimental values, Gn
E was extracted

from the FSI corrected results [11][36].

In the experiments performed by Rohe et al. and Bermuth et al., the data

were accumulated by rotating the target spin so that both A⊥ and A‖ could be mea-

sured. The measurement of both parallel and perpendicular asymmetries allowed

the measurement of the target analyzing power (Ay) which provided a check on the

understanding of FSI effects. These were compared to the calculation by Golak et

al. and FSI effects caused a 3.4% decrease in the reported value of Gn
E. These FSI

46



effects are primarily caused by the photon coupling to one of the protons followed

by charge exchange [71][13].

3.4 Summary of past measurements

These three different double polarization techniques have a variety of advan-

tages over the Rosenbluth method, as described in this chapter. While models are

used to make corrections, and for polarized deuterium for the measurement itself, the

general method is model independent. The three different, independent, techniques

used in double polarization measurements provides a check on the understanding of

the different types of corrections required.

Because 3−→He behaves similarly to a polarized neutron, and because of the low

detection efficiency neutron polarimeters, polarized 3−→He experiments provide the

best statistical precision for measuring Gn
E. FSI effects are taken into account by

models for polarized deuterium and calculations for 3−→He. Because of the robustness

of the deuterium model, FSI effects have traditionally played less of a role in deu-

terium experiments compared to those using 3−→He. For the discussion and calculation

fo FSI effects in polarized 3He for this experiment, at intermediate Q2, please see

the section 5.7.1.

The completed experiments provided precise enough data to clearly identify a

small enhancement in Gn
E at Q2 = 0.4 GeV2. This enhancement is larger in value

than the measurements from the Rosenbluth data. At the highest measured values

of Gn
E a noticeable difference between the Rosenbluth and polarized data is seen.
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Figure 3.3: Double polarization data and selected models in the region where polar-
ized data is available. Models are described in section 3.1 while data is referenced
in Table 3.3.
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This is speculated to be due to incomplete radiative corrections for the Rosenbluth

data.

In the past decade, precise measurements of the neutron electric form factor

have become possible and have provided precise knowledge of the structure of nucle-

ons for Q2 below 1.5 GeV2. In this region, several models provide a good agreement

with the data. The majority of the recent measurements have used the double polar-

ization method, which has the advantage of having greater precision and less model

dependence compared to the historic Rosenbluth method.

3.5 E02-013 at Jefferson Lab

As introduced, the physics of nucleons move from the bound behavior described

by massive partons, into the behavior described by bare quarks in QCD. There is a

complicated transitive region, in the models presented in Section 1.3, that starts at

less than 1 GeV and continues to many GeV. The actual point where this behavior

changes, and the description of the change, is unknown. In the experiment presented

here, the key quantity Gn
E needed to understand nucleon stucture, and behavior such

as quark orbital angular momentum, is measured at three separate points in the Q2

region between 1 and 4 GeV2.

In this experiment, E02-013, numerous improvements were made to increase

the figure of merit (effective statistics) for a measurement in this region. Advances

in both instrumentation and in the polarized 3He target technology have been ac-

complished that enable this measurement. By injecting a small amount of potas-
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sium along with the rubidium, the polarization transfer efficiency from the optically

pumped rubidium was improved to provide polarizations as high as 50% in the tar-

get chamber. The experimental apparatus and target will be explained in detail in

Chapter 4. The value of the asymmetry will be analyzed as a function of pm,⊥, the

perpendicular component of the missing momentum, to study FSI effects. A tight

cut on pm,⊥ is needed to select low nucleon momenta in the 3He wave function,

but also will suppress dilution from proton polarization and FSI interactions. The

high Q2 at which this measurement is undertaken should suppress meson exchange

currents. Additionally, meson exchange currents, delta isobar contributions, and

finite acceptance effects should be suppressed by a tight cut on pm,⊥[21]. This will

be described in detail in Section 5.7.1.
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Chapter 4

Gn
E experiment E02-013

Experiment E02-013 was carried out at Jefferson Lab from February 28 to

May 11, 2006 to measure the electric form factor of the neutron. In this chapter the

experiment setup and instrumentation needed to measure the interaction 3−→He(~e, e′n)

are described. First the experimental overview and relevant coordinate systems will

be presented. Then a short summary of the beam and accelerator will be presented

in section 4.3. The target and method of polarization is described in setion 4.4. In

section ?? the spectrometer used to detect the electron and measure its momentum

is portrayed. The neutron arm, used to detect the coincident hadron, is described

in section ??. Finally, the data acquisition, software used for decoding, and initial

physics analysis is presented in section 4.7.

4.1 Experimental Overview

During the running period of E02-013, four kinematic settings were taken in

six intervals, not including the time spent on commissioning the apparatus. Three

separate polarized 3He target cells were used for the measured asymmetry. For

calibration purposes, a foil target (containing six carbon foils and one BeO foils),

a reference cell (providing an empty cell target, hydrogen target, nitrogen target),

and a setting with no target cell were used.
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Big Bite optics calibrations and beam spot check were acheived using the foil

target. The nitrogen target is used to determine the contamination in scattering

events from N2 in the 3He cells. The hydrogen target was used to calibrate the

momentum and yields of the elastic events for Big Bite and Big Hand. Additionally,

the nitrogen and hydrogen targets are used to determine the dilution of the neutral

sample by protons empirically, which is an important correction for the physics

asymmetry.

Data taking took place in this experiment for several different settings depen-

dent on target, beam energy, neutron arm location, and electron scattering angle.

These are described in Table 4.1. Kinematic 1 will not be presented in this the-

sis. Kinematic 2(a) used two different settings for the neutron arm threshold, this

change in threshold creates a difference in the neutron and proton detection effi-

ciencies which are a key component in the empirical measurement of the dilution of

the neutral sample by protons. This difference in efficiencies is calculated using a

Monte Carlo.

4.2 Principle and Experiment setup

This experiment took place in Hall A of Jefferson Laboratory in Newport News,

Virginia, USA. Jefferson Laboratory is the home of CEBAF, a continuous electron

accelerator that can provide beam energies of 0.6 - 6 GeV [52] [3]. The three exper-

imental halls, A, B, and C, can all receive beam simultaneously. Each hall contains

various standard equipment detector systems that facilitate the types of experiments
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Figure 4.1: Image of Jefferson Laboratory. Shown is the accelerator and the mounds
over the three experimental halls. The mound to the left is Hall A.
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name kin 2 (a) kin 3 (a) kin 2 (b) kin 3 (b) kin 4

Target Cell Dolly Edna Edna Edna Edna

Beam E. (MeV) 2637 3291 2641 3290 2079

Q2 GeV2 2.5 3.5 2.5 3.5 1.5

BB Angle (◦) 51.59 51.59 51.59 51.59 51.59

NA Distance (m) 10 10 10 10 8

Time Frame 3/09-3/24 3/24-4/17 4/17-4/24 4/24-5/02 5/02-5/09

Table 4.1: A table showing the running conditions, time, accumulated charge, and
kinematics of the different measurements referred to here and elsewhere as kinemat-
ics or for short kin. Kinematic one includes both the commissioning time and the
first measurement. The measurement of Q2 = 1.3 and 1.7 GeV2 provide a compar-
ison of the polarized 3He technique with previous recoil polarization data while the
other two measurements extend the measured range of Q2. Not shown is the periods
for commisioning and kinematic 1 which won’t be covered in this thesis.

the halls were designed to accomplish. While the beam was provided similarly to

other experiments in Hall A, the equipment used to make this measurement was a

custom installation that included a large momentum acceptance spectrometer, Big

Bite, a high efficiency segmented neutron detector, Big Hand, and a polarized 3He

target, which serves as a source of highly polarized neutrons. A general layout of

the apparatus is shown in Figure 4.2.

Using simulations, the requirements for Big Bite and Big Hand were developed.

To match Big Hand to Big Bite, the required acceptance for elastics was simulated,

and then expanded to insure the acceptance of all events with at least pm,⊥ = 150

MeV. Because at Q2 = 3.5 GeV2 the desired hadron momentum is 2.6 GeV, the

thresholds, shielding, and depth of the neutron arm were developed to maximize
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Figure 4.2: General layout, not to scale, of the experiment. Shown is the beamline,
the target, the Big Bite detector stack, and the Neutron Arm detector. Also shown
are the two polarimeters in the hall before the target, and the approximate distances
to the detectors. The components of the Big Bite (BB) detector stack are also shown
and consist of the Big Bite dipole magnet, multi-wire drift chambers (MWDCs), pre-
shower, shower, and timing plane.

statistics. The desired Big Bite momentum resolution was 1-1.5% and the desired

vertex resolution was 6 mm[21].

There were four major coordinate systems in this experiment: one for the

lab, one for Big Bite, one for the target, and one for the Neutron Apparatus. In

the hall system, the origin is at the center of the target, y is vertical with + as

“up”, z is nominally along the direction of the beam, and x forms a right handed

coordinate system. For the target coordinate system, the origin coincides with the

hall origin, x is vertical with + as “down”, z is parallel to hall floor along the Big

Bite central ray, and y completes the right-handed coordinate system. For the Big

Bite detectors the origin is at the center of the first plane of the drift chambers.

The +z direction is defined in respect to the direction of particles perpendicular

to the first drift chamber (and so is at a ≈ 10◦ angle with the x − z plane in the
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(a) Lab Coordinate System

(b) Neutron Arm (NA) Coordinate
System

(c) Target Coordinate System

Figure 4.3: Coordinate systems for Big Hand, Target, and Lab. The lab z is along
the beam line while the target z is toward Big Bite.
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Figure 4.4: Schematic of the accelerator as it existed in 2006. Shown are the three
halls, injector, and lINACs.

lab frame), while +x is in the magnetic dispersion direction, and y completes the

right-handed coordinate system. In Big Hand, the depth is z, the height is x, and

the horizontal position is y. In this coordinate system positive x is associated with

“down”, positive z is associated with deeper into the Neutron Apparatus (NA), and

positive y is away from the beam line. The origin was located in the center of the

active area at the front of the shielding. Figure 4.3(c) shows the target, lab, and

Neutron Arm coordinate systems and their relation to each other.

4.3 The Electron Beam

During 2006, the accelerator was capable of delivering beams with energy up

to 5.7 GeV at currents of up to 150 µA semi-simultaneously to all three halls. The

two main parts of the accelerator are the injector and the two recirculated linear

accelerators (LINACs). These delivered beams are not quite continuous, rather

the beam was pulsed with 2 ns wide bunches at a rate of 499 MHz. Inside the

injector, the lasers for each hall are 120 degrees out of phase compared to each
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other. This allows for the energy and current to be determined for each hall semi-

independently. After the initial acceleration, a prebuncher and chopper make sure

that the three individual beams are separated in time and longitudinal spread. After

traveling through 18 superconducting radio frequency (SRF) cavities, the electrons

are injected into the main accelerator at 23-68 MeV. See Figure 4.4 for a schematic

of the accelerator.

Polarized electrons are produced from a strained GaAs photo-cathode via

the photo-electric effect. A maximum polarizations of approximately 85% can be

achieved. A Mott polarimeter at the injector can be used to measure the polarization

using the asymmetry in elastic Mott scattering.

The polarization of the high energy beam as it enters Hall A can be measured

with a Compton polarimeter. This is done by scattering electrons from polarized

photons, and measuring the asymmetry in the cross section due to the beam helic-

ity change. The scattering takes place when electron beam interacts with a photon

beam in a Fabry-Perot cavity (which enhances the yields). This method of mea-

surement was used at the same time as data collection during kinematics two and

three. On four separate occasions the beam polarization was measured by a Møller

polarimeter in Hall A. This was done using magnetized foils which provide a target

of polarized atomic electrons. The cross section was measured for two different ori-

entations of the foil, in order to separate the longintdinal and transverse components

of the beam polarization. At various times during the experiment both of these two

methods along with a Mott polarimeter near the injector, were used to measure the

polarization. This allowed for a good understanding of systematic errors for the
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beam polarization. An abridged summary of the beam polarization measurements

is presented in Table 4.2.

The sign of the electron’s helicity was put into the CODA data stream with

a copy sent to the E02-013 trigger supervisor. The algorithm responsible produces

helicity states (that last for a duration of 33.3 ms) in sets of four (+−−+ or −++−).

A 105 kHz clock was used to reconstruct the helicity if there was a problem with a

missing helicity. After every transition there is a short unknown time during which

the helicity is unknown (given by 0) in the data.

In the Hall A beamline before the target, a set of field coils are located to

move the beam to create a uniform pattern across a section of the cell. This is

done so that a small portion of the target is not overheated and the target cell is

not compromised. The beam sweeps through its pattern at a rate of 17 to 24 kHz

in a process known as rastering. The current used to do this is read into the data

stream.

Beam position monitors (BPMs) are located upstream of the target (at 7.52

m and 1.29 m). The average position of the BPM is recorded at a rate of 1 Hz

in EPICS. The fast rastering system is located 23 m upsteam of the BPMs. The

BPMs were connected to an ADC for readout, such data could then be converted to

a position for the beam. Harp scans in which a thin set of wires are swept through

the beam, were carried out to provide absolute position information which could be

used to calibrate the positions. The BPM and raster calibrations were carried out

by Brandon Craver and discussed in greater detail in another thesis [68].

During each pass, the two LINACs each accelerate the beam by up to 600
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MeV during each pass. The beam can be bent and returned in RF cavities for up to

five passes through the LINACs. The beam is accelerated in the east and west and

bent 180 degrees in the arcs. See Figure 4.4 for details of the accelerator setup and

beam cavities. Because different electron energies need to travel through different

magnetic fields to have the proper bend angle, the beam is split in a spreader and

then recombined after traveling through the arc. Each cavity is also at 499 MHz

to keep the beam properly bunched. The beam can be sent into the switch yard

after any pass, where it is sent to hall A, B, or C. Beam energies were determined

using the Tiefenbach method and recorded in EPICs. This method relates the beam

energy to the current applied to one of the arc magnets [43].

4.4 The Helium-3 Target

Polarized targets and polarized 3He have been used in previous experiments,

as described in Section 3.3.3. To review and expand upon this description, polarized

3He targets are one of the preferred methods of realizing a polarized neutron target.

As described, nuclear targets are used rather than free neutrons as the latter only

survives with a halflife of 885.7 ± 0.8 s [4]. For polarization experiments 3He is

ideal, because the polarization in the helium-3 is almost entirely carried by the

neutron[4]. Additionally, the relatively simple nature of the 3He nucleus allows

final state interactions to be understood. These are thought to be small at high

momentum transfer (see section 5.7.1). In polarized 3He, the neutron carries ≈ 86%

of the spin of the nucleus (Figure 4.5)[4]. Most of the time, the spins of the protons
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Figure 4.5: Diagram of the helium-3 nucleus. Shown is the most common state with
the proton spins aligned anti-parallel. The neutron carries ≈ 86% of the polarization
of the nucleus while the protons carry ≈ 3%.

are in opposite directions. About 3% of the time, the protons are polarized, and

this proton asymmetry is corrected for when considering proton contamination of

the neutral hadron candidates (see Section 5.5 and 5.6).

The process of spin-exchange optical pumping (SEOP) was used to polarize

the 3He nucleus. In this process, alkali atoms are optically pumped and, through

spin exchange, polarize the 3He nucleus. An image of the target cell is provided

in Figure 4.6. A unique feature of this target was the use of potassium (K) and

rubidium (Rb) for the optical pumping, rather than the more traditional rubidium

only. The process of SEOP will be described in Section 4.4.2.
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Figure 4.6: Picture of an empty 3He cell. On top is the spherical pumping chamber,
and below is the cylindrical target chamber. The beam passes through the the 40cm
of target material[34].
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4.4.1 Target System

The goal of the target system was to realize a polarized 3He target. To have

a polarized target, a magnetic field is required to provide an axis with which to

orient the target spin. To do this, the target system consists of a ladder holding the

targets including a cell to hold the 3He gas, a laser system to polarize the gase, and

a system to create the uniform magnetic field.

The target ladder contained four different targets, and was enclosed in an

iron box to provide a “constant“ magnetic field in the target that is immune from

interference due to the Big Bite dipole. The targets used were the 3−→He, a set of optics

(carbon and beryllium oxide) foils for calibration, and a reference cell (containing N2

or H2) targets. The reference cell was similar to the helium-3 cell and approximately

40 cm in length.

An oven was used to keep the pumping chamber at a constant temperature

of 240◦ C in order to maintain a sufficient density of potassium vapor for the spin

exchange process.

The target cell was made from hand-blown glass, with two chambers, a pump-

ing chamber and a target chamber, and a transfer tube between the two. The po-

larized gas in the heated top chamber would diffuse into the bottom target chamber

where the polarized 3He served as the target. The cell was constructed of alumine-

silicate glass and was filled with 8 atm at room temperature of 3He in addition to

N2 and sealed.

To optically pump the Rb, five 30 W lasers were used (totalling 150 W). In
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order to decrease radiation damage and ease safety concerns, the lasers were not

kept in the hall, rather they were kept in a shed with 75 m of optical fiber carrying

the laser light to the target where it was combined in the pumping chamber.

All of the target system was held in an iron box, except the lasers. Around the

target, there were coils to drive the RF field for the polarization measurements, and

sets of pickup coils to measure the NMR signals, and a coil to provide the excitation

for the EPR measurement (see Figure 4.11). The magnitude of the field provided by

the iron box was limited to 25 G in order to keep the beam from bending away from

the beam dump. The iron box provided shielding from Big Bite, with eight coils

arranged to create a ”uniform“ field in the target region (Figure 4.8). The holding

field wasn’t completely uniform, and since the experiment was very sensitive to

polarization direction, this was measured using a custom built compass[50]. Figure

4.7 shows the relationship between position along the target and direction of the

magnetic field.

4.4.2 Polarization

The 3He target used in E02-013 was the first implementation of a hybrid

target at Jefferson laboratory. The target’s hybrid nature is due to containing two

alkali metal vapors to reach a higher sustained polarization in less time than the

previous mono-alkali targets. This target system was developed by Alan Gavalya

and the polarized 3He groups at the University of Virginia, the College of William

and Mary, the University of Kentucky, and the Hall A staff. By using a Potassium
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Figure 4.7: Measurement of the holding field as a function of position along the
beamline in the target. The origin is the target center.
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Figure 4.8: Magnet box for Target [46]. Shown is the coils that create the magnetic
field.
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Figure 4.9: Figure showing the polarization process [46]. Optical pumping excites
the electron to an excited state, which can exchange (50%) to a state that decays
to a spin state that is not optically pumped by the lasers.

and Rubidium mixture in the cells, a polarization higher than 50% was acheived

(see Figure 4.12).

