First Use of Novel Techniques for Polarized ³He Target

Aidan M Kelleher

The College of William & Mary

Outline

- Introduction to polarized ³He targets
- Magnetic Field
- Compass
- Hybrid Optically Pumped Cells
- Polarimetry Improvements

Introduction to Pol. ³He

- No free polarized neutron targets
- ³He acts as polarized neutron target
- Luminosity of 5x10³⁵
 neutrons/cm²/s

Spin-Exchange Optical Pumping

- Alkali metal pumped to excited state
- Decays to polarized state
- Spin-Exchanges with ³He (hyper-fine like)

Target Heart (of Glass)

Magnetic Field

- Previous Design:Open Helmholtz
- Experiment uses large open magnet
- Polarized Target requires uniform field

Magnetic Field

- Magnetic field in Iron Box
- Creates uniform field in region of interest
- No hysterisis
 effects at our low
 field

Compass

- Air-float, frictionless design
- Resolution < 2mrad

Hybrid Cells

- Spin-Exchange between Rb and 3He "slow"
- Spin-Exchange between Rb and K almost instant
- Spin-Exchange between K and 3He very efficient

A. B-A Baranga, et al. Phys. Rev. Lett. 80 2801 (1998)

Polarimetry

- Use a combination of NMR and EPR
 - Nuclear Magnetic Resonance
 - Relative Measurement
 - "Easy" Data to take
 - Sensitive to noise and density
 - Electron Paramagnetic Resonance
 - Absolute Measurement
 - Requires expert
 - Sensitive to temperature and density

Polarimetry Improvements

- Passive Noise Cancellation, using a simple coil
- Relative Density Measurements, using additional pickup coil
- EPR using K resonance
- Non-conducting tungsten collimators

Overall Performance

Performance

- Overall systematic errors small
- Dominated by constant in EPR measurement
- Cell "Edna" lasted almost 6 weeks

Source	Relative Error
κ_0	4.11%
EPR Measurement	1.32%
Flux and Density	1.00%
NMR Fit	pprox 0.6%
Other density	0.25%
Overall	4.47%

Results

- Uniform Magnetic Field in prescence of large open spectrometer
- Highly precise compass
- Faster polarization
- Higher polarization
- 25% increase in polarization = 56% increase in statistics

Thanks!

Thanks to:

- Todd Averett, Gordon Cates, Bogdan
 Wojtsekhowski
- Ameya Kolarkar, Jaideep Singh, Vladimir Nelyubin, Al Tobias
- Rest of E02-013 Collaboration

The G_E^n Compass

 Finite detector acceptances and small deviation of the target spins from being exactly transverse introduces a longitudinal contribution to the asymmetry.

> See here

 The knowledge of this angle is essential to calculate this contribution.

Magnetic Compass

- Conceived at Kentucky (Wolfgang Korsch); modified at JLab
- Air-floated, frictionless design
- Capable of absolute and relative measurements ...
- ... and continuous monitoring of the field direction.

Compass Results

- The entire region around the target was scanned.
- Results from only one horizontal plane are shown.
- A resolution of better than 2 mrad was achieved.

