Databases for G'%
Draft 0.2

Robert J. Feuerbach
Jefferson Lab

July 12, 2006

Abstract

To track the quality of and analyze the data, there is a need for at least two additional
collections of information. First is a “run-conditions” database, which tracks the state of
the experiment during data-taking (beam energy, detector angles, target polarization, half-
wave plate setting, etc) to be used to construct asymmetries from each run and combine
them to extract the physics asymmetry. The second is a “calibration” database, that contains
information needed to process the raw detector responses; this database contains information
such as detector geometries, calibration constants, optics parameters, and channel maps. We
propose to use the CLAS CalDB database-model and their tools to handle the “calibration”
database portion of the problem.

This document should grow to include a more complete list of the variables, and instructions
for how to access them from the databases.

1 General features

To understand and track the quality of the data, there is a need for at least two additional
collections of information. First is a “run-conditions” database, which tracks the state of the
experiment during data-taking (beam energy, detector angles, target polarization, half-wave
plate setting, etc). This database can be used to construct asymmetries from each run and
combine them to extract the physics asymmetry. Brandon Craver is working on this database,
borrowing from Jaideep Singh’s experience.

The second is a “calibration” database, that contains information needed to process the raw
detector responses; this database contains information such as detector geometries, calibration
constants, optics, and channel maps. The present method of Podd (the analyzer) of tracking
these changes through “date-stamped” directories is not satisfactory due to the frequent mid-
day changes of the cabling. Even if this approach was fixed via a finer-granularity to the files
or directories, it cannot separate fast from slowly changing quantities, forcing a duplication of
information throughout files in the directory structures. We have found this to be error-prone,
and wish to replace it with an approach that naturally provides these separations. We propose
to use the CLAS CalDB database-model and their tools.

Both databases are implemented using the ‘mySQL’ SQL (Standard Querying Language)
framework, and will be hosted on yerphi. jlab.org.

2 The Run Conditions database
2.1 CODA-file based information

Brandon Craver is working on creating the run-conditions database. The primary key in this
database is a timestamp for when the information was collected. The concept here is that for
each run, the conditions at the start and end of each coda file (eg: EPICS, trigger rates) would
be stored. Each special event type (eg: HV, EPICS, threshold) that we are keeping would
be in a separate table. The tables would be automatically generated according to the list of
stored variables; this keeps the approach general and limits the start-up overhead. If a new
column for a given table is needed, the table will be expanded to include that column with
default values filled in for the missing entries (a feature of mySQL). Nerses Gevorgyan is also
working partially on this project. The main-purpose of this database is to permit a fast way to
check the stability of conditions while the run was being collected. Each table should contain
a column for “comments”.
For example, the EPICS table, while containing many more columns, will be similar to:

Table Name: EvtTypel3l

timestamp IPM1HO04A.XPOS | FB_A:use_RF | ... Comments
04-May-2006 01:07:03 -0.680766 RF On evt 15 in €02013_4423.dat.0
04-May-2006 01:23:21 -0.668447 RF On ... | evt 123004 in e02013_4423.dat.0

A separate table, RunTimes, keyed on run-number will be used to store timestamps for the
start and end times of each run.

2.2 Beam/Target polarization database

This database will also eventually include information from the target and beam, including
polarization information. However, this will need to be brought-over from the Compton, Moller,
and target logbooks and databases. Here it is important that the time of the measurement is
kept, as well as their uncertainties. Each item (target polarization, beam polarization, etc.)
would have its own table.

3 Calibration database

This database will hold the calibration constants, detector maps, and other information required
to analyze a coda file.

We will use an implementation of the CalDB system created and used by the CLAS collab-
oration since 2001. It features:

e fine granularity in both time and item lookup;

e multiple-versions of constant-sets such that calibrations can evolve;

e a “run-index” containing links to the constant-sets to be used by the analysis;

e the ability for users to use and modify private copies of the run-index for testing purposes;

e an automatic change log for the run-index and constants, including author, date and time,
and comment information.

Documentation about the CLAS CalDB system can be found at:
http://clasweb. jlab.org/caldb/caldb.

For GEn, the database is named “caldb”, to be accessed by the user “gen” on the host
“yerphi.jlab.org”.

3.1 Concept

The layout of the primary tables of the CalDB database are shown in Figure 1. The top row
in the figure shows how the key of the individual “items”, the actual data in the database, are

assembled.
Item
System Subsystem iteml d*
systemld* subsystemld* itemName
systemName subsystemName lsubwhstemld
description systemid t%gt
description description
Runlndex
Runlndex|d*
. minTime
* automatically generated keysfor ID maxTime
itemlid
itemValueld
officer
time
comment

systemName_subsystemName_itemName

itemValuel d*
author

time
minTimeSource
maxTimeSource
comment
v_0001

v_nnnn

Figure 1: The general layout of the CalDB database [1]. The “crows-feet” show a “one-to-many”
relation, eg: one system can contain several sub-systems, a sub-system contains many items.

The nomenclature of CalDB calls for each constant (or set of constants) to be addressed
by system, subsystem, and item. For our purposes, a system is an apparatus or detector that
has information to store. The subsystem label is optional (default value is an empty string)
and can be used for a sub-detector. Finally, item is a specific label for the desired constant or
set of constants to be stored in the database. The complete name of a calibration constant (or
set) is then system - subsystem - item.

The bottom row shows the structure of the stored item, the data required for the analysis,
which can be a quoted string, floats, or integers. Each actual constant includes information
about the submission of that constant (author, date and time of submission, expected range of
validity, and a mandatory comment) as well as the values themselves. This is the equivalent of
a file containing a single version of a set of constants.

The middle row shows the columns of the “Runlndex” table. The Runlndex is a table of
links, at least one for each item, associating an entry in the item table with a specific time-range
of validity. The Runlndex table, then, is the equivalent of a list of files stating the appropriate
set of constants to use. Additional copies of the RunIndex table (given different names) can
be used to apply trial-sets of constants, but there will be one authoritative RunIndex table.

Different from the CalDB database, the valid ranges will be given not as run numbers, but
as timestamps.

_ Lookup in tables Lookup itemld in Lookup itemValueld in
Request item System("na’), selected Runindex table, table na_geom_position
nageom position(3 floats) Subsystem("geom”), | | |atest submitted entry returnv_0001 ... v_0003
and Item("position”) for the requested date.
to get itemld Get itemVaueld

Figure 2: Example of how constants are looked up in the database.

3.2 Implementation for classes

There is some re-writing of the detectors classes required to access the database. The first task
to be done is to identify the constants to be saved and generate meaningful names. This can
be done most simply by looking at what is in the database files now. Common entries for a
detector system would be:

detmap.detmap detector map (as a string)
geom.origin geometric placement within parent reference frame
geom.angles FKuler angle description of the orientation of the detector

geom.dx, geom.dy, geom.dz half-size of the detector or element in the three body-centered
directions.

3.3 Specific list of items
TO BE FILLED IN: a list of all constants required from BB and the Neutron Detector.

References

[1] “The CLAS Calibration Database”, CLAS-NOTE 2001-003.
http://clasweb.jlab.org/caldb/caldb