In the process of spin exchange optical pumping (SEOP), Rubidium is put in

a magnetic field and exposed to the circularly polarized light, this pumps up the

valence electron to a spin up sublevel in a P state. This excited state will either

directly decay, or exchange spin through collision and then decay (see Figure 4.10).

The photon released during decays can depolarize the nitrogen in the cells (roughly

2% of 3He volume) serves to quench this, allowing the transition back to a bound

state through kinetic collisions rather than radiation. After decay there is a 50%

chance to end in a spin state. This spin state is not excited by light from the

lasers and so becomes densely populated (see Figure 4.9). Angular momentum can
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be transferred from the polarized alkali valence electron to 3He via the hyperfine

interaction. A description of these processes is presented in Figure 4.10.

The spin exchange efficiency for K-3He interaction is 10 times more efficient

than Rb-3He. Commercial lasers for optically pumping Rb are more readily available

than those for Potassium. Potassium (K) and other alkali metals have a high spin

exchange cross section with Rubidium and so the polarization of two such gases in a

cell will be the same. This means that including the Potassium into the cell enhances

the transfer of polarization into the helium-3, decreasing the time to polarize the cell

by a factor of two and causing a corresponding increase in sustained polarization in

beam.

4.4.3 Polarization Measurement

The polarization of the target was measured by a combined use of EPR (elec-

tron paramagnetic resonance) and NMR (nuclear magnetic resonance) techniques.

EPR provides an absolute measurement of 3He polarization, while NMR provides a

relative measurement. Both techniques cause depolarization of the target, but NMR

disrupts the experiment less due to causing less depolarization. Because of this and

because it could be carried out directly in the scattering chamber, NMR was done

more frequently. These two techniques used two separate locations in the target

cell. Due to using the alkali gases, EPR measured the polarization in the pumping

chamber while NMR could be used to measure polarization in the target chamber.

The diffusion of polarized gas in the cell was modeled to relate the two techniques
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Figure 4.10: In a traditionally polarized Helium cell, one that contains only Rb and
He, the Rb exchanges spin in one of three ways. Either by changing the spin of the
He nucleus, or by just rotating the atoms it interacts with. This rotation is not useful
for polarizing the He, so by adding K, which is likely to engage in ’spin rotation’ with
the Rb, but likely to engage in ’spin exchange’ with He, the polarization efficiency
of the cell is increased. Only the spin-exchange collision process causes polarization
of the 3He [78] [46].
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Figure 4.11: The coils used for the NMR measurement of target polarization. Shown
is the holding field coils (iron box), the RF coils (which can be adjusted), and the
pick up coils. Two sets of pick up coils are down at the target chamber, one more
set is up above the pumping chamber. One of the RF coils could be adjusted, as
could the pick up coils, to maintain the transverse relationships needed for an NMR
measurement.

and properly calibrate the NMR signal.

To perform a NMR measurement, control of the magnetic field of the target

is necessary. After an application of a radio frequency (RF) field, when resonance

conditions are met, a signal is measured that is proportional to the polarization of

the target.

The resonance was found using adiabatic fast passage (AFP). In adiabatic fast

passage the magnetic field is changed with a perpendicular radio frequency field (91

kHz) held constant to find the resonance. At resonance, 3He undergoes spin reversal.

This spin reversal produces an EMF signal that was detected in a separate set of

coils known as pick up coils. See Figure 4.11 for a description of the coils involved

in the NMR measurement.

This measurement technique switches the direction of the spins, so the mag-

netic holding field was swept back to give the original target polarization direction
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during each measurement. The depolarization caused by this process was found to

be on the order of 1%. This measurement technique is relative due to the EMF

signal depending on the magnetic flux through the coils, the amplification of the

electronics, and the density of 3He. The calibration of this measurement technique

is presented in another thesis [45].

In an EPR measurement of the polarization of the 3He, it is light from the

polarization of the alkali metals in the cell that is measured. This is due to the alkali

atoms being very sensitive magnetometers. This shift is due to the Zeeman effect.

Obviously this means that there are two shifts in the Zeeman responses of the K and

Rb, one due to spin exchange and another due to the magnetic field experienced by

the metal including that of the polarized 3He.

There are numerous magnetic fields which cause this shift, such as the holding

field and interactions with the other atoms. However, these other shifts are not

dependent on the polarization of the target, and by flipping the polarization the

effect due to the polarized 3He on the magnetic field creating slight differences in

the K energy levels can be determined. For a spherical sample, combining shifts due

to collision and the classical magnetic field, the following relationship for the signal

shift is obtained [41]

∆νEPR =
8π

3

dνEPR(F,M)

dB
κ0µHePHe . (4.1)

Here B is the magnet field, PHe is the polarization of the 3He, and κ0 is a parameter.

To flip the target polarization, the holding field is kept constant and the applied

RF field is swept (which is an resonance with the 3He). The EPR resonance causes
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depolarization and florescence caused by that repolarization can be tracked as a

function of RF frequency. This decay is caused by a shift in electron energy levels

in the potassium atoms.

To understand the two measurement techniques relative to one another, NMR

was done both before and after each EPR measurement. The EPR measurements

had the disadvantage of causing significant target depolarization. This is because the

EPR transition causes the 3He spins to be anti-aligned with that of the spin state

the alkali is being pumped into. To minimize the depolarization, this transition

was done twice for every EPR polarization measurement. The EPR measurement

depends on κ0, which is different for every alkali and noble gas combination and has

temperature dependence [72] [27].

The measurements required to relate the absolute EPR measurements and the

relative NMR measurements and the model used to relate the polarization at the

different locations of the two measurements is presented in detail in another thesis

[45]. The corrected polarization is shown in Figure 4.12. From equation 4.1 it is

obvious that the target density needs to be known well. Resistive temperature de-

vices (RTDs) were placed at eight locations on the cell to measure the temperature,

from which the density was computed using the ideal gas law. These RTDs did

not measure the internal temperature, and so a series of NMR measurements were

carried out under various conditions to determine the true internal temperature [45].

Many corrections are needed to provide the needed polarization and direction

of polarization to properly determine the physical asymmetry. The material sur-

rounding the helium-3 had to be understood to build a proper Monte Carlo, while
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Figure 4.12: Measured polarization in the 3He cells during the experiment [45].
Shown is all cells, including Dolly, Edna, and Barbara used during Kinematics 2, 3,
and 4.

the unpolarized nitrogen within the cell caused a dilution in the asymmetry. Details

of these corrections are presented in section 5.5.2.

4.5 Big Bite

4.5.1 The Big Bite Apparatus

Big Bite is the name of the electron spectrometer, and of the large 1.2 T

dipole magnet that provides the magnetic field for the spectrometer. It consists of

the large magnet, a plane of 13 scintillators, a calorimeter, and three multi-wire

drift chambers (MWDC) containing a total of 15 wire planes. The calorimeter is

split into a shower and preshower, and is constructed of 250 lead glass blocks. A
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Figure 4.13: Schematic of the Big Bite detector. Shown is the large dipole which
provides a magnetic field integral of 1.2 T·m, the 15 planes in three chambers that
made up the wire chamber, and the lead glass shower and preshower with the layer
of plastic scintillator between.
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schematic of the Big Bite detector is shown in Figure 4.13.

4.5.2 The Big Bite Scintillators and Shower

The Big Bite scintillators are located between the preshower and shower and

provide the time of the event within Big Bite tracker. Each of the thirteen paddles

has a photomultiplier tube on each end, with the signal split going to both a TDC

via a discriminator and an ADC. The scintillators are used to calculate the time of

the particle at the drift chambers, which are about 1 m away. The scintillator time,

with resolution σ = 300 ps, is required for reconstructing the hadron time of flight

due to its use in providing the reference time. These scintillators are 64 cm by 220

cm.

The front plane of the total shower, known as the pre-shower, is located 1 m

behind the drift chambers. The preshower consists of 54 lead glass blocks in two

columns of 27 rows. Behind the preshower, the shower consists of seven columns

and 27 rows. Its lead glass blocks are 8.5 cm by 8.5 cm, while the preshower has

lead glass blocks that are 35 cm by 8.5 cm. The total height of the structure was

230 cm. Each block is connected to a single photomultiplier tube, which collects the

Cerenkov light. The signal is then sent to both an ADC and summation module,

with the summed signals going both to an ADC and a TDC. The sum of the shower

and preshower gives a signal roughly proportional to the energy of the particle. The

total shower provides the trigger for Big Bite. A final set of information provided by

the total shower is the rough location of the particle. This aids track reconstruction
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in the multi-wire drift chambers and reduces the the search space by a factor of 10.

The energy resolution provided by the total shower is approximately σ dE
E

= 10%.

4.5.3 The Wire Chambers and Tracking

The drift chambers were constructed by the University of Virginia for this ex-

periment in order to reconstruct the trajectory of the electron as it travels through

the detector. To do this, the planes which make up the drift chambers were con-

structed with three different orientations, known as U , X, and V . The chambers

were roughly 35 cm apart. In the Big Bite detector coordinate system, the X plane

has wires running parallel to the y axis, while the U and V wires are rotated by

±30◦ with respect to that axis. The sense wires were 1 cm apart from each other

within the plane. Cathode planes were placed 3 mm above and below each wire

plane and field shaping wires were placed between each pair of sense wires to create

a roughly symmetric potential around the sensing wires.

Charged particles which pass through the chamber release electrons by ioniz-

ing the gas within the chamber. This gas is a 50% argon and 50% ethane mixture

that had been bubbled through ethyl alcohol and is kept slightly above atmospheric

pressure. Since a voltage difference exists between the sense wires, the field shaping

wires, and the cathode planes, the charges are attracted to the detector wires and

interact with them forming a signal which is then detected in a TDC (after amplifi-

cation and discrimination). The time it takes to drift to the wire can be determined

and used to calculate the distance between the wire and the particle track. Each

76



plane was set at a different voltage to create the desired field surrounding the sensing

wires.

The detector determines more than just the track that the particle traveled,

it is also determines the particle momentum and from where along the target the

particle originated. An effective bend plane model was used to determine this, where

the interaction of the magnet is treated as occurring at the magnetic mid-plane. If

we assume that there is only dispersion along Big Bite detector x, then the complete

track between the target and the total shower can be reconstructed. By finding the

point in the magnetic mid-plane that the observed track (back track) in the drift

chambers points to, and assuming that dispersion happens only in the x (Big Bite)

direction, the origin of the track along the beam (forward track) can be determined

(V0). All coordinates in this section are in the Big Bite detector coordinate system

unless indicated.

In this model, the vertex is (after corrections cx′ , cy, cy′ , and cx)

VLAB = c0V0 + cx0x0 + cx′0x
′
0 + cy0y0 + cy′0y

′
0 + f(xbend, ybend) (4.2)

Here the V is the z vertex location in the lab coordinate system, and f(xbend, ybend)

is a parameter to determine deviations outside of this model. The x0 and y0 describe

location of the intersection of the track with the plane z = 0 in the detector coordi-

nate system. The variables Θtgt = x′0 and Φtgt = y′0 describe the track between the

bend plane and the target and are found by x′0 = dx
dz

and y′0 = dy
dz

in the detector

coordinate system. The bend coordinates (xbend, ybend) are the detector coordinates

where the track intersects the bend plane. A diagram of the effective bend plane
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Figure 4.14: Not to scale diagram showing Big Bite, the location of the dipole,
target, drift chambers, and shower, and the quantities known as the deflection angle
(θdef ), θtgt, and the back and front tracks. Shown on the upper left is the coordinate
system for the target coordinates. The shower is shown providing a fourth location
for the particle, to anchor the track reconstruction. Big Bite detector coordinates
have their origin at the center of the first plane. The z direction is perpendicular to
the first chamber, and x is the magnetic dispersion direction.
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model is in Figure 4.14. A histogram showing the foil target vertex reconstruction is

shown in Figure 4.16. This shows that the position along the target is reconstructed

properly.

The momentum can also be determined, as

pBB =
c0(xbend, ybend) + cxxbend

θdef

+ cθθtgt + cyy + cy′y
′ + f(xbend, ybend) . (4.3)

This θdef is the deflection angle, and defined using the vectors ~xf and ~xb which

describe the tracks the particle takes between the target and the magnetic mid-

plane and between the magnetic mid-plane and the wire chambers, and is defined

to be

θdef = cos−1

(
~xf · ~xb

|~xf ||~xb|
)

(4.4)

The energy for the electron in elastic events can also be determined as

Eelastic =
mpEe

mp + Ee (1− cos θe)
, (4.5)

where mp is the mass of the proton and Ee is the energy of the electron, and θe is the

electron scattering angle. These momentum calibration was done using hydrogen

data. The momentum resolution is demonstrated in Figure 4.15.

4.5.4 Big Bite Electronics

Signals from each wire in the multi-wire drift chamber travel through an ampli-

fier and discriminator before terminating at a LeCroy 1877 multi-hit TDC running

in common-stop mode. Information is read out from these after each trigger. The

scintillators have their signal split between a LeCroy 1881 ADC and a discriminator,
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Figure 4.15: Momentum resolution achieved with the latest optics model. Shown is
the momentum resolution for all four kinematics.
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Figure 4.16: Resolution of the carbon foils after vertex corrections. The foils should
be 6.7 cm apart with the BeO foil at 0 cm. This histogram is of data from a foil
target run in kinematic 3.
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Figure 4.17: The electronics schematic for Big Bite. Shown are the modules and
the wire lengths.

with the discriminated signal terminating on a CAEN 775 TDC. The shower and

preshower have all their signals (individual and summed) put into a LeCroy 1881

ADC, with the sums also having the signal discriminated and put into a LeCroy

1877 TDC.

The sums of the preshower and shower that are over some predefined threshold

provide the Big Bite trigger.

4.6 Big Hand

While the subject of Big Hand is a major component of this thesis, the cali-

bration and detailed analysis of the neutron arm’s behavior is not needed directly
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for the analysis. As a result, the geometry was described in detail in a document

put together by Tim Ngo [60] and the software, detector description, analysis, and

calibration are presented in Appendix A.

4.6.1 Neutron Geometry

The neutron apparatus (NA), sometimes referred to as Big Hand, is a large

hadron detector, designed to match Big Bite’s acceptance at the highest kinematic

with Q2 = 3.5 GeV2. The dimensions of Big Hand are 4.2×2.0×6.2 m3 and it has a

100 msr solid angle at a distance of 8 meters. The neutron detector is made up of

244 neutron bars in seven planes and 192 segmented, single sided veto bars in two

planes. These counters were provided by University of Virginia (UVA), University

of Glasgow (GLA), and Carnegie Mellon University (CMU). For the UVA counters

PMT type XP 2282B were used, for the CMU counters PMT type XP 2262B, while

for the GLA EMI 5” were used [81]. In order to properly identify quasi-elastic events

at the highest kinematic, a time resolution of 0.3 ns was desired, which corresponds

to neutron momentum resolution of 250 MeV/c at a hadron momentum of 2.58

GeV[21]. The scintillation material in the counters was the standard organic plastic

scintillation material[1]. To increase the detection efficiency of neutrons, a thin (one

inch) layer of iron was placed in front of each counter to cause some portion of the

incident neutrons to undergo hadronic interactions. A high degree of segmentation

was important so that the vertical (X) position of the incident particle could be

measured with the required resolution, this allows the selection of quasi-elastic events

82



for which it is necessary to have a good measurement of momentum perpendicular to

the virtual photon. Four ”marker“ counters were included for calibration purposes.

4.6.2 Veto and Marker Bars

The veto counters were divided into two so that they would provide the needed

time resolution without problems with attenuation. The two veto planes were offset

from each other both horizontally and vertically, for complete coverage of the active

area of the neutron bars. This, in addition to the height of veto bars (11 cm)

compared to the neutron bars (15cm for CMU bars), meant that multiple veto bars

could possibly fire to define the charge for an event within the neutron bars.

The marker counters were included late in the construction to calibrate the

horizontal position reconstruction of the neutron detectors. These are long vertical

scintillators placed before the first plane of the neutron detector, but after the

shielding and veto detectors. They were placed within two constructed channels,

with the same amount of space between the top marker bars and the bottom marker

bars for each channel[59]. Even with two marker bars to cover the whole height of

the neutron arm, most coincident hits between a marker bar and a neutron bar were

only measured in a single PMT in the marker bar. Using these marker bars assisted

in the time offset calibration of the neutron arm.
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4.6.3 Neutron Arm Electronics

The initial discriminators, amplifiers, summing modules, were all placed in

an electronics hut behind the neutron detector. The ADCs and TDCs were put

behind shielding some 100 meters away, where the signals were discriminated again

to provide a good signal. Signals from the detectors were combined into sums. This

was done to increase the neutron detection efficiency at Q2 = 2, 5 GeV2. Figure 4.19

shows the neutron bars and veto bars, a sum is made up of the left or right PMTs

for two neighboring color coded sections.

The ADCs used for the detectors within the neutron arm were all Lecroy 1881,

while the TDCs used for the veto detectors and sums were LeCroy 1877 TDCs. The

F1 TDCs were specially developed electronics for Jefferson Lab and were used for

the neutron counters. These TDCs were used in a common-stop mode and provided

a resolution of 118 ps. The F1 TDC required that a reference signal be used, this was

a delayed signal from the trigger and the F1 TDC signals could be reconstructed

relative to it. Summing modules, amplifiers, fan in/out modules, discriminators,

ADCs, TDCs are all presented in Figure 4.18 (and logic). This gives the NA side

of the trigger as arising from any sum channel being past threshold on the left or

right.

4.7 Data Acquisition

Six triggers were used in this experiment. These were the neutron arm trigger

(1) known as T1, the Big Bite trigger (2) known as T2, the coincidence trigger (3)
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Figure 4.18: Neutron Arm electronics schematics. Included in the schematic is the
length of the cables. From the PMTs of the various tubes, the signal goes into both
a TDC and a sum module with the non-summed output going to an ADC. The
different summed signals are added together and sent to both an ADC and TDC,
with an OR of the TDCs forming the trigger.
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Figure 4.19:
Neutron arm (NA) schematic for the sums. In front are the two veto planes.

Shown is the relative offset. Additionally, color coded, the sums are shown. Each
sum was made up of two neighboring color bands. Shown on top are the bars from

Glasgow (GLA), in the front are four planes of bars from Carnegie Mellon
University (CMU), and in the back are three planes of bars from University of
Virginia (UVA). The colorless bars in the final plane are bars that were not

connected to the electronics. The first two thin planes are the veto planes, the
figure shows the vertical shift between the two planes.
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known as T3, the 8.5 Hz pulser (7), the 105 kHz helicity synchronization signal (8),

and the 30 Hz helicity quad duration signal (9).

The T3 trigger was formed by coincidence between the neutron arm and Big

Bite. This coincidence was formed between any single sum channel on the neutron

arm (left or right) and detection beyond a certain threshold in the preshower and

shower. In Figure 4.2 the grouping of neutron bars is presented. Two neighboring

colors would be linked together to form one sum, with the left and right PMTs being

considered separately. This was done to increase neutron detection efficiency at a

higher threshold[66].

The time of the BigBite Shower signal was used for the time of the T2 trigger.

The Big Bite scintillator time associated with this was then sent to the neutron arm

to provide both the coincidence for the trigger and the reference time of the neutron

arm events.

The neutron detector real time was recorded relative to a readout time or

reference time. Thus the neutron arm recorded time was given as trecorded = treal −

treadout. The Big Bite trigger time relative to this same read out time was also

recorded as tL1A = treadout − ttrig. The neutron arm time relative to the Big Bite

trigger time is then treal = trecorded + tL1A.

A trigger from both detectors, Big Hand and Big Bite, created a T3, the

coincidence trigger. The treadout time was based on this T3 time. The T1 came 35

ns later than the T2 trigger due to delays added in. If the T1 came too early, treadout

and T3 were based on on the T2 trigger. If the T2 trigger came very early, then the

Big Bite readout was determined by treadout and not the T2 trigger. This is known
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as forced retiming. A plot showing the data with the different types of events is

shown in Figure 4.20.

Both detectors provided information at each coincidence event. Single trigger

events, were also taken but prescaled to provide a minimum number of events in

the experiment. All three multi-wire drift chambers provide TDC information, the

scintillators provide both ADC and TDC, and the preshower and shower provided

ADC information (with the preshower and shower sums providing TDC in addition

to ADC information). All the neutron arm detectors provided both TDC and ADC

information, with the neutron detectors also grouped into sums which provided ADC

and TDC information as well. The neutron arm reference time was recorded in both

the Neutron Arm TDCs and the Big Bite TDCs.

4.7.1 Encoding and Decoding

There are two main data acquisition systems. One is EPICS, which provides

updates occasionally (no more often then every few ms) and provides information

about the target, accelerator, electronics, and scalars. This is included in the data

stream with the events from the detectors. The events from the detectors are ac-

quired using CODA, which can monitor, acquire, record, and decode data taken

during experiments[40]. There was some target information which was stored sepa-

rately.

To do the analysis and turn the raw data into usable information, a modifica-

tion of the ROOT software package called the Hall A Analyzer was used[5]. This
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Figure 4.20: Plot showing the reference time and coincidence counts in relation to
the Big Bite trigger time. Best coincident events are in the circled region.

89



package has features which make it easier to deal with large amounts of data and to

make histograms and graphs. Special classes for the analysis of the different detec-

tors have been developed for the analysis of the neutron arm data and for tracking

and momentum reconstruction in Big Bite and are discussed in other sections. The

library which contains these classes is the AGen library[?]. The E02-013 experiment

used a modification of this Hall A Analyzer. This was done so that in the decoding

and initial calculation of physics quantities, the Big Bite tracking code could take

advantage of other detectors. The scalar data were put in separate trees in this

initial decoding and analysis of the data. During the initial decoding and analysis

steps, the first 1000 events of a run were discarded (due to being helicity diagnostic

events) as were non-coincidence events. During the decoding and processing, the

data is put into trees, which is a specific data format common for ROOT and are

referred to as root files[73].

These root files were then processed an additional time and then the quasi-

elastic events were selected using the Big Bite preshower, the reconstructed momen-

tum, the reconstructed vertex hit location, and the hit locations and times of the

coincident hadron and electron. This post processing and analysis is described in

Chapter 5, with the final value of Gn
E calculated for the kinematics Q2 = 3.5, 2.5,

and 1.5 GeV2.
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Date Method Polarization Statistical Systematic

March 30, 2006 Mott 83.32 % 1.45 1.00

March 30, 2006 Mott 81.62 % 1.45 0.98

April 13, 2006 Mott 84.12 % 1.11 1.01

April 13, 2006 Mott 83.25 % 1.11 1.00

Average Mott 83.08 % 0.65 1.00

February 28, 2006 Møller 88.8 % 0.2 3.0

February 28, 2006 Møller 86.8 % 0.2 3.0

March 4, 2006 Møller 88.2 % 0.14 3.0

March 9, 2006 Møller 86.5 % 0.15 3.0

March 25, 2006 Møller 82.2 % 0.3 3.0

Average Møller 86.5 % 0.09 3.0

April 18, 2006 Compton 82.92 % 2.31 2.40

April 20, 2006 Compton 85.63 % 3.87 1.55

April 22, 2006 Compton 86.47 % 1.63 3.55

April 24, 2006 Compton 82.65 % 1.64 3.20

Average Compton 83.5 % 0 1.1 %

Table 4.2: A table of the beam polarization as measured by different means at
different times. The Møller measurements were done in the Hall A Møller. The
Mott measurements were done using the injector Mott measurement. Only selected
Compton data is presented, the average is the averaged of all data for Compton.
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Chapter 5

Analysis

In experiment E02-013 the electric form factor of the neutron was measured

at four kinematic points. Three of these kinematic pointsare presented in this the-

sis. The analysis procedure, excluding the initial decoding and analysis steps, is

shown in flow charts in Figures 5.1, 5.2, and 5.3. The initial decoding and analysis

passes provide the electron arm physics information, as described in section 4.7, in

addition to neutron arm cluster information. The first step of this procedure is the

event based filtering, as described in Table 5.1, which uses the time-of-flight of the

electron, momentum, invariant mass of the recoiling hadron, and transferred mo-

mentum vectors which were already calculated from the electron arm (in section 5.1

and 5.2) information to select hadron event candidates. Next, hadrons are identified

using the transferred momentum vectors and the constructed time-of-flight of the

hadron, which is discussed in more detail in section 5.3. A charge is assigned to

these hadrons as described in section 5.4. Next, various dilutions of the asymme-

try (section 3.3), and corrections to it, are described and calculated in section 5.5.

The neutron physical asymmetry determined from the neutral quasi-elastic events

is then calculated in section 5.6, using the Table 5.6. In this section preliminary re-

sults for the electric form factor are also presented with corrections. The final state

interaction corrections which will be included in the final value of Gn
E are discussed
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in section 5.7. Discussion of error propagation can be found in Appendix B.

Electron event selection in the Big Bite spectrometer was achieved by means of

the shower detector and scattering angle. Selection of events from within the target

and by a coarse cut on transferred momentum were made using the multi-wire drift

chamber (MWDC). Hadron identification was achieved using the location and time

of the hit in the neutron detectors, and by using the veto detectors to differentiate

the protons from the neutrons. Finally missing mass, missing momentum, and

invariant mass were used to select the quasi-elastic process.

5.1 Event filtering and scintillator timing

The total shower detector, as described in section 4.5.2, is divided into two

parts, called the shower and the pre-shower, separated by a plane of scintillator

detectors. Using only the pre-shower amplitude, pions and electrons could be iden-

tified and clearly differentiated, (as shown in Figure 5.4). Obviously, for any selec-

tion based on preshower energy which doesn’t remove an unreasonable portion of

electrons, some portion of pions will still exist in the selected sample. These pions

will create a dilution of the (e,e’h) interaction. An emperical study was done to

determine the contamination of the neutral hadron candidate sample by (ep, e′π0n)

events. This contamination was shown to be less than 2% [2].

While the total shower was the hardware trigger for the electron arm, the

time based on the calorimeter alone would not provide the needed resolution for the

event. This function is provided by the plane of scintillators directly behind the
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Figure 5.1: The flowchart for the analysis. This is after the preliminary replay of
events that is described in section 4.7. The resulting ROOT files contain the subset
of events necessary to undertake the remaining analysis, also assigns charge, and
identifies quasi-elastic event candidates. Two separate scripts are ran as part of
this process for each run before this post processing. This is to determine the RF
correction (see section 5.5.3) and the hadron time-of-flight.
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Figure 5.2: Flowchart for the event processing. Events in the analysis are ignored
if no tracks or Big Bite scintillator hits exist, or if the event does not have a well
defined trigger time as demonstrated by the existence of the Level 1 Accept (L1A)
Time. The optics can be updated here if necessary, and the kinematics of the event
are calculated to ease post processing. All event cuts are detailed in Table 5.1.
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Figure 5.3: Flowchart associating clusters, both with each other and as quasi-elastic
event candidates. Some clusters should be associated together, where some neu-
tron detector did not fire to make the cluster continuous. Charged candidates are
identified, and momentum is calculated for the hit.
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Figure 5.4: Amplitude distribution for all events showing pions and electrons in Big
Bite. In blue is the distribution after cuts have been applied to remove events which
are lacking the information needed for analysis, shaded is the region selected. See
Table 5.1 for cuts, in black is all events and in blue is with just the “sanity“ cuts
applied. This distribution is for Q2 = 3.5 GeV2.
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pre-shower, which served as the primary time reference for both the electron and

neutron arms. The path length for the electron was emperically determined using

the optics with respect to this plane. This reference time was corrected for the

variations in path length coming from differences in vertex location and corrections

for vertical and horizontal position in the scintillator stack.

The time of the event within the electron arm, te, can be presented as the time

in the scintillator ts, with corrections for the vertical path length tx, the horizontal

path length ty, and the difference between the scintillator plane and the wire chamber

tc.

te = ts − tx − ty − tc (5.1)

tx =
1

c
1.2|Px,BB + 0.25| (5.2)

ty =
1

c

[2.2532 sin(−θBB) + YBB cos(−θBB)]

sin[tan−1(Py,BB)− θBB]
− 2.2 (5.3)

tc =
1

c

(
LD2S(1 + P 2

x,BB + P 2
y,BB

)2
(5.4)

Here, LD2S = 0.95 m is the time from the detector to the scintillator, Px,BB is the

track slope tan Θ = dx
dz

in Big Bite detector coordinates, Py,BB is the track slope

tan Φ = dy
dz

in Big Bite detector coordinates, YBB is the reconstructed horizontal

position vector y in Big Bite detector coordinates, and θBB = 51.59 degrees is the

central angle at which the detector was placed for the Q2 of 1.7, 2.5, and 3.5 GeV2.

The other constants were empirically determined using the optics data.
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5.2 Electron parameters

Quasi-elastic (from 3He) and elastic events (from hydrogen) were selected using

the momentum of the electron as measured by the Big Bite spectrometer in addition

to deposited energy in the preshower (see Figure 5.5). Additional event selection

was performed by removing events that were reconstructed to start from outside

of the target (see Figure 5.7), or that travelled through a region of Big Bite where

the magnetic field is not well understood (see Figure 5.6). Among the quantities

computed from the identified electron tracks are the invariant mass of the hadron,

the transferred momentum of the virtual photon, the electron momentum, and the

electron scattering angle.

The transferred momentum, ~q, calculated from the beam energy and scattered

electron momentum, was used in the identification of quasi-elastic hits within the

neutron arm. The transferred momentum is entirely independent of the neutron arm

time-of-flight. The parallel and perpendicular components of transferred momentum

with respect to the hadron momentum vector can be defined as

q‖ = ~q · p̂h , (5.5)

q⊥ = ~q × p̂h . (5.6)

Here p̂h is the unit vector of the hadron momentum as determined by the neutron

arm. This is determined purely from the hit location (x, y, and z) in the neutron

arm, and is independent of time-of-flight.
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Figure 5.5: Electron momentum for all tracks in Big Bite. In blue are just those
tracks for which the preshower energy is greater than 450 channels, shaded is the
selected momentum. See Table 5.1 for cuts, in black is all events and in blue is with
the “sanity” and pre-shower energy cuts applied. This distribution is for Q2 = 3.5
GeV2.

The invariant mass of the hadron is

W 2 = M2
N −Q2 +

2~pe · ~q
MN

. (5.7)

Here MN is the nucleon mass, Q2 is the transferred four-momentum squared (see

section 2.2), and ~pe is the electron momentum.

The invariant mass and perpendicular transferred momentum (q⊥) are the two

time-of-flight independent variables which are used for quasi-elastic event selection.

The selection of quasi-elastic events are shown for Q2 = 2.5 GeV2 in Figure 5.8(a)

and 5.9(a). Both of these figures include fidicual cuts in the neutron arm. The

final quasi-elastic neutral candidates selection for kinematic 2 as well as the overall

spectrum is presented in perpendicular transferred momentum is presented in Figure
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Figure 5.6: X position (m) within the Big Bite scintillator detector. This is for
before cuts (black), after electron and sanity cuts (blue), with the selected region
of X shaded. Variation is due to the lack of calibration for the total shower in
the Big Bite detector. See Table 5.1 for cuts, in black is all events and in blue is
with the “sanity”, pre-shower energy, and electron momentum cuts applied. This
distribution is for Q2 = 3.5 GeV2.
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Figure 5.7: Vertex, this shows the target z position reconstructed by the Big Bite
wire chambers for all events with tracks (black). In blue is after cuts on particle
ID. Shaded is the region selected as being within the target. See Table 5.1 for cuts,
in black is all events and in blue is with the “sanity“, pre-shower energy, Big Bite
fidicual, and electron momentum cuts applied. This distribution is for Q2 = 3.5
GeV2.
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name Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.7 GeV2

W (GeV) |W − 0.95| < 0.6 |W − 0.95| < 0.6 |W − 0.95| < 0.6
E. E. (MeV) Eps > 450 Eps > 450 Eps > 450

E. Mom.(GeV) |pe − 1.1| < 0.9 |pe − 1.1| < 0.9 |pe − 1.1| < 0.9
Vertex (m) |Vtgt| < 0.16 |Vtgt| < 0.16 |Vtgt| < 0.16
X Fid. (m) −0.4 < XBB < 0.45 −0.4 < XBB < 0.45 −0.4 < XBB < 0.45

Sanity 1 NTracks > 0 NTracks > 0 NTracks > 0
Sanity 2 NPaddles ≥ 0 NPaddles ≥ 0 NPaddles ≥ 0

Sanity 3 (Ch) tL1A < 4000 tL1A < 4000 tL1A < 4000
Sanity 4 NType3 > 0 NType3 > 0 NType3 > 0
Negative Px,BB − 0.3XBB < 0 Px,BB − 0.3XBB < 0 Px,BB − 0.3XBB < 0

Table 5.1: A table of the initial event selection for analysis. Sanity cut 1 is the
requirement that Big Bite has a track, Sanity cut 2 is the requirement that at least
one scintillator paddle in Big Bite has an event, Sanity cut 3 is that the coincidence
time (L1A) was recorded. Sanity cut 4 is the requirment that there is a coincidence
event. Negative is a requirement that only negative particles in the drift chambers
can be considered as electrons.

5.11(a). The expected invariant mass is about 0.94 GeV, the mass of a nucleon.

5.3 Hadron identification

Once electron events are selected and the invariant mass and the direction

and magnitude of ~q are determined from information from the Big Bite spectrom-

eter, the neutron arm is used to determine the three-momentum and charge of the

hadron. Hits in the neutron arm were joined together into clusters as described in

Appendix A.4.1. Typically, multiple bars recorded hits in the same event in the

neutron apparatus due to particles with high energy traveling deep into the neutron

apparatus, and to the segmented nature of the neutron apparatus.

The time of the counter with the earliest hit (of those nearby in time and

space) was used as the time of the cluster. This time, the time of the electron
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in the Big Bite scintillator, and the relevant path lengths allow the calculation of

the momentum of the particle, assuming it is a hadron. Only those hits where the

calculated momentum is less than c are included in the analysis.
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Figure 5.8: q⊥ versus W for neutral particles in the various kinematics. Shown is
the selection of quasi-elastic events in the red square. As shown, at higher Q2 the
inelastic tail becomes stronger.

The clusters were combined if they were nearby in time and space. The time

and position of only the first hits were used to determine whether the later cluster(s)

should be considered part of the earlier cluster. Multiple clusters in a single event

were considered as a single cluster if δX (vertical position) and δZ (depth) were

within 0.4 m, and δY (horizontal position) was within 0.2 m. Additionally, the time
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Figure 5.9: q⊥ versus W for charged particles in the various kinematics. In the red
box is the selection of quasi-elastic events.
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Figure 5.10: q‖ versus W for charged particles in kinematic 3. ? - ? In the conversion
section or the ND section ? - ?
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Figure 5.11: Distribution of q⊥ in the various kinematics. Shown in blue is the neu-
tral spectrum, in black is the total spectrum (That passed the event based selection).
The majority of neutral quasi-elastic events fall under 0.15 GeV.

107



difference had to be within 10 ns. See Appendix A for more discussion of clusters

and neutron arm software.

The expected time for hadron event within the neutron arm Th is given by

Th =

√
L2

NA + Z2
tgt − 2LNAZtgtp̂h · ẑ

q√
m2

h+q2

. (5.8)

Here LNA is the path measured from the center of the target to the neutron arm hit,

Ztgt is position of the interaction in the target as reconstructed by Big Bite, ~ph is

the hadron momentum vector (in the laboratory coordinate system). Since at this

point the charge of the hadron is unknown, its mass is nominally set to the nucleon

mass mN = 0.939 GeV.

This is compared to the actual time-of-flight which is constructed from the

measured location of the time-of-flight peak measured using the neutron arm and

Big Bite scintillators. This actual time is constructed as

TTOF = tNA − te + trf + tL1A − tpeak . (5.9)

Here, the tNA is the time measured in the neutron arm, trf is the correction that

can be done using the beam information (to be discussed in section 5.5.3), tL1A

is the level 1 accept time, and tpeak is the peak location in the total time-of-flight

spectrum. To select quasi-elastic events, the expected time-of-flight is compared to

the actual time-of-flight, giving ∆T . The time-of-flight spectrum for total events

and quasi-elastic neutral candidates in kinematic 2 is shown in Figure 5.12(a).

From the time-of-flight, the hadron velocity, β, and momentum, ph, can be
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Figure 5.12: ∆T (ns) for the various kinematics. In blue is the neutral time-of-flight
spectrum, in black is the total time-of-flight spectrum. The photon peak is shown
at ≈ −3ns. Quasi-elastic events are selected with time between -1 and 1 ns.
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Figure 5.13: Missing mass (GeV) for the various kinematics. In blue is the neutral
scaled up by a factor of 20 for Q2 = 3.5 GeV2 and 10 for Q2 = 2.5 GeV2, in black
is the total spectrum.
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Figure 5.14: ∆T (ns) for the various kinematics. In blue is the charged time-of-flight
spectrum, in blue is the charged time-of-flight spectrum. The charged spectrum is
scaled down to the neutral spectrum.
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constructed (all in laboratory coordinates):

β =
L2

NA + V 2
tgt − 2LNAVtgtp̂h · ẑ

cTTOF

, (5.10)

ph =
mh√
1− β2

. (5.11)

Also calculated is the unit vector relating this hit and the central location in the

target. Additionally, the perpendicular and parallel momenta can be calculated:

ph,‖ = ~ph · q̂ (5.12)

ph,⊥ = ~ph × q̂ . (5.13)

An additional quantity used to select quasi-elastic events which is dependent on

hadron identification is the missing mass. This is defined as

M2
miss = (Pi + q− ph)

2 = (EHe + Eq − Ep)
2 − (~q − ~ph)

2 , (5.14)

where Pi is the initial 3He momentum four-vector, q is the transferred momentum

four-vector and ph is the nucleon four-vector.

The selection of quasi-elastic neutral events using time, invariant mass, and q⊥

is demonstrated in Figures 5.15(a) and 5.16(a). The inelastic contribution becomes

larger at higher Q2 and so more aggressive cuts in invariant mass must be used.

5.4 Identification of the hadron charge

While a particle can be determined to be a recoil hadron candidate by hit

location and time-of-flight, it is not easy to differentiate between protons and neu-

trons using only this information from within the neutron counters. For the purpose
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Figure 5.15: Shown in these figures is the time versus q⊥ for various kinematics. Also
shown is the box showing which cuts were used for identifying quasi-elastic clusters
within the neutron arm. As is shown, the ability to select quasi-elastic clusters is
much better for the lower kinematics.
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(b) Q2 = 3.5 GeV2 time versus in-
variant mass
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Figure 5.16: Shown in these figures is the time versus invariant mass for various
kinematics. Also shown is the box showing which cuts were used for identifying
quasi-elastic clusters within the neutron arm. As is shown, the ability to select
quasi-elastic clusters is much better for the lower kinematics.

114



 (GeV)missM
1.6 1.8 2.0 2.2 2.4

T
im

e 
(n

s)

-2

-1

0

1

2

0

1000

2000

3000

4000

(a) Q2 = 2.5 GeV2 invariant mass versus missing mass
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Figure 5.17: Shown in these figures is the time versus missing mass for various
kinematics. Also shown is the box showing which cuts were used for identifying
quasi-elastic clusters within the neutron arm. As is shown, the ability to select
quasi-elastic clusters is much better for the lower kinematics.
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(a) Q2 = 2.5 GeV2 invariant mass versus missing mass
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(b) Q2 = 3.5 GeV2 invariant mass
versus missing mass
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Figure 5.18: Shown in these figures is the invariant mass versus missing mass for
various kinematics. Also shown is the box showing which cuts were used for identi-
fying quasi-elastic clusters within the neutron arm. As is shown, the ability to select
quasi-elastic clusters is much better for the lower kinematics.
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of charge identification, two layers of veto counters were positioned in front of the

neutron counters but behind some of the lead shielding (see section 4.6.1).

The charge of these hadrons was determined by an analysis of hits in the veto

in a neighborhood around the hadron hit position in the neutron counters. The

veto detectors were segmented vertically similarly to the neutron detectors. Due

to scattering in the shielding and detectors, the relevant veto hit position could be

greater than a few centimeters away from the identified hadron hit location. The

factors used to select relevant veto detectors are listed in Table 5.4.

Determination of whether the hadron is charged or not was accomplished using

the time between the neutron bar hit and the veto hit and the segmentation of the

detectors. This segmentation defined the x and y position of each veto hit. The

individual veto detectors had high rates ( 1 MHz) and high dead-time (up to 110

ns). This indicates that there exists a large number of possible hits where an earlier

accidental hit masked the hit from the quasi-elastic event candidate. For coincident

events, the hit in the veto bars varied in veto amplitude in addition to time, the

veto amplitude was used in addition to time when selecting veto hits to associate

to quasi-elastic events.

While it would be nice to have a detector with uniform neutron detection

efficiency, this was not the case for Big Hand. The GLA detectors did not have the

resolution to identify quasi-elastic neutrons as the rest of the neutron arm could,

and the horizontal edges were not adequently covered by the veto detectors. Two

additional cuts, on the neutron arm’s x and y fidicual regions were used to select the

region of the detector that had a high neutron detection efficiency. This selection is
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name Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.7 GeV2

Amplitude AV < 200 AV < 200 AV < 200
Spatial (m) |XV −XC | < 0.3 |XV −XC | < 0.3 |XV −XC | < 0.3
Time (ns) |TV − TC | < 10 |TV − TC | < 10 |TV − TC | < 10

Y1 Cut (m) YC < 0.076&YV < 0 YC < 0.076&YV < 0 YC < 0.076&YV < 0
Y2 Cut (m) YC > −0.774&YV > 0 YC > −0.774&YV > 0 YC > −0.774&YV > 0

Table 5.2: A table of selection criteria used to determine which veto hits to consider
when doing charge identification. The spatial cuts of Y1, Y2, and X determine which
bars are to be included, events were only differentiated by time and amplitude within
a veto detector which was within range of the hadron hit. The subscript V signifies
veto, while C signifies the cluster in the neutron arm.

shown in Figures 5.19 and 5.20.

The area of the veto used to determine the charge of the hadron is determined

by looking at the coincidence between the hadron hit and the veto hit, see Appendix

A.5 for more details.

5.5 Dilution of the neutron sample by protons

Between the target and the veto detectors, there were several centimeters of

lead and other material [60]. Hadrons that leave the target could be observed as

if they were in the other isospin state, through hadronic interactions. This would

create a dilution in the neutral candidate sample due to quasi-elastic events still

being detected as hadrons, but with the wrong charge. This is especially important

in the case of protons observed as neutrons, which creates a significant dilution (see

Table 5.5) in the neutron sample. This conversion can be understood, and accounted

for, using the ratios of observed protons and neutrons for different targets. The three

targets used were hydrogen, which is a single proton, 3He, which is the target of
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Figure 5.19: Vertical position (m) within the Big Hand detector. This is for before
cuts (black), after event selection cuts (blue), with the selected region of x shaded.
In the vertical direction the neutron arm was segmented, giving the segmented
structure observed. GLA bars are removed, as seen in the most negative region. See
Table 5.6 for cuts.This distribution is for Q2 = 3.5 GeV2.
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Figure 5.20: Horizontal position (m) within the Big Hand detector. This is for
before cuts (black), after event selection cuts (blue), with the selected region of y
shaded. In the horizontal direction the neutron arm was not entirely covered by
the veto planes, giving the peaks on the two edges. See Table 5.6 for cuts.This
distribution is for Q2 = 3.5 GeV2.
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interest, and nitrogen, which has equal numbers of protons and neutrons. These

ratios are referred to as Rtgt,

Rtgt =
fn

fp

. (5.15)

Here the subscript tgt stands for target, and is replaced by N for nitrogen, H for

hydrogen, and He for 3He. The fraction fp(n) is that of protons(neutrons) to the

total number of hadrons.

The purity factor, Dn, is the ratio of observed neutrons to the neutrons knocked

out of the target at the interaction point with the electron beam. Similarly, Dp is

the ratio of observed protons to those starting from the target. For the observed

Rtgt, the fp(n) are observed fractions. However, as mentioned, it is possible that

interactions between the target and detector can cause a conversion in the observed

iso-spin state. To account for this, the ratio can be expressed in terms of mixing

coefficients. These provide the numbers of observed Np(n) resulting from an initial

target population Np(n). Expressed in this manner

Rtgt =
Nn

n + Nn
p

Np
p + Np

n
=

σnν
n
n + Ztgt

Ntgt
σpν

n
p

σnνp
n + Ztgt

Ntgt
σpν

p
p

. (5.16)

As an example, Nn
p is the number of observed neutrons from initial protons. The

above can be presented more compactly as:

Rtgt =

σn

σp

νn
n

νp
p

+ Ztgt

Ntgt

νn
p

νp
p

σn

σp

νp
n

νp
p

+ Ztgt

Ntgt

. (5.17)

Here σp(n) are the single nucleon cross sections, ν are the mixing coefficients, and Ztgt

Ntgt

is the ratio of protons to neutrons (unique for each target, and may be dependent

on perpendicular and parallel missing momentum) within the target. Obviously
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Figure 5.21: Presented is the ratio of protons to neutrons within the target for
nitrogen. Shown are two models, one a simple extension to the plane wave impulse
approximation (in blue), and the other is a model by Udias (in black). Shown is the
ratio for various cuts of p⊥. A cut of 150 MeV was used in this experiment. This is
for Q2 = 3.5 GeV2.

Ntgt = 0 for hydrogen, ZN

NN
≈ 1 for nitrogen, and ZHe3

NHe3
≈ 2 for the 3He. In particular

models [][], the ratio was investigated for the applied cuts and kinematics (see Figure

5.21 and 5.22). This provided values for these two coefficients (see Table 5.5). In

terms of these mixing coefficients, the purity factor is then

Dn =
Nn

n

Nn
n + Nn

p

=

σn

σp

νn
n

νp
p

Ztgt

Ntgt

νn
p

νp
p

+ σn

σp

νn
n

νp
p

. (5.18)

Using this information, it is possible to solve for the mixing ratios from the

ratios of hydrogen (H2),
3He, and nitrogen (N2)

νn
p

νp
p

= RH , (5.19)

νp
n

νp
p

=
σp

σn


RHe

ZHe3

NHe3
− ZN

NN
RN +

(
ZN

NN
− ZHe3

NHe3

)
RH

RN −RHe


 , (5.20)
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Figure 5.22: Presented is the ratio of protons to neutrons within the target for 3He.
Shown are from cuts on p⊥. The applied cut on p⊥ was 0.15 GeV with P‖ cuts of
400, 250, and 200 MeV for kinematics of Q2 = 3.5, 2.5, and 1.7 GeV2. Shown is the
ratio for various cuts of inverse distance. This study was done by Aidan Kelleher.

νn
n

νp
p

=
σp

σn

[
RN

(
ZHe3

NHe3

− ZN

NN

)
RHe −RH

RN −RHe

− ZN

NN

RH

]
. (5.21)

Therefore the dilution due to the proton to neutron conversion in the sample,

Dn =
RHe[(

ZHe3

NHe3
− ZN

NN
)RN + ZN

NN
RH ]− ZHe3

NHe3
RNRH

RHe

(
ZHe3

NHe3
− ZN

NN

)
(RN −RH)

. (5.22)

This accounts for mixing due to conversions in the air and other material between

the target and the veto detectors. However, there are additional considerations due

to the veto detectors before the final dilution factor, due to protons observed as

neutrons, can be determined.

As mentioned in section 5.4, the veto detector efficiency was related to large

dead-time in the veto detector TDCs and high rate within the veto detectors. The

dead-time could be as high as 110 ns for some paddles, while the rate in the indi-
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vidual veto detectors was on the order of 1 MHz. Additionally, the hydrogen and

nitrogen data were acquired at different rates than the 3He data. Because of this, it

is desirable to account for the rate dependence in the charge identification. This is

complicated for a couple of different reasons. First, the veto was segmented into left

and right and into two planes, which made the veto difficult to model. Also, because

of the high activity in the veto, every event had multiple random hits within the

veto planes.

The observed protons and neutrons detected in the veto can be represented in

the following equations, where the fp(n) stands for the fraction of protons(neutrons)

incident on the veto detectors over the total number of hadrons incident on the veto

detectors; which is equivalent to the fraction when there is no deadtime. In these

equations r represents the rate in the detectors.

Np
n(r) + Np

p (r) = fpT (r) + fnT (r)P veto
busy(r) (5.23)

Nn
n (r) + Nn

p (r) = fnT (r)(1− P veto
busy(r)) (5.24)

A charged hit is determined by a hit in the proper range of either veto plane

(see Table 5.4). So the rate dependent number of observed neutrons is the rate de-

pendent total number of hadrons, T (r), incident on the neutron detector multiplied

by the fraction, fn, of the number of neutrons to hadrons multiplied by the proba-

bility that there was no accidental background hit in the veto detector to make it

appear charged (1− P veto
busy). The rate dependent number of observed protons is the

total number of hadrons multiplied by the fraction of protons over hadrons, fp, plus
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the fraction of neutrons misidentified by the accidental background.

These probabilities can be determined by modeling them using the Poisson

distribution, and then adding up all the probabilities for each hadron event. This

gives real numbers for everything but the fractions incident on the veto detectors.

The observed ratios, at a given frequency, are

Rtgt(r) =
Nn

n (r) + Nn
p (r)

Np
n(r) + Np

p (r)
. (5.25)

Using this formula twice, once for the observed rate r and once for the desired rate

d, gives a formula to relate every observed ratio Rtgt(r) to a desired ratio Rtgt(d):

Rtgt(r) =
Rtgt(d)T (d)[F r(β)]

Rtgt(d)T (d)[T (r)− F r(β)] + [F d(β)−Rtgt(d)(T (d)− F d(β))]T (r)
.

(5.26)

The fitting parameter β accounts for correlations in hits in different veto bars in a

given event. The function F depends on β and ξ, where ξ is the total rate dependent

probability for veto detectors to be busy in an event:

F r(β) =

T (r)∑
0

Pbusy(β, r) . (5.27)

here ξ is a useful quantity to define for the calculation and fit of

F r(1) = ξ(r) =

T (r)∑
0

Pbusy(β = 1, r) , (5.28)

which is just F r(β) assuming no correlation between veto hits. The probability of

an accidental hit, Pbusy(β) with r being the rate and τ being the dead-time (or busy

time) of the bar, in a given event is

Pbusy(β, r) = (e−
P

rτ )β . (5.29)
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The functional form of F r(β) can be approximated by assuming that the rate r

multiplied by the deadtime τd is approximately the same for all bars, so the quantity

A = e−
P

rτd is the same for each bar. This is a good assumption, since the rate

multiplied by dead-time is the same order of magnitude for all veto bars. From this,

F r(1) = ξ(r) ≈ T (r)A(r) . (5.30)

Therefore a good approximation for F (ξ, β) is

F r(β) ≈ T (r)

(
ξ(r)

T (r)

)β

. (5.31)

This allows the ratio at a specific rate of the different targets to be calculated

using the fractions of uncharged and charged particles incident on the veto. Using

these ratios in equation 5.22 gives the rate independent dilution correction for proton

to neutron conversion:

Q2 = Ratio for 3He Ratio for Hydrogen Ratio for Nitrogen Purity Factor

2.5 GeV2 0.102 ± 0.001 0.019 ± 0.002 0.193 ± 0.010 0.8 ± 0.03
3.5 GeV2 0.073 ± 0.001 0.014 ± 0.002 0.107 ± 0.053 0.865 ± 0.053
1.7 GeV2 - - - -

Table 5.3: A table of the ratios for different criteria. Over the course of a kinematic
setting, runs varied in rate. This had a small effect on the purity factor, the results
presented in this table is for a normal run.

name Helium Ratio Nitrogen Ratio

Kin 2 2.15 1.07
Kin 3 2.31 1.07
Kin 4 2.15 1.07

Table 5.4: The effective ratio of Z
N

for the target and cuts.
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(a) uncharged to charged ratio for Q2 = 2.5 GeV2
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(b) uncharged to charged ratio for Q2 =
3.5 GeV2
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Figure 5.23: Shown in these figures is the measured uncharged to charged ratio,
the uncharged to charged ratio within the model, and the fit line of the model in
nitrogen. These are plotted against the natural dependence ξ

T
.
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Figure 5.24: Shown in these figures is the measured uncharged to charged ratio,
the uncharged to charged ratio within the model, and the fit line of the model in
hydrogen. These are plotted against the natural dependence ξ

T
.
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Figure 5.25: Shown in these figures is the measured uncharged to charged ratio, the
uncharged to charged ratio within the model, and the fit line of the model in 3He.
These are plotted against the natural dependence ξ

T
.
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Dn =
RHe(d)[( ZHe3

NHe3
− ZN

NN
)RN(d) + ZN

NN
RH(d)]− ZHe3

NHe3
RN(d)RH(d)

RHe(d)
(

ZHe3

NHe3
− ZN

NN

)
(RN(d)−RH(d))

. (5.32)

5.5.1 Single Track Analysis and Background Correction

For approximately 10% of the detected events, the hadron interacted in the

lead resulting in multiple events in the neutron apparatus or an accidental back-

ground hit that could not be differentiated from the hadron. If there were two or

more hits in the region of parameter space used to select quasi-elastic events (here-

after known as the quasi-elastic region), the charge becomes impossible to determine

since just one ”hit” in the veto detectors associated with the quasi-elastic region will

often set all hits in the quasi-elastic region as charged.

By restricting the analysis to only those events which have a single hit identi-

fied as quasi-elastic, the problem of charge identity and multiple hits in the quasi-

elastic region is solved. Using this single track analysis (SQE), however, causes the

determination of the background to become more complicated.

When multi-hit events are eliminated, the spectrum far from the quasi-elastic

hit is clean (see Figure 5.29). Using the perpendicular transferred momentum, q⊥,

the distance far from the quasi-elastic hit can be parametrized in the same variable

which is used to select quasi-elastic events. In this band of q⊥, the ratio of charged to

uncharged background is relatively constant (see Figure 5.28). This gives the ratio

of charged to uncharged for the background which is unrelated to the quasi-elastic

events. The only determination that is made in this region is the charge ratio of the
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Figure 5.26: Plot q⊥ for a region in time. This is 5 ns removed from the peak region.
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Figure 5.27: Plot q⊥ for a region in time. This is at the quasi-elastic region.
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Figure 5.28: Plot of the ratio of uncharged to charged for the region of q⊥ between
0.55 and 0.60 GeV /c. The region near 3 ns is removed due to the photon peak
being there. Add axis information time (ns), update description (changed plot)
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Figure 5.29: Plot of q⊥ versus time-of-flight for events with only a single hit in the
|t| < 7 and q⊥ < 0.15 region. The area in the spectrum of events coming from
k photons via π0 production was removed (between 2 and 4 ns). This is for runs
4090-4099.
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background. The total background count is determined via a different mechanism.

Since it is required that every hit in the quasi-elastic region is either a single

quasi-elastic hit, or a single background hit, the total number of counts (and events)

is:

NA+B
SQE = NA

back + NA
QE + NB

back + NB
QE , (5.33)

where A and B are two regions within the SQE region. The SQE region is chosen

so as to include all of the quasi-elastic events within it. It is useful to define region

B as being a region where NB
QE = 0.

This is a lot simpler than that of the full events, which can be expressed as

the following:

NA+B
full = NA

back + NA
QE + NA

QE|back + NA
back|back + NB

back|back + NB
QE|back +

NA
QE|QE + NA

back|QE + NB
back + NB

back|QE ,

here |back is the number of hits which also have at least one background hit, |QE is

the number of hits with at least one QE hit. Another class of hits are NA
QE|QE which

are the number of QE hits with at least one other QE hit; these would be from

fragmentation caused by interaction between the target and the final hit location in

the neutron arm. Here A is the SQE region with the quasi-elastic hits within it and

B is a region in the SQE region without any quasi-elastic hits.

If the region is restricted to being outside the QE region, the expression is left

as:

NB
full = NB

back + NB
back|back + NB

back|QE . (5.34)

Obviously it is just desired to remove the NB
back from the QE sample in region A.
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Since equation 5.33 is true for SQE analysis, outside of the QE region the expression

for the counts is

NB
SQE = NB

back , (5.35)

due to NB
back|back and NB

back|QE events not occuring because only one hit can occur

in the SQE region. Once the regions A and B are scaled to be the same size, the

number of quasi-elastic events in SQE analysis can be determined

NQE = NA,SQE −NB,SQE , (5.36)

here B is a sub region of the SQE region where the QE events don’t reside, and A

is the sub region of the SQE region where QE events do reside.

For times earlier than the quasi-elastic window, as described above the hits

are all background, coming from an accidental coincidence between the electron and

hadron (see Figure 5.29). This is in the -4 ns to -7 (or -13) ns window. Using the

counts (scaled properly) from this background region provides the background in

single quasi-elastic hit analysis. The same area in q⊥ is used to make scaling easier.

To determine the neutral accidental background, the earlier determined background

ratio term is used:

Nneut,back = Nbackfback , (5.37)

here f is the fraction of neutrals to hadrons in the background.

These background counts, neutral or charged, are used to determine the acci-

dental background dilution and asymmetry used in the determination of the physical

asymmetry. The neutral background dilution of a sample (N) can be expressed as

Dback = 1− Nneut,back

N
. (5.38)
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Similarly the background asymmetry can be defined in the standard way

Aback =
N+

back −N−
back

P3HeN
. (5.39)

5.5.2 Nitrogen Dilution

The 3He inside the target cell is diluted by unpolarized nitrogen, used as a

buffer gas to decrease interactions between the polarized 3He and glass cell walls

and to aid in the polarization process (Section 4.4.2). This contamination creates a

dilution of the 3He asymmetry, and is measured by looking at events which appear

to be quasi-elastic in a N2 target and scaling by the relative densities and total

charge on target. This dilution factor is

DN2 = 1− NN2 −Nback,N2

N −Nback

Q3Heρ3He

QN2ρN2

. (5.40)

The values used to calculate this dilution factor are provided in Table 5.5. Quasi-

elastic event selection, discussed earlier in the chapter, was used to select the events

used for this analysis.

ρQE Q2 ρN2 Q3He QN2 DN2 N Nback NN2 Nback,N2

0.162 2.5 4.4 18399 14020 0.949 2089.1 46.2 220.5 14.9
0.162 3.5 3.6 1441010 37920 0.982 2686.2 52.6 28.5 5.5

99 1.7 99 99 99 99 99 99 99 99

Table 5.5: A table for the Nitrogen Dilution factor determination. Uncertainties
are discussed in Appendix B. Densities are determined from measurements of the
target [51][46][68].
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5.5.3 RF correction

While the timing of the coincidence event relative to the beam crossing cannot

be determined absolutely, it can be determined up to an arbitrary constant. Event

by event variations about this constant can be determined from the 499 MHz RF

signal, which can be used to improve the hadron time-of-flight measurement between

the target and detectors.

The signal from the RF is put into the F1 TDC, which wraps (starts counting

again at 0) at W = 65526 channels, and has tres = 0.1183 ns resolution. The

RF signal repeats in a Twin = 2 ns window. In the following formula tRF = RF

time, tref = reference time, tL1A = level 1 accept time, and the aforementioned

time-of-flight (equation 5.9).

The RF correction is calculated using the following formula

RFcorr =
Vtgt

c
+ tres

(
tRF − tref −

([
tRF − tref

0.5W

]
mod 1

)
W

)
, (5.41)

trf =

[
(te − tL1A −RFcorr − trfshift) mod

(
1

0.499

)
+

2

0.499

]
mod

(
1

0.499

)
.

(5.42)

This trf is the shift used for correcting the time-of-flight in equation 5.9. The trfshift

is the peak location shown in Figure 5.30. This shift is plotted versus run number

in Figure ??. This correction is due time of the scattering within the target.

5.6 Asymmetry calculation

After the selection of quasi-elastic neutron events (Table 5.6), the measured

asymmetry is corrected to give the physical asymmetry, which gives Gn
E as presented
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hdt
Entries  3124
Mean    1.027
RMS     0.761

 / ndf 2χ  98.46 / 87
Peak      2.16± 82.22 
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Sigma     0.0092± 0.3823 
Bck       0.546± 5.445 
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Figure 5.30: Spectrum used to determine the RF correction. This is for run 3888.
The peak location is determined from the Mid parameter, which is trfshift.
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Figure 5.31: RF correction versus run number for Q2 = 2.5 GeV2. Note that since
the plotted function is mod

(
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)
that the values of 2 ns and 0 ns are almost

equivilent.

136



Name Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.7 GeV2

Time (ns) |t| < 2 |t| < 1 |t| < 1
Invariant Mass (GeV) |w − 0.9| < 0.2 |w − 0.775| < 0.175 |w − 0.9| < 0.2

Q Perp (GeV) q⊥ < 0.15 q⊥ < 0.15 q⊥ < 0.15
SQE region B |t− 8.5| < 4.5 |t− 8.5| < 4.5 |t− 8.5| < 4.5

Missing Mass (GeV) Mmiss < 2 Mmiss < 2 Mmiss < 2
Vertical Cut (m) |X + 0.2| < 1.7 |X + 0.2| < 1.7 |X + 0.2| < 1.7

Horizontal Cut (m) |Y + 0.183| < 0.7 |Y + 0.183| < 0.7 |Y + 0.183| < 0.7

Table 5.6: Table of quasi-elastic event selection cuts. The Single QE cut is that
there is one and only one hit in the associated region of time and q⊥ < 0.15. This
is in addition to the region of time and q⊥ which are selected as quasi-elastic event
candidates. The vertical cut and horizontal cut are neutron arm fidicual cuts.

in section 3.3.3. This is the general expression, as mentioned in the previous sections

there are corrections which need to be done for nitrogen dilution in the target cell

(section 5.5.2), proton to neutron coversion between the target and scintillator bars

(section 5.5), accidental background asymmetry and dilution (section 5.5.1), neutron

polarization in the nucleus [32], beam polarization (section 4.3), target polarization

(section 4.4), and final state interactions (section 5.7.1). The corrected expression

is

APhys =
Asum − Aproton − Aback

P3HePbeamPnDN2DnDFSIDback

. (5.43)

Since the proton contamination of the neutron sample (Dn), proton asymmetry

(Aproton), nitrogen dilution (DN2) , background asymmetry (Aback), and background

dilution (Dback) all depend on similar quantities, corrections need to be applied

as presented in sections 5.7 and 5.5. The nitrogen dilution is corrected for the

background dilution and the proton contamination dilution is corrected for both

the nitrogen dilution and the background dilution.

The physical asymmetry, corrected for the discussed dilutions and asymme-
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Figure 5.32: Shown is the run number versus raw asymmetry for Q2 = 2.5 GeV2.

tries, is presented in Table 5.7. The dilutions can be expressed in terms of those

due to polarization (P ), those due to theoretical calculations like FSI (Dfsi) and

neutron polarization (Pn), and experimental corrections not due to polarization (V ).

Expressed this way

P = P3HePbeam (5.44)

and

V = DnDN2Dback . (5.45)

At times during the measurements at Q2 = 2.5 and 3.5 GeV2, the target

cell and beam were changed. This meant that the Pbeam, P3He, and Dn could

change during the run. To account for this, the target polarization corrected the

asymmetry on a run by run basis. Using standard error analysis (and Appendix B),

the summation was

Asum =

∑
Ai

1
σ2

i∑
1
σ2

i

, (5.46)
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Q2 = 1.7 GeV2 2.5 GeV2 3.5 GeV2

Ameas −0.0437± 0.0096 −0.0449± 0.0055 −0.0356± 0.0081
N 10882 3301 15381

Pnucl 0.4928± 0.02 0.436± (0.02) 0.477± (0.02)
Pbeam 0.835± (0.03) 0.835± (0.03) 0.835± (0.03)

Pn 0.86± (0.02) 0.86± (0.02) 0.86± (0.02)
Dback 0.994 0.9792± 0.0003 0.9732± 0.0005
Aback 0.0002± 0.03 0.0013± 0.0001 0.0013± 0.00003

Dn 0.823± 0.033 0.8± 0.023± (0.04) 0.865± 0.046± (0.043)
Aproton −0.0003± 0.0001 −0.00089± 0.0002 −0.0006± 0.0001

DN2 0.946± 0.001 0.949± 0.004± (0.005) 0.982± 0.004± (0.002)

P - 0.364 0.398
V - 0.744 0.826

Aphys −0.190± 0.040 −0.198± 0.024± (0.022) −0.130± 0.031± (0.014)

Table 5.7: Determination of the physical asymmetry from the measured experimen-
tal asymmetry. A full discussion and analysis of errors is presented in Appendix
B.

σsum =
1√∑

1
σ2

i

, (5.47)

where the above equation was used for statistical uncertainties and the Ai are the

measured asymmetries for each run. After this summation, the physical asymmetry

is calculated using

APhys =
Asum − Aproton − Aback

PbeamPnDN2DnDFSIDback

. (5.48)

Many runs were taken over the course of a measurement at a given Q2. The stability

of the asymmetry over the course of the run, for a given running condition, was stable

as shown in Figure 5.32.

While the other asymmetries and dilutions can be corrected for without using

acceptance information, the FSI dilution and proton asymmetry require knowledge

of the kinematics to be properly applied.

The framework using knowledge of the kinematics to determine the ratio of
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the electric and magnetic form factors, and so determine Gn
E, is based on equation

3.15. This provides the relationship between kinematic variables, the asymmetry,

and the form factor ratio. The relation between the physical asymmetry and the

ratio, λ, can be expressed as:

A =
Bλ + C

λ2 + D
, (5.49)

where λ = GE

GM
is the form factor ratio, and B, C, and D are the following kinematic

quantities

B = −2
√

τ(1 + τ) tan(
θe

2
) sin θ cos φ , (5.50)

C = −2τ

√
1 + τ + (1 + τ)2 tan2(

θe

2
) tan(θe) cos θ , (5.51)

D = −τ + 2τ(1 + τ) tan2(
θe

2
) . (5.52)

and the quantities τ , θe, θ, and φ were defined in section 4.4.2. These quantities

can be averaged from all events, and are used in the determination of the proton

asymmetry correction, the determination of Q2, and the determination of λ from

the physical asymmetry.

The dilution corrections are presented explicitly in section 5.5. The asymmetry

corrections will be presented explicitly here. To make the best use of the good proton

form factor measurements [63], values for the proton form factor ratio were used to

determine the Aproton. The equations 5.50, 5.51, and 5.52 were used to calculate the

proton physical asymmetry

Aphys,proton =
(Bλproton + C)

λ2
proton + D

. (5.53)

This can then be corrected for the nitrogen dilution of the charged events (Dch,N2),

the proton polarization (Pp), background dilution (Dback), and the beam polarization
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(Pbeam) to give the proton asymmetry correction

Aproton =
1−DN

DbackDN2

PbeamPpAphys,proton . (5.54)

By using the plot of this ratio at different values of the physical asymmetry,

the error and value for the ratio can be determined. However, if instead of being

plotted, λ is solved for, an inversion must be used. This can be done using the

following method [31]. Using equation 5.50, 5.51 and 5.52, we can express 5.49 as:

∆(θ, φ)

Σ(θ, φ)
= Aphys =

Bλ + C

D + λ2
=

C

D
+

B

D
λ− C

D2
λ2 − B

D2
λ3 +

C

D3
λ4 +

B

D3
λ5 . (5.55)

Q2 = 1.7 GeV2 2.5 GeV2 3.5 GeV2

Aphys −0.190± 0.040 −0.198± 0.024± 0.022 −0.130± 0.031± 0.014
T0 -0.0156 -0.0128 -0.0752
T1 0.8362 0.8353 0.9844
T2 0.0134 0.0114 0.0927
T3 -0.6832 -0.6811 -1.1977
T4 -0.0116 -0.0102 -0.1159
T5 0.5660 0.5640 1.4805

λ −0.218± 0.054 −0.232± 0.033± 0.031 −0.250± 0.047± 0.021

Table 5.8: Expansion Coefficients in the determination of λ from the physical asym-
metry. Uncertainty in λ calculated as discussed in Appendix B.

These expansion coefficients can be expressed as T0 = C
D

, T1 = B
D

, T2 = C
D2 ,

T3 = B
D2 , T4 = C

D3 , and T5 = B
D3 . In this expansion, these provide all the acceptance

and kinematic information for a given event. This allows the expression of Aphys as a

polynomial in λ with coefficients being equal to the averaged Tn values. For specific

averaged values, λ can be solved for giving the ratio of the electric and magnetic

form factors for that specific kinematic. To first order, this lambda is

λ0 =
Aphys − 〈T0〉

〈T1〉 . (5.56)
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Using these terms, the value for Q2 was also corrected for finite acceptance:

Q2 =

∑
T1,iQ

2
i

T1

. (5.57)

The value for λ,

λ =
Gn

E

Gn
M

, (5.58)

provides the electric form factor of the neutron as a ratio of the magnetic form factor.

Using this corrected value for Q2 and using the value of the magnetic form factor

as determined from a common parameterization [48], the value of the electric form

factor was determined. This calculation is presented in Table 5.9. The calculation

of the uncertainty is presented in appendix B.

The results and discussion of them in relation to previous measurements and

selected models are presented in Chapter 6.

Q2 = 1.7 GeV2 2.5 GeV2 3.5 GeV2

λ −0.218± 0.054(0.030) −0.232± 0.033± 0.031 −0.250pm0.047± 0.021
Q2 1.75 (GeV2) 2.49 (GeV2) 3.48 (GeV2)

Gn
M −0.096± 0.005 −0.0955± 0.0018 −0.0557± 0.0011

Gn
E 0.021± 0.005(0.003) 0.0221± 0.0032± 0.0030 0.0139± 0.0026± 0.0012

Table 5.9: Displayed is the calculated values for λ and Q2, and the value of Gn
M

as arrived at from a parameterization [48]. From this the value of Gn
E can be

determined. Determination of uncertainty is discussed in Appendix B.

5.7 Corrections

5.7.1 FSI Corrections

As mentioned previously, in section 3.5, to first order there are four types

of interactions at lower momentum transfer. Shown in Figure 5.33, these are the
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Figure 5.33: The four dominant lowest order diagrams in single nucleon scatter-
ing. Shown is (a) impulse approximation, (b) meson exchange currents, (c) isobar
contributions, and (d) FSI. [75]

Figure 5.34: In nuclei with more than a single nucleon, the plane wave impulse
approximation can be used to give the description of the interaction. Shown are
the leading order diagrams for 3He which is the PWIA diagram, single re-scattering
diagram, and double re-scattering diagram. [75]
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impulse approximation (IA), isobar current (IC), meson exchange currents (MEC),

and final state interactions (FSI). As has already been argued, meson exchange

currents and isobar currents are small for Q2 > 1 GeV2. This is due to them scaling

as 1
Q4 . This leaves just final state interactions as a necessary correction to the

physical asymmetry, which was arrived at from the impulse approximation. The

final state interactions are basedon on nucleon-nucleon cross sections, which are

flat above 2 GeV [75]. To lowest order, these FSI will be either single or double

re-scattering between the spectrator hadrons and the detected hadron (see Figure

5.34).

There are two similar approximations made in computing the effects of these

FSI. These are the glauber approximation and the generalized eikonal approxima-

tion (GEA). In the glauber approximation the incident particles energy is assumed

to be much larger than that of the potential, and is large enough so that the wave-

length of the incident particle is smaller than the potential width. This means that

the Glauber approximation truncates the terms after double scattering due to the

spectator hadrons being considered at rest. In the generalized eikonal approxima-

tion, the high momentum particle can not interact with a slow hadron a second time

after interacting with another bound hadron.

The eikonal approximation reduces to the Glauber approximation in the limit

of zero longitudinal momentum transfer, ∆ = q0

|q|(Es−m) → 0. Here q is transfered

momentum, the subscript s refers to spectator, and m is the recoiling nucleon mass.

This is due to the Glauber approximation assuming that all nucleons are stationary

while the GEA allows for nonzero initial momentum of the recoiling nucleon [75].
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5.7.2 Inelastic Contribution

The inelastic contribution to the quasi-elastic asymmetry is the final correction

to be developed. This contribution can be limited by removing some of the quasi-

elastic region which is closest to the delta resonance (at W = 1.4 GeV). The observed

width of the quasi-elastic peak in the invariant mass spectrum is increased due to

the motion of the nucleon within 3He and due to the resolution of the detectors. The

inelastic resonance width is similarly increased. This inelastic contribution increases

the tail in the quasi-elastic sample towards greater invariant mass as demonstrated

in Figures 5.10(a), 5.9(a), 5.8(a), and ?? for Q2 = 2.5 GeV2.

The inelastic contribution will be deconvoluted using a Monte Carlo (MC).

This Monte Carlo is described in section A.2 and simulates the quasi-elastic and

inelastic spectrum near the quasi-elastic spectrum. Using the inelastic counts un-

der the quasi-elastic peak and the inelastic asymmetry from the simulation, the

measured quasi-elastic asymmetry can have the contribution from inelastic events

removed [69]. This Monte Carlo is being analyzed by another collaborator. When

this is completed, the invariant mass cuts in Table 5.6 can be widened to 1.2 GeV.

The contribution of the inelastic sample can be emperically estimated by con-

sidering the asymmetry as a function of invariant mass. This shows the asymmetry

both in the inelastic region, the quasi-elastic region, and the region with a significant

inelastic contribution to the quasi-elastic events. This is demostrated in Figure 5.35.

Preliminary values for the inelastic asymmetry contribution and dilution are

presented Table 5.10. The presented values are calculated in the framework of a
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Figure 5.35: The asymmetry as a function of invariant mass. This shows that the
invariant mass doesn’t over the region selected (see Table 5.6).

seperate analysis with a different set of cuts and charge selection [68]. These are not

included in the presented analysis here, but give an estimation to the contribution

in the quasi-elastic event sample. The correction to the physical asymmetry due to

the inelastic asymmetry and dilution is

Acorr =
Aphys − Ainelas

Dinelas

. (5.59)

Q2 Dinelas Ainelas Aphys

1.7 GeV2 0.9839 -0.0038 -0.271
2.5 GeV2 0.9834 -0.0030 -0.190
3.5 GeV2 0.9726 -0.0050 -0.159

3.5 GeV2* 0.905 -0.0143 -

Table 5.10: Shown are preliminary inelastic asymmetries and dilutions for the var-
ious kinematic [69]. The * row relates to an expanded selection of quasi-elastic
events, with a maximum invariant mass of 1.2 GeV rather than the usual maximum
of 1.05 (see Table 5.6).

As seen, with the cuts presented in Table 5.6 the contribution of the inelastic
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events is small. The likliest source of a change in the results presented in Table 5.9

is due to increased theoretical understanding of 3He nucleus. The results presented

and discussed in Chapter 6 will be based off the results presented in Table 5.9.
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Chapter 6

Results and Discussion

It is common in the literature to use t = −Q2 = −∆2 rather than Q2 when

talking about fits and models. This practice will be followed in this chapter. Addi-

tionally, unless otherwise mentioned, the scaling factor used is µ2 = 2GeV.

6.1 Framework Formalism

As noted earlier, in section 1.3, QCD can not be solved analytically in the

regime where the quarks can be described as confined. The theory is also difficult

to discuss analytically since Lorentz boosts of such a wavefunction is as complicated

as solving the theory. By putting the problem into the Light Front guage, a more

simple description can be discussed. In Light Front Quantization, QCD is quantized

at a fixed light front time τ = t + z
c

giving the following quantities

P± = P 0 ± PZ , (6.1)

and ~P⊥ as the new four-momomentum. Here P+ is the longitudinal momentum and

~P⊥ is the transverse momentum. The wavefunctions of this formulation describe

the nucleon in an arbitrary moving frame. To describe the quarks and gluons within

the nucleon

p+
i = xiP

+ , (6.2)
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and

~p⊥i = xiP
⊥ + ~k⊥i , (6.3)

are used where xi =
p+

i

P+ and ~k⊥i represent the relative momentum coordinates. The

parton model is an approximation in a general reference frame, but is exact in the

light front quantization.

The transferred momentum in this frame is q+ = 0, q− = 02qṖ
P+ and ~q⊥. Obvi-

ously Q2 = −t = ~q2
⊥ and is often referred to as ∆2

⊥.

In non-relativistic physics the natural framework for disscussion of quantities

is the center of mass, in the relativistic framework of light front QCD the natural

framwork is the center of transferse momentum, ~R⊥. The obvious, parton, definition

is

~R⊥ =
∑

i

xi~r
⊥
i . (6.4)

The conjugate position to the momentum ~k⊥i is ~b⊥i . It is in terms of this position

that the distribution of the quarks can be described. Here

∑
i

~b⊥i = 0 . (6.5)

In this mixed reference frame with longitudinal momnetum and transferse position,

the GPDs have a density interpretation. The probability to find a quark with x and

~b⊥ minus the probability to find an antiquark is given by

qv(x,~b⊥) =

∫
d2∆

4π2
e−

~b⊥∆̇Hq
v(x, t = −∆2) (6.6)

Using equations ????, the parton charge density in this mixed reference frame
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is

ρ0(b) =
∑

q

eq

∫
dxq(x,~b) =

∫
d2q

4π2
F1(Q

2 = ∆2)ei∆̇~b (6.7)

This integral can also be expressed in terms of the Sachs form factors

ρ(~b) =

∫ inf

0

dQQ

2π
J0(Qb)

GE(Q2) + τGM(Q2)

1 + τ
(6.8)

For a nucleon polarized in the xy direction, the transverse density can also be defined

ρT (~b) = ρ0(b)− sin(θb − θS)

∫ inf

0

dQQ2

2π2MN

J1(bQ)F2(Q
2) (6.9)

here ~b = b(cos θbêx + sin θbêy and θS simialrly defines the transverse polarization

direction.

6.2 Results

6.3 Pauli and Dirac Form Factors

As presented in equation ?? the Pauli and Dirac form factors can be related to

the Sachs electromagnetic form factors. Since the Sachs magnetic form factor, Gn
M ,

is already well known, it is just the electric form factor which needs to be known to

present F1 and F2. Because of the dependence in equation ??, F1 has much more

dependence on the electric form factor than F2 does. Using a dipole approximation

for Gn
M

Gn
M = µnGD , (6.10)

it is possible to determine the Pauli and Dirac form factors using only electric form

factor data.

-
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Figure 6.1: Pauli form factor (F1) dependent on GE and the dipole approximation
for GM .
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Figure 6.2: Dirac form factor (F2) dependent on GE and the dipole approximation
for GM .
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6.3.1 Flavor Form Factors

If certain assumptions are made, the flavor form factors can be deconvoluted

from the nucleon form factors. Iso-spin symmetry being conserved at these energies,

in the neutron the down quarks switch places with the up quarks in the proton. For

the proton, since the charge of the proton is defined to be one (see equation ??),

the equation for the proton form factors in terms of the flavor form factors is

F p
1,2 =

2

3
F u

1,2 +
−1

3
F d

1,2 . (6.11)

The formula for the neutron is similar, but due to the up and down quarks being

switched (position wise) within the neutron, the formula is

F n
1,2 =

−1

3
F u

1,2 +
2

3
F d

1,2 . (6.12)

For both the magnetic form factors of the neutron and proton form the dipole

approximation is used. For the electric form factor of the proton, a modified dipole

is used [?]

Gp
E = (1.06 + 0.14t)GD . (6.13)

This allows the Pauli and Dirac form factors for both the proton and the neutron to

be calculated, and the flavor form factors deconvoluted, with presented uncertainty

only dependent on the neutron electric form factor data. Since theorists predict the

strange form factor is not differentiable from 0 for these nucleons, it is ignored in

this deconvolution[].
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Figure 6.3: Ratio of the down and up quark flavor Pauli form factors. The form
factors not dependent on Gn

E are just dipole approximations.

]2  [GeV2Q
1 2 3 4

u 2
/Fd 2F

-2.5

-2.0

-1.5

-1.0

-0.5

Previous Data

E02013

PRELIMINARY

Previous Data

E02013

Previous Data

E02013
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factors not dependent on Gn

E are just dipole approximations.
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6.4 GPD Models

A popular framework to consider nuclear interactions and structure is that

of generalized parton distributions. These were discussed a earlier in section ??.

They parametrize the non-forward bits of the light front operators. They have

the advantage in being able to describe, in part, elastic processes, deep inelastic

processes, deep virtual compton scattering, as well as physical properties like quark

orbital angular momentum. In terms of form factors, the GPDs give the quark

contribution at a given x to the the flavor form factors.

F q
1 (t) =

∫ 1

0

dxHq(x, ξ, t) (6.14)

F q
2 (t) =

∫ 1

0

dxEq(x, ξ, t) (6.15)

There are two other GPDs, which are related to the pseudoscalar and axial

form factors. These aren’t really effected by our measurement, and are more difficult

to constrain by current measurements.

6.4.1 Impact Parameter Space

Because GPDs divide the momentum into longitudinal and transverse compo-

nents, t can be transformed (similar to a Fourier transform) into space to provide a

description of the nucleon in terms of impact parameters. This is the distance from

the center of momentum of the nucleon. From this, the distribution of the flavor

can be determined for different longitudinal momentum fractions (x).
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Hq(x,~b) =

∫
d2~∆

(2π)2
e−i~b·~∆Hq(x,−~∆2) (6.16)

Eq(x,~b) =

∫
d2~∆

(2π)2
e−i~b·~∆Eq(x,−~∆2) (6.17)

This Hq(x,~b) is actually q(x,~b) the distribution of partons as a function of

the transverse position ~b from the center of momentum and light-cone momentum

fraction x.

Because the impact parameter space corresponds to locations within the hadron,

the density interpretation of GPDs is used to create conditions that must be satis-

fied by the GPDs, for example giving a relation between the impact parameter and

the longitudinal momentum fraction. Obviously any nucleon is going to have the

allowed region of impact parameter space go to 0 as the longitudinal momentum

fraction goes to 1 [].

1

2
|∇~bE

q(x,~b)| ≤ Hq(x,~b) (6.18)

In impact parameter space, the averaged square of the relative distance be-

tween the struck hadron and the spectator system can be described by

d2
q(x) =

〈
~b2

〉q

x

(1− x)2 (6.19)

The probability interpretation of Eq(x,~b) is in the transverse basis rather than

the longitudinal basis. The distribution is then

qX
v (x,~b) = qv(x,~b)− by

m

∂

∂~b2
Eq

v(x,~b) (6.20)
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where qX
v (x,~b) is the probability to find an unpolarized quark with momentum

fraction x and impact parameter ~b in a proton polarized in the X-direction minus

the probability to find an antiquark.

6.4.2 Fit to our data

As mentioned previously, many of the models[?][?] have parameters which are

dependent on the nucleon form factors. Since 2004, new data on the nucleon form

factors, in particular the neutron form factor, has arisen. This allows for new fits of

the models.

The models for the helicity conserving GPD take the form of

H = qv(x)efq(x)t (6.21)

where qv(x) is the quark density function. This is gotten from global fits to DIS

data and such, the fits used by these models were the MRST2002 (Guidal et al.[])

and the CRET (Deihl et al.[]). New data is also available for these fits.

The form of fq(x) is another parameter. Deihl et al. fit the nucleon data and

use the Regge phenomenology to get a class of fits. Guidal et al. on the otherhand

just use Regge phenomenology as it has behavior which is close to correct both as

x → 1 and x → 0. Guidal et al. use

fq(x) = α′ln
(

1

x

)
(6.22)

while Deihl et al. use

fq(x) = α′(1− x)2ln

(
1

x

)
+ Aq(1− x)2 + Bq(1− x)3 (6.23)
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Deihl et al. argue that expecting fq(x) to be described at high t by α does not work

as Regge phenomenology does not apply at that regime.

The helicity flip GPD has an additional component meant to change its be-

havior as a function of t compared to H. It should drop as 1
t

or faster, and so Guidal

et al. solves this by putting in a term (1− x)ηq . This gives the Guidal et al. E

GPD as

E = Nηqqv(x) (1− x)ηq efq(x)t (6.24)

where Nηq is a normalization constant to account for the added term.

Deihl et al. use a different profile function

gq(x) = α′(1− x)2ln

(
1

x

)
+ Cq(1− x)2 + Dq(1− x)3 (6.25)

which gives the E GPD as

E =
Γ (2− α + βq)

Γ (1− α) Γ (1 + βq)
κqx

−α (1− x)βq etgq(x) (6.26)
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Figure 6.5: Diagram showing the transverse charge density of a simple model where
the nucleon is polarized along the x-axis. Lighter is greater density.
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Appendix A

Neutron Arm Analysis

?? include information on interactions in thesis

The experiment that the neutron arm was developed for was E02-013, a mea-

surement of the electric form factor of the neutron via 3−→He(e, e′n). The position,

active area, and sheilding were developed to match the electron spectrometer at the

highest measured value of Q2 and to provide the highest possible neutron detection

efficiency at this value [21].

A.1 A Neutron Arm Analysis

?? define the NA

The neutron detector, known as Big Hand, is a large detector made up of 244

neutron bars totaling 976 ADC and TDC channels and an additional 192 single

sided veto bars. In addition, there are four ’marker’ counters which were place

between the neutron detectors and the veto detectors and were used for calibration.

Important to neutron identification is the vertical position, the horizontal position,

the time of flight, and charge of the event within the neutron detector. The neutron

detector was highly segmented to aid in vertical resolution (known as x within the

neutron arm). The horizontal resolution and the time of flight resolution of the

neutron arm was determined by a time calibration of all the bars, with the ’marker’
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counters playing a crucial role in the horizontal calibration.

A.2 Simulations

?? Introduce simulations, why are they needed?

Detailed simulations were undertaken of the neutron arm using Geant 4. This

simulation used Maid data and an interaction simulation for Big Bite to create

the matching events and included the target, neutron arm, and all surrounding

material. The goals of this simulation was to understand the inelastic contribution

in the invariant mass and time spectrums, to come up with a theoretical value

for the proton to neutron conversion between the target and neutron bars, and to

determine the result of the threshold change for the on this conversion for some of

the data taken at Q2 = 2.5 GeV2. Additionally, it can provide neutron detection

efficiency, hadron detection efficiency, and veto efficiency numbers which are needed

to understand the neutron arm.

?? what was included in the simulation

The simulation needed to include all the material in between the target and the

neutron bars in order to properly simulate the events within the neutron detector.

This included the iron box, the ends of the target cell, the material for the target

ladder, all holes in the target inclosure. A document prepared by Aidan shows all

these components of the target system, which were included []. On the neutron arm

side, all bars, PMT light guides, shielding, cassettes, as well as detector response

were included. Details of the geometry were documented by Tim Ngo []. The Big
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Bite acceptance was modelled using Big Bite geometry and the preshower/shower

threshold and resolution, and is in good agreement with observed data.

?? what models/assumptions were included in the simulation

In this simulation, elastic and quasi-elastic scattering are simulated in the

impulse approximation, where 3He is modeled using momentum distributions [?].

Parameterizations of the ncuelon form factors [?] are used to calculate elastic corss

sections and asymmetries. Pion production is a dominant inelastic contriubtion for

these kinematics, and cross sections and asymmetiries are provided by the MAID

parameterization []. External radiative effects caused by objects in the vicinity like

the beamline are included and internal radiative effects are modeled 1 [?].

The neutron arm resopnse was simulated using the events above on an event-

by-event basis with a GEANT4 simulation. The best matching hadronic model

package, XXXX, was selected. Additional software was developd to reproduce PMT

signals and electronics responses, and mimic the NA trigger. The simulated data

then had the virtual thresholds changed to match the real data, and the virtual data

was processed similarly to the real data [?].

A.3 Calibrations

?? Goals for the NA

Because of the segmentation within the Neutron Arm, the bars all must be

calibrated relative to each other in order to achieve the desired resolution needed to

1Mo and Tsai using teh peaking apprxomation.
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identify the good quasi-elastic hits within the neutron detector. For the measure-

ment at Q2 = 3.5GeV2 the required parallel momentum resolution was ???? which

corresponds to a time of flight resolution of ???? at those settings [21].

?? Introduction to calibration

Before the experiment began, during the commissioning period, the descrimi-

nators were set, the cables were emplaced, and the high voltage (HV) for the detector

bars was adjusted. During the experiment, the threshold for the NA was adjusted,

and the HV was adjusted many times. This created a number of different ’peri-

ods’ with different NA properties. The remainder of this section will be on the

calibrations needed to get the desired NA properties.

?? Goal of software calibration

The desired situation is that the neutron arm provides as good of time of flight

resolution as possible. As explained, this is necessary for quasi-elastic event selection

and neutron identification. Important in the time calibration of the neutron arm is

not only acheiving a good time resolution, but also acheiving an accurate and precise

horizontal position. The HV tune gives ADC signals that are the same within 10%

for cosmic type events. Differences in electronics and cables cause for each PMT

signal read out of the TDC to have some particular delay. While events from cosmic

sources are all similar, the differences in events during the experiment was greater.

Because of this, events taken during running conditions created dissimilar signals

within the ADC and caused the discriminator to trigger off a different point in the

amplitude spectrum.

?? Types of calibrations
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These considerations imply that two important calibrations need to be done.

A time offset calibration of the time for each PMT, and an amplitude correction to

the mean time and horizontal position of the event with in the bar.

A.3.1 HV Tune

?? Goals for the HV tune

The HV for the counters was set with the goal of having each neutron counter

demonstrate similar behavior during operation. This behavior should be well be-

haved for hadronic events, and for other events which are expected within the de-

tector during normal operation. This allows the analysis to treat all bars similarly

when calculating time of flight, identifying charged particles, and calculating per-

pendicular missing momentum (due to the calculated hit position within the neutron

arm), and the other quantities needed for quasi-elastic neutron identification.

?? Idea

The HV tune was done prior to the start of the experiment using cosmic par-

ticles. All cosmic rays have similar signatures within the detector, but their signals

are not as uniform as the protons and neutrons from the target were. Because

of high voltage (HV) drift and the difficulties in calibrating all photo-multiplier

tubes (PMTs), a threshold of 10% different from the average was used to determine

whether the PMT’s HV needed adjustment. During the experiment cosmics contin-

ued to be used to adjust the HV when beam was not available, if a PMT drifted

outside of this 10% threshold.
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?? HV script

A high voltage script was written in Java for online monitoring of the high

voltage and for changing the high voltage. This allowed different files to be saved

with high voltage settings, and for a high voltage to be turned on and off as needed,

either for individual bars or for sets of bars. Additionally, it allowd the resetting of

HV during a trip or other event. Each colored set of bars in figure 4.19 used the

same high voltage, in addition to using the same amplifier and discriminator. This

high voltage script was written by Eugene Chudakov.

???? (Put in table of HV changes?) ????

?? Process

A script was created to realize the HV calibration2. The resulting files could

be fed into the previously described HV script to change the HV. Diagnostic files

showing the fitted spectrums for the PMTs were produced, spectrums were divided

based on detector type, plane, and side.

?? Tune script

In this HV calibration script, long cosmic events were selected. These were

events which were detected in a bar and its vertical neighbors. The amplitudes were

tuned towards a common goal (G), which was determined based on the height of the

bars relative to eachother. This was 1000 for the UVA and GLA bars, and 1500 for

the CMU bars. Two different techniques were used to set the gain, the first 3 using

simply the amplitude of the bars. This peak was directly compared to the goal to

2Written by Igor Rachek, and modified by Jon Miller, Rob Feuerbach, and Pavel.
3Developed by Igor Rachek.
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determine the gain to apply.

A second technique 4 used logorithms. This used two items of information

determined from amplitude, a mean AM = ln AL+ln AR

2
and a position AD = ln AR −

ln AL. Here the subscript L stands for left, R stands for right, A is the amplitude

while T is the time. In this case the gain was determined by fitting AD and AM ,

and was given by e− ln G+AM±0.5AD where +(−) was for the right(left) gain.

The desired resolution is 300 ps (?) this is due to needing to determine the

hits in the neutron arm down to a momentum of 140 MeV for the identification of

quasi-elastics in kinematic 3.

Another difficulty with using particles from cosmic events is that the path they

travel through the neutron arm is less straight than events caused by interactions

in the target. This causes a differently shaped peak which is more broad than the

hadron events.

A.3.2 Time Offsets

?? Steps to final Time calibration

To call two times aligned, the spectrums of two (often neighboring) bars would

be shifted to coincide after the relevant corrections were applied. To do the offset

calibration of the PMTs, three steps were used. First, the left times and right times

were roughly aligned together. This was done so that the left and right times could

be associated properly together to form a mean time. Not only the mean time of

the bar could be calculated, but also the time difference of the bar (left time minus

4Developd by Pavel
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right time) could be calculated, and was used to give the horizontal position. In the

second phase of the calibration, the peaks for the mean time and the time difference

were aligned for neighboring bars. This allowed for the creation of clusters, which

are hits in neighboring bars with similar mean times and are identified as coming

from the same event. In the final calibration, these clusters were used to improve

the calibration using charged events (in 3He). This only was used to do the final

calibration of the first plane, later planes had their mean and horizontal position

calibration improved using events which travel deep into the neutron detector. The

first plane also had it’s horizontal position calibrated using the known information

of marker bars.

???? End Time offset General summary ????

?? Goals as part of this process

The required time resolution of the neutron arm must be less than 500 ps for

the most restrictive of kinematic points (kinematic 3). This resolution depends on

the Big Bite scintillator also, the dependence on Big Bite was due to using it as the

stop time for the TDCs and thus as the reference time of the neutron arm event.

The combined resolution of the entire neutron detector needs to be less than 500 ps,

so the peaks of events within bars need to be given the correct mean time for their

vertical position and depth.

?? limitations of resolution

The resolution of the time of an event in the neutron arm (NA) is a convolution

of the alignment of the bars and the internal resolution of the bars, which provides

a minimum resolution for the experiment (using individual PMT amplitudes can
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be used to improve the internal resolution of the bars). Alignment means that the

spectrum in a bar, after corrections for position within the NA and after selecting

hadronic events, will be similair to others bars after such corrections. For example,

if a particle passes through two neighboring bars, they are aligned if the time that

the particle passed through the bar is the same when corrected for the distance

between the two bars that the particle traveled. The time of an event in a neutron

bar or counter is just the mean time as determined from the PMTs.

The PMTs in each neutron bar determine two main quantities. These are

the mean time of the hit tmean and the horizontal position of the hit ypos. The

horizontal position of the hit is determined by the difference in time, tdiff , between

the measured signals in the two PMTs for a hit. These two quantities, only corrected

for offsets, are

tmean = A((tl,raw − tl,offset) + (tr,raw − tr,offset)) , (A.1)

tdiff = B((tl,raw − tl,offset)− (tr,raw − tr,offset)) . (A.2)

In these relationships tl,raw is the left raw time (from the TDC) and tl,offset is the

software offset applied to the left TDC value. Here A and B are constants that are

about 1
2

and defined to be so in all calculations.

The best understood particles that are detected from the target are protons

(from H2), although muons, once detected, will not deviate noticeably while traveling

through the detector. Initially the calibration of the neutron detector was kept

entirely internal to the neutron detector. In the final calibration the front plane was

calibrated relative to Big Bite using quasi-elastic protons (from 3He), with the later
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planes calibrated relative to the first plane (N1).

A.3.3 Initial Calibration

During the course of the experiment the high voltage was changed many times.

Although this was the case, high voltage changes did not change values of the

amplitude by much more than 10% and so rough values for the mean time and time

difference for a bar will be independent of the high voltage setting. Because of this,

the initial calibration was done once, with later calibrations fine tuning the initial

calibration of neighboring PMTs on the same side for each HV setting calibrated.

The first improvement in calibration was aacheived by comparing two bars in

neighboring planes and subtracting their mean times[30]. This created a peak for

events when there is a hit in both planes at that vertical (x) position. This peak

was then adjusted to give the proper time of flight for near c particles and so all

later planes were calibrated relative to the first plane (N1). The horizontal position

calibration was realized by using the time difference in neighboring bars. This was

done similarly to the mean time calibration.

A final difficulty of this technique is that these events might not travel through

the entire neutron bar, but the shower from the cosmic might start or end within the

bar. This is different then during running conditions, because the converter layer

in front of each neutron scintillator bar results in most detected hadrons beginning

interaction directly in front of the scintillator paddle where initial detection occurs.

While this improvement provided the necessary accuracy and resolution to
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Figure A.1: Calibration of second plane to first plane using Rob’s script.

Figure A.2: Horizontal calibration of second plane to first plane using Rob’s script.
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Figure A.3: Horizontal calibration of the first plane using Rob’s script.

Figure A.4: Vertical calibration of the first plane using Rob’s script.
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arrive at a preliminary result for the Q2 =1.5 GeV2 kinematic, it was not robust

enough to provide final results. The next improvement to the calibration was done

by using a better selection of events. These better events were proton and muon

events and selected by selecting long events that pass through the neutron arm,

where a particle lost little of its momentum prior to being observed in the NA.

Because of the better identification if protons and muons, the peak shape

will be more similiar for individual bars, and the calibration will be better. This

improved internal calibration calibrated the later planes relative to the first, by

shifting tcentral to 0:

tcentral = t1st − tNth − t1st→Nth . (A.3)

Here t1st refers to the mean time of the first plane the particle passed through, and

tNth refers to the mean time of the nth plane the particle passed through (at the

same x as the first hit). Subtracted from this difference is the time for the particle

to travel between the first and nth planes (t1st→Nth). The time between planes

was calculated using the distance between the planes, and cn to approximate the

speed of a relativistic particle (since the particle is unknown). These well behaved

events where also used to calibrate the horizontal position of the hit within the

Neutron Arm, aligning all later planes to the first plane. This completes the internal

calibration.

The final improvements to the neutron arm calibration were to acheive an

accurate horizontal (y) position and to determine the overall offsets for the vertical

position (x) using particles. The best understood particles within the neutron arm
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Figure A.5: Calibration tof plane 1 bar 20. This shows the time of flight peak for
quasi-elastic protons between the BigBite scintillators and the front plane of the
neutron arm.
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Figure A.6: Calibration lr plane 1 bar 20. This histogram shows the coincidence
peak in the horizontal bars time, with coincidence with the marker counters.
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(NA) are elastic protons from hydrogen. These elastic protons form well defined

peaks in the mean time spectrum of bars in the first plane (N1). After corrections

(detailed in equation 5.9) based on the position of the hit within the neutron arm

and the time of the event within Big Bite, these spectra were aligned:

Tc,TOF = t1st + tL1A − te − th − tpeak + trf . (A.4)

Here tc,TOF refers to the centered time of flight, t1st refers to the mean time as

measured in plane 1 (N1), tL1A refers to the level one accept time, te refers to

the time for the electron, th is the expected time for the hadron to travel to the

neutron bar, tpeak is the time for the hadron to travel to the neutron bar, and trf

is a correction to the known time of interaction due to RF information about the

beam.

The neutron arm was placed to measure the maximum number of quasi-elastic

events as possible in coincidence with Big Bite, not to measure as many elastics as

possible. Because of this elastic events did not cover the entire face of the neutron

arm, but only a portion of it. To calibrate the entire detector, quasi-elastic events

were used rather then the cleaner elastic sample. These still give a tight time of

flight peak and have events which pass through the detector.

Four marker counters were installed vertically within the neutron detector.

These counters had poor resolution and were not meant to be used to determine

the vertical position of a hit within the neutron bar. These counters were used

to perform an absolute calibration of the horizontal position for all bars in the

first plane. This was done by using the coincidence between a hit in the marker
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Figure A.7: Calibration diff plane 2 bar 12. This is the difference between neigh-
boring bars in different planes. In particular, this is the difference between plane 1
bar 12 and plane 2 bar 12.

counters and a hit in the neutron arm for a given event. For a single marker PMT

the number of counts is small. By using the geometry information for the marker

counters[59], the coincident peaks for all four marker counters can be combined

(ycenter = ydiff − ymarker), providing the necessary statistics. This ycenter is the

position within the neutron arm for hits where there is a nearby well-timed marker

bar hit. Here ycenter is the peak location, ydiff is the original position along the bar,

and ymarker is the geometric position of the marker counter.

The results of the calibration is summarized in Figure A.9 using a single plot
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Figure A.8: Calibration lr plane 2 bar 12. This is the horizontal position (trans-
formed to time) of the hits in plane 1 bar 12 and plane 2 bar 12 for events with well
timed hits within the two bars.
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Figure A.9: Calibration summary plot for run 3975 after pass 3 calibration. In this
plot, X is the result, + is the before calibration. On the x axis, 0 is for plane 1 and
1-6 show the differences between planes 1 and planes 2-7). At 7 on the x axis is the
horizontal absolute position calibration for plane 1.

showing the main points of calibration: the mean times of planes N2 through N7, the

time of flight for N1, and the ycenter position for the absolute horizontal calibration.

In this plot, some of the bars did not have high enough statistics to form a proper

peak and are shown as poorly calibrated. These bars have greater uncertainty, and

so for these the respective histograms are checked by eye.
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A.3.4 Amplitude Correction

The amplitude spectrum was discriminated to provide a clear time for the

TDC. However, since there was a threshold for this discrimination, the time mea-

sured by the TDC is depended on the shape and size of the amplitude. The mean

time and horizontal position for an event were corrected for this amplitude depe-

dence. This relationship for the initial amplitude calibration was

tcorr = ti − Cpar(Aadc)
exp + Cpar(Aref )

exp . (A.5)

The exp is constant and set to −1 for all detectors. In the initial calibration the

reference paramters, Aref , were defined to be 0. The values for Cpar were determined

individually for each PMT.

This initial calibration was improved using a model where the amplitude cor-

rection was a function of the hit location (∆Y ) within the bar. In this model, the

amplitude dependent behavior should be the same for both sides of the bar. Ad-

ditionally, because the threshold was set to be the same for all bars, this behavior

should also be independent of which particular bar was hit. The correction can be

approximated as (with a A and δY dependence as information from the PMT):

(C1 + D1∆Y )2

A
≈ C2 + D2∆Y

A
. (A.6)

The desire is to determine the constants which make a narrow peak in the

time of flight between the Neutron Arm and Big-Bite. To do this minuit[] was used

to minimize the following:

Tdiff,rf +
C2

2

(
1

AL

+
1

AR

)
+

D2

2

(
Y + YL + YL+YR

2

AL

+
Y + YR + YL+YR

2

AR

)
(A.7)
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here Y is the horizontal hit location in the neutron bar, YR is the position of right

PMT, and YL is the position of the left PMT. Y is obviously dependent on both C

and D but this is ignored as higher order.

While there were many quasi-elastic events where the first plane of interaction

was in the first plane, and some where it was in the second plane, the later planes

were less often the plane of first interaction. By using quasi-elastic events the first

two planes were corrected for amplitude dependence. These bars were compared to

bars in later planes to fit their amplitude dependence. Tod do this, the following

formula was used, where TN+2 is the time of flight for a hadron in the desired plane,

TN+2 = 2TN+1 − TN . (A.8)

A.3.5 Energy Calibration

A.3.6 Veto Calibration

The veto was calibrated relative to the neutron arm first plane (N1). This

calibration was acheived by using events with coincident hits in two veto bars with

similar x position in both veto planes. For example, a left(right) veto bar was

calibrated relative to a left(right) in the other plane. Doing this step by step the

entire veto was internally calibrated, using the fact that the two veto planes were

shifted relative to each other. See figure 4.19 showing that each veto bar covers

vertical space with two bars on the otehr veto plane. These planes were also offset

horizontally relative to each other, the coincident region allowed left times and right

times to be aligned. This provided an overall, intra-veto calibration and alignment.
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A central veto detector provided an overall offset compared to the neutron plane one

(N1) using coincident events between it and a neutron bar, completing the initial

veto offset calibration.

This initial calibration was improved by looking at long events and aligning

the resultant peaks in the veto to those in the neutron detectors at corresponding

x position. The horizontal position within the bar can be corrected for, but this

would provide resolution beyond that needed due to the interactions before the veto

in the shielding.

These long tracks have hits in many planes within the neutron arm and almost

always have hits in the veto as well. These charged tracks were used to align the

veto peak with the observed peak in plane one (N1). The relationship between veto

amplitude and time was used to correct the time in the veto for this alignment. The

relationship in equation A.3 was used, except the two veto planes were substituted

in for the Nth neutron plane.

A.4 Neutron Software

A.4.1 Cluster formation

The data is first pulled from raw coda files in the process of decoding and

analysis. The reference hit, which was read into a specific channel of the F1 TDC,

must exist for the event to be decoded. The decoding process loops through all

TDC and ADC channels, and creates independent arrays of hits for raw analysis.

These include the corrections to change the PMT values from channels into time,
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Figure A.10: Calibration veto tof left 1 bar 16
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Figure A.11: Calibration of one side of the veto detector.
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but does not allow the determination of mean time or horizontal position. An offset

is applied to the PMT time (toff ) to correct the time relative to the reference time

toff = tref ± wrap ∗ res . (A.9)

In this formula +(−) is selected when the difference between time and reference time

is greater(less) than +(−) half the wrap. Here wrap is the number of channels in

the F1 TDC, when this number is reached the TDC starts counting over again. The

trigger provides a delayed signal to serve as this reference time (tref ). Because of this

all neutron arm times are given compared to the trigger time (see L1A discussion

in section 4.7). res is the resolution which was 0.118 ns for the F1 TDC. The F1

TDC was constantly acquiring hits, keeping track of the information in each channel

relative to the reference time which was determined by the trigger time. The trigger

also determined when the TDC was read, but the reference time was required to

reconstruct the channels read. The total number of channels in the F1 TDC (the

wrap) is 135558. The PMT time also included the time offsets, read in from the

database. All indices are separate at this stage, even for ADC and TDC information

for the same PMT.

In the coarse processing, the hits are sorted by bar number and value. The

hits are looped through and checked that the PMT time is within a limited range

and that TDC hits exist on both sides as well as an amplitude. Hits that pass these

checks are considered ’complete’. At this stage the mean time is corrected for the

amplitude correction. This is also where the mean time and the horizontal position
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of a hit is calculated.

tdiff =
(tr − tl)

2

tmean =
(tr + tl)

2

yt = tdiffcn

GetAmpl =
Al

Ar

Abar =
√

Al ∗ Ar

(A.10)

Here tmean is the mean time of the hit (and tl and tr are corrected left and right

times), while tdiff is the difference between times of hits in the left and right PMTs.

This difference allows the calculation of the horizontal position (y = yt + yoffset) of

the hit. cn is just the propagation speed of the signal within the bar. Also, Al and

Ar are the left and right amplitudes, respectively, while Abar gives the ’energy’ for

the full bar.

The last part of the neutron arm decoding and processing, the fine processing

is done after all coarse processing. In this process the horizontal position of the hit

is checked to see if it exists within the neutron arm. After this check, the clusters

are created. This is done by sorting the hits and then looping through hits with

each hit placed in only a single cluster. In this loop, the first hit is put into a cluster,

the AddNeigbors method is called (recursively) which collects (and removes from

further consideration) neighboring (in time and position) hits. A hit is classified as

a neighbor if it is one bar away and within 10 ns. These clusters are then sorted by

energy. A track is created from the cluster (using the initial hit information) back

to the target, and this is used further in analysis. The path length and momentum
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direction variables (but momentum is not constructed at this stage) are also created.

A.5 Veto Analysis

As previously described (section 4.6.2), the veto is made up of two planes of

detectors with 48 detectors per plane. These detectors are segmented into left and

right veto counters, providing a total of 192 seperate PMTs which form the veto

detector. The two veto planes were also shifted vertically and horizontally relative to

eachother [59]. This vertical and horizontal segmentation improves the localization

of veto detector hits for association with neutron detector hits. Because of the

shift between the two planes, the edges of the neutron detector are only covered

by a single plane of veto, which reduced the detection efficiency of the veto and

hence provide different charge identification efficiency in these edges compared to

the central region of the neutron arm.

The horizontal segmentation of the veto detectors allows for the identification

of charged hits in the neutron detectors based upon horizontal position of the cluster.

If the hadron hit is far to one side of the detector, than a charged identification

in the veto on the other side of the detector would not identify a charged hadron.

Additionally, only veto bars within a vertical region are considered as hits to identify

a charged hadron (see figure A.12).

The veto dead-time is different for the individual veto counters. This can be

determined by measuring the least amount of time between sequential hits.

Veto detection efficiency depends ont he horizontal, time, and amplitude cuts
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Figure A.12: Plot of X position in the veto subtracted by the X position in the
neutron arm versus ∆t. These are for quasi-elastic hits in the neutron arm. Plotted
on the x axis is the time difference between the neutron arm and the veto arm. This
identifies a region of 0.3-0.5 m to consider in the veto detector to identify charge
hits.
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Figure A.13: Plotted is the time difference between the veto hit and the neutron arm
hit for a single veto plane versus the amplitude in the veto bar. This figure shows all
bars in the plane. The gate is seen to start arround 40 ns before the coincidence hit
in the neutron arm. The deadtime of the various veto detectors is between 40 and
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above 200. For a region of ±10 ns around 0, all events are identified as charged.
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Figure A.14: Plot showing the rate both with and without a 200 channel ADC cut
for the veto detector L1-14. The ADC cut rate is in blue. The window between 300
and 350 ns was used to calculate the rate.

used to identify charged particles.
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Identifier Date Comment Change

new crate19 May 6 Large, same as 19
new crate23 May 3 hatsv22:2002 S0

new crate23 May 3 Same
new crate22 May 3 Large
new crate21 May 3 Large
new crate20 May 3 hatsv22:2002 S0

new crate19 Apr 29 PS1:2004 S5 + S9 and PS1:2004 S9 + S11
new crate18 Apr 29 4335-4338 PS1:2004 S5 + S9 + S11 + PS1:2004 S9
new crate17 Apr 29 No Change
new crate16 Apr 23 At 4151 (see HALOG) PS1:2002 S9 and PS1:2004 S9
new crate15 Apr 23 Small?
new crate14 Apr 19 At 4068 Large
new crate13 Apr 19 PS1:2002 S9
new crate12 Apr 18 At 4050? (See Halog) Small
new crate11 Apr 17 At 4016 (See Halog) Small
new crate10 Apr 17 Large
new crate9 Apr 17 Only PS1:2004 S11 + S15 + S9 +S10

045.set Apr 12 Only PS1:2002 S14 and PS1:2004 S11 + S15
new crate8 Apr 6 At 3714? (See Halog) Only PS1:2002 S14 + S11
new crate7 Apr 4 Only PS1:2002 S14
new crate6 Apr 4 Large

new crate6.set Apr 4 At 3665 roughly Same
new crate5.set Apr 4 Large

new crate5 Apr 4 Large
new crate4 Apr 4

new crate4.set Apr 4 Large
new crate3.set Apr 3 Large

044 new.set Apr 3 At 2621 roughly Large
006 new.set Apr 3 Large

006 crate3.set Apr 3 Large
006.set Apr 3 Large

044 Apr 1 At 3570 (see Halog) Same
043 Mar 24 Somewhere in 3320s/3330s Large
042 Mar 23 Large
041 Mar 23 I think something like 3290/3270 Large
040 Mar 22 I think 3268 Large
039 Mar 22 Only PS1:2002 S14

03-04-2006 Mar 15 3016, I think Large
038 Mar 1 2477 (See Halog) Large
037 Feb 27 Commissioning
036 Feb 27 Commissioning
035 Feb 24 Commissioning

Table A.1: Table of the list of high voltage changes (HV) for the neutron arm in the
E02-013 experiment. 189



Number of Events A only A with > 1 A B with > 1 A

0 35.5% 92.7% 08.5%
At least 1 59.7% 06.8% 84.0%
At least 2 04.4% 00.4% 06.8%

Table A.2: A table of the correlation beetween hits in Veto plane 1 and Veto plane
2. The is for all events within a single run in kinematic 2A (3190).
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Appendix B

Error Analysis

In the measurement of the electric form factor of the neutron at Q2 = 3.5 GeV2

statistical uncertainty is the main cmponent of the error. The double polarization

method insures small systematic uncertainties (as described in section ??). Due to

teh small asymmetry, large statistics are required. The primary cause of the small

asymmetry is the small size of Gn
E.

The error analysis for E02-013 entails propagation of correlated and uncorre-

lated systematic and statistical uncertainties for the large number of equations used

to calculate Gn
E from the measured quantites. Equation 5.43 gives the factors that

contribute to Gn
E. The uncertainty in a few of these factors give the most important

contributions to the final precision of the Gn
E measurement.

For the propagation of the uncertainties, standard error techniques are used

[79]. Assuming the errors are uncorrelated the expression to determine the uncer-

tainty in a function q which depends on the components x, ..., z is

δq =

√(
∂q

∂x
δx

)2

+ ... +

(
∂q

∂z
δz

)2

. (B.1)

When q is proportional to the product or quotient of the components,

δq

q
=

√(
δx

x

)2

+ ... +

(
δz

z

)2

. (B.2)

The correlated systematic errors also contribute to the final uncertainty. As an

example, there were not independent measurements of polarization for every run, so
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the systematic error was defined to be the same fractional error as the polarization

after the summation, rather than be included in the summation error calculation

(equation 5.47). Explicit discussion of the error analysis using formula B.1 follows.

For statistical error, assuming a poisson distribution, the formula

δN

N
=

1√
N

(B.3)

is used, where N is the pertinant statistics. For small asymmetries and large statis-

tics method of determination of the uncertainty is valid [68]

δA ≈ 1√
N
− (N+ −N−)2

N
5
2

≈ 1√
N

. (B.4)

The formula B.4 is used to determine the statistical error in emperically measured

asymmetries like the raw accidental background asymmetry and raw neutron asym-

metry. The statistical uncertainty for quasi-elastic event counts, background counts,

and other counts is determined using equation B.3.

The following dilution factors, polarizations, and asymmetry corrections are

used in the calculation of the physical asymmetry (equation ??): Dback, DN2 , Aback,

Dp
N2

, Asum, Dp, Dp
n, Pn, Pbeam, P3He (for description see below). Some of these

depend on the same sources of uncertainty. Common sources of uncertainty in these

factors and corrections are a systematic uncertainty due to the charge determination

in the accidental background technique (see section 5.5.1) and statistical uncertain-

ties due to the raw neutral counts and the raw background counts. While the

systematic uncertainty due to the charged to uncharged background ratio is a com-

ponent of almost all dilutions and corrections, the small number of raw background

makes it of minimal importance. This is observed in Figure B where the change
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Background Ratio (ch/un)
0.2 0.4 0.6

ph
ys

A

-0.1963

-0.1962

-0.1961

-0.1960

 / ndf 2χ  1.139e-08 / 6

p0        1.611e-09± -0.1963 

p1        3.817e-09± 0.0004435 

 / ndf 2χ  1.139e-08 / 6

p0        1.611e-09± -0.1963 

p1        3.817e-09± 0.0004435 

Figure B.1: The physical asymmetry as the accidental background ratio of charged
to uncharged used in the calculation is changed. This figure shows that the depen-
dence on this ratio is very small, with an estimated fractional uncertainty on the
accidental background charge ratio of 20%. This esimated fractional uncertainty
corresponds to a fractional uncertainty of less than .2%. Plotted is a linear fit,
showing the small dependence. This is for an analysis of Kinematic 2(b).

of neutron physical asymmetry as a function of the charge ratio of the background

is plotted for kinematic 2. This ratio will be treated as a constant for the rest of

this error analysis. The value for this ratio and accidental background counts is

presented in Table B.3.

As described in section 4.4.2 the polarization changes run to run, and a modi-

fied asymmetry is calculated on a run per run basis, and then used in a weighted sum

for the entire kinematic (as derived in Appendix C). The only components which

change significantly on a per run basis are the target polarization and neutron purity

factor. The neutron purity factor and the rest of the dilutions are corrected for after
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the summation (see equation 5.48)

Asum =

∑
i

Araw,i

P3He,i
NiP

2
3He,i∑

i NiP 2
3He,i

. (B.5)

The factor Aback can be found by using equation

Aback =
N+

back −N−
back

N 〈P3He〉
= Aback,raw

Nneut,back

N 〈P3He〉
. (B.6)

The accidental background asymmetry correction contributes to the statisical uncer-

tainty through the counts in the raw accidental background and quasi-elastic samples

and through the accidental background asymmetry. As described in section 5.5.1,

the neutral accidental background is related to the raw accidental background by

Nneut,back = fbackNback. Additionally, it contributes to the systematic uncertainty

through the target polarization.

The polarization of the target and nucleus and beam are presented in sections

4.3 and 4.4.2 and in [32]. The target polarization (P3He) uncertainty is correlated

between kinematics 3, 4, and 2(b). As mentioned in 5.7.1, the values for the po-

larizations of the protons and neutron within the helium nucleus depend on the

theoretical model used to calculate the nuclear corrections. Changes in these values

will be correlated. The value used for the beam polarization (Pbeam) and systematic

uncertainty is arrived at from inspecting Table 4.2.

The dilution caused by the accidental background (equation 5.38) is written

as

Dback = 1− Nneut,back

N
. (B.7)

The sources statistical uncertainty are the counts of the raw accidental background
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and quasi-elastic samples, similar to the accidental background asymmetry correc-

tion.

The dilution from the nitrogen in the neutron sample (equation 5.40 gives the

method to properly calculate this) can be written as

DN2 = 1− NN2

N −Nneut,back

. (B.8)

with a dependence on the uncertainties in the constants shown in Table B.1. The

dominant sources of systematic uncertainty in this factor are from the N2 and N2

in the 3He target densities. The dominant source of statistical uncertainty is due

to the nitrogen quasi-elastic events and background. The uncertainties for this

dilution were propagated using equation B.1. The results for this error analysis

are also presented in Table ??. This uncertainty is treated as independent from the

other uncertainties, although there is a small contribution from the 3He quasi-elastic

sample.

The dilution of the protons in the neutron sample (equation 5.32) can be

expressed as

Dn = 1− Nproton

N −Nneut,back −NN2

. (B.9)

Here the sources of uncertainty are statistical from the background, charged quasi-

elastic, neutral quasi-elastic in H2, N2 and 3He, and systematic from the technique

and model. It is assumed that the statistical uncertainty from Minuit and the

systematic uncertainty from the technique dominates all other sources of error. By

considering other analyses, a fractional systematic error of 5% was arrived at. The

cited statistical uncertainty is that given by Minuit fitting [?].
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Finally, the dilution caused by other final state interactions within the neutron

sample can be expressed as

DFSI = 1− NFSI

N −Nneut,back −NN2 −Nproton

. (B.10)

Because the dilution due to final state interactions is undetermined but guided

by theory [?][75], an estimation is determined for the systematic uncertainty that

accounts for the likely values of this dilution.

The proton asymmetry has similar dilutions as the neutral asymmetry, with a

couple of important differences. This formula 5.54 is

Aproton =
1−Dn

DbackDN2

PbeamPprotAp,phys . (B.11)

The polarization of protons within the nucleus, Pprot is provided by theory []. The

proton physical asymmetry is calculated from the proton form factor ratio as de-

scribed in equation 5.49:

Ap,phys =
Bλproton + C

λ2
proton + D

. (B.12)

Here the uncertainty in λproton is determined from the parameterization [48]. The

calculation and uncertainties for the quantities used in the determination of Aproton

are in Table B.2.

A reminder that the expression for the physical asymmetry is (equation 5.43)

Aphys =
Asum − Aback − Aproton

PnPbeamDbackDN2DpDfsi

. (B.13)

By applying equation B.1 to equation 5.43, the statistical and systematic uncer-

tainty of the physical asymmetry is calculated. These results, in addition to the
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DN2 Dc
N2

Q2 = 2.5 GeV2 3.5 GeV2 1.5 GeV2 2.5 GeV2 3.5 GeV2 1.5 GeV2

ρ3He 0.164 0.164 0.164 0.164 0.164 0.164

ρN2 4.4 3.6 9.1 4.4 3.6 9.1

Q3He 184399 1441010 − 184399 1441010 −

QN2 14020 37920 − 14020 37920 −

N3He 2089.1 2686.2 − 19076.7 30331 −

NN2 220.5 28.5 − 1123.2 263.5 −

DN2 0.9493 0.9818 − 0.9714 0.9851 −

Statistical 0.0036 0.0035 − 0.0009 0.0009 −

Systematic 0.0047 0.0015 − 0.0027 0.0013 −

Table B.1: A table showing the measurements and error calculations for the nitrogen
dilution of the uncharged sample, for all three kinematics. N3He is the number of
background corrected counts for the selected 3He runs, ρN2 is the nitrogen density,
Q3He is the total charge of the selected 3He runs. This calculation is as described
in section 5.5.2.

components contribution to the uncertainties, are presented in Table ?? for kine-

matic 2a, Table B.5 for kinematic 2b, Table B.6 for kinematic 3, and Table B.7 for

kinematic 4.

The uncertainty in the ratio of neutron form factors, or λ, is determined using

equation B.1 and 5.55. This is a straight forward calculation [31], but the value for

λ is only determined for the central value of Q2. To determine the value for the

electric form factor of the neutron, equations B.2 and 5.58 were used. Results are
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parameter Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.5 GeV2

Gp
E 0.0330± 0.0051 0.018± 0.004 0.077± 0.007

Gp
M 0.1378± 0.0049 0.089± 0.004 0.262± 0.006

Ap,phys 0.177± 0.028 0.182± 0.030 0.0031

Pprot −0.028± 0.004 −0.028± 0.004 −0.028± 0.004

Pbeam 0.835± (0.03) 0.835± (0.03) 0.835± 0.03

DN2 0.949± 0.004± (0.004) 0.982± 0.004± (0.002) 0.946± 0.002

Dback 0.9792± 0.0003 0.9732± 0.0005 0.993

Dn 0.8± 0.023± (0.04) 0.865± 0.046± (0.043) 0.677± 0.025

Aproton −0.0009± 0.0002 −0.0006± 0.0001 −0.0005± 0.0002

Table B.2: A table of the errors for the calculation of Aproton. The calculation is
calculated according to equation 5.54. The uncertainty in Gp

M and Gp
E is deter-

mined using a parameterization [48] and the propagation of the error is according
to equation B.1.

displayed in Table B.4.
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parameter Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.5 GeV2

Hadron Ratio 0.325± 0.065 0.26± 0.04 0.33± 0.05

Hadons 2495 4201 2762

Neutral 1883.2 1092.3 911.5

Charged 611.8 3108.7 1850.5

Table B.3: A table for all three kinematics showing the measurements for the charged
and uncharged background and the uncertainty in the background ratio.

parameter Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 1.5 GeV2

GEn/GMn −0.232 −0.250 0.0031

Error ±0.0333± (0.031) ±0.047± (0.021) ±0.0004± 0.0004

GMn −0.0955± 0.0018 −0.0557± 0.0011 0.00356

GEn 0.0221 0.0139 0.01552

Error ±0.0032± (0.0030) ±0.0026± (0.0012) ±0.0058± 0.0030

Table B.4: A table of the errors for the calculation of Gn
E. Uncertainty in the ratio

of form factors was calculated from the physical asymmetry as expressed in section
5.6 and Table 5.9 and Table 5.8. The uncertainty in Gn

M is determined from a
parameterization [48] and propagation of the error is according to equation B.1.
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quantity value σstat contrib. Aphys σsyst contrib. Aphys

Ameas −0.0449 ±0.0055 0.024 − -

P3He 0.4362 − - ±0.02 0.018

Aback,raw 0.0279 ±0.0004 0.00004 − -

DFSI 0.95 − - ±0.01 0.002

Dn 0.80 ±0.023 0.006 ±0.04 0.010

Ap,phys 0.177 − - ±0.028 0.0003

Pbeam 0.835 − - ±0.03 0.007

Ntotal 33001 ±182 0.0001 − -

Nback 4201 ±65 0.0003 − -

Pn 0.86 − - ±0.02 0.005

Pprot −0.028 − - ±0.004 0.0003

DN2 0.949 ±0.0036 0.00074 ±0.0036 0.00074

Aphys −0.198 - ±0.024 - ±0.022

Table B.5: A table of the uncertainties that contribute to the physical asymmetry
(Aphys). The contributions are calculated and contribute to the physical asymmetry
precision as determined by equation ??. This table shows the errors for Q2 = 2.5
GeV2.
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quantity value σstat contrib. σsyst contrib.

Ameas −0.0356 ±0.0081 0.030 − -

P3He 0.477 − - ±0.02 0.011

Aback,raw 0.0225 ±0.0004 0.00004 − -

DFSI 0.95 − - ±0.01 0.001

Dn 0.865 ±0.046 0.006 ±0.043 0.006

Ap,phys 0.182 − - ±0.030 0.0002

Pbeam 0.835 − - ±0.03 0.005

Ntotal 15381 ±124 0.0001 − -

Nback 2762 ±53 0.0003 − -

Pn 0.86 − - ±0.02 0.003

Pprot −0.028 − - ±0.004 0.0002

DN2 0.982 ±0.0035 0.0004 ±0.0015 0.0002

Aphys −0.130 - ±0.031 - ±0.014

Table B.6: A table of the uncertainties that contribute to the physical asymmetry
(Aphys). The contributions are calculated and contribute to the physical asymmetry
precision as determined by equation ??. This table shows the errors for Q2 = 3.5
GeV2.

201



quantity value σstat contrib. σsyst contrib.

Ameas −0.05118 ±0.00677 0.02596 − -

P3He 0.49368 − - ±0.02 0.016078

Aback,raw 0.05411 ±0.00008 0.00108 − -

DFSI 0.95 − - ±0.05 0.01047

Dn 0.80 ±0.02332 0.00554 ±0.07287 0.01730

Ap,phys 0.17667 − - ±0.02755 0.00024

Pbeam 0.835 − - ±0.03 0.00720

Ntotal 21804 ±147.662 0.00014 − -

Nback 2495 ±49.95 0.00042 − -

Pn 0.86 − - ±0.02 0.00463

Pprot −0.028 − - ±0.004 0.00022

DN2 0.975 ±0.0015 0.00030 ±0.0023 0.00047

Aphys −0.19888 ±0.02655 - ±0.02722 -

Table B.7: A table of the uncertainties that contribute to the physical asymmetry
(Aphys). The contributions are calculated and contribute to the physical asymmetry
precision as determined by equation ??. This table shows the errors for kinematic
4.
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Appendix C

Calculations

C.1 Asymmetry Best Value

The formula to determine the best value of a set of gaussian measurements

is the one presented in undergraduate textbooks, and the method to determine the

best value of a distribution is also presented, but the formula for an asymmetry

is not. This method used is known as the maximum likelyhood method. For this

asymmetry, there are two poisson distributions of N+ and N−.

A poisson distribution is decribed by[79]

Pµ(ν) = e−µ µν

ν!
, (C.1)

where ν is the number of occurances and µ is the expected number of occurances.

The asymmetry is completely described by the number of positive counts with pos-

itive helicity and negative helicity, N i
+ and N i

− (i is the ith experiment). This gives

the likelyhood

L = Pµ+(N i
+)× Pµ−(N i

−)× · · · . (C.2)

The µ, or expected number of occurances, for some run is identified as

µ± =
(
N e

+ + N e
−
) 1± Ae

2
=

N e
+ + N e

− ± (N e
+ −N e

−)

2
= N e

± . (C.3)

Here the index e gives the expected value for that given run period, while i is the
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ith measured value. The expecetd value of counts for + and − give the best value

for the asymmetry.

There are many measurements (given by index i), all having their own best

value for the counts to give the best asymmetry. This allows us to have

µ±,i = κ±,i = κi
1± Ae

i

2
, (C.4)

where κ is the correct N to get the best asymmetry. Following the previous work

for the poisson distribution

∑ ∂lnL

∂A
= (−1 +

N±i

µ±i

)(±κiPi

2
) =

∑ Ni+Pi

1− APi

− Ni−Pi

1 + APi

= 0 . (C.5)

Using the standard expansion

(1± APi)
−1 = 1−±PiA , (C.6)

the relationship

∑
Pi(Ni+ −Ni−) = −

∑
P 2

i NiA (C.7)

is arrived at, which gives

A =
−∑

Pi(Ni+ −Ni−)∑
P 2

i Ni

. (C.8)

Putting it into a more recognizable form

A =
−∑

P 2
i Ni

Ai

Pi∑
P 2

i Ni

. (C.9)

Which leaves the gaussian definitions of sigma and measurements

Wi =
1

σ2
i

= P 2
i Ni . (C.10)
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