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This spring| continued and expanded onthe work | began last fall with Professor Zheng. The

projectthat | beganinthe fall was to write a simulation of two hexagonal scintillator configurations, the

“preshower” and the “shower”. These scintillators made use of wavelength-shifting (WLS) fibers of the

Y11 multi-cladding type, developed by Kuraray Co. These fibers have an emission peak at 476nm, an

absorption peakat430nm, and a diameter of approximately Imm. The preshower configuration consists

of afiberinsertedinto one opening, spunarounduntilit’'sinaloop, or ring, thatis stacked fourtimes,

and then pulled out of the scintillator. This configurationis shownin Figure 1:
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Figure 1: Preshower scintillator configuration

The shower scintillator configuration, onthe otherhand, has 96 fibers vertically perforatingitin

a patternthat is symmetricaboutthe four quadrants of the hexagon, as shownin Figure 2:
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Figure 2: Shower scintillator configuration

These scintillators are used in the Electromagnetic Calorimeterin the SoLID (Solenoidal Large
Intensity Device) projectthatis used at Jefferson Lab, which has recently acquired the capability to
accelerate particles to 12GeV. This upgrade provides an opportunity to extend our understanding of
nucleon spinand momentum structure by carrying out multi-dimensional precision studies of
longitudinaland transverse spin and momentum degrees of freedom from SIDIS experiments with high
luminosity in combination with large acceptance detectors'. The SoLID project’s base components are
arranged in two different configurations, the SIDIS (Semi-Inclusive Deep Inelastic Scattering)and the
PVDIS (Parity-Violating Deep Inelastic Scattering).

The EM Calorimeterisa “shashlyk”-type (layers of lead, scintillator, and fibers) which has a total
of 1800 modules of showerand 1800 modules of preshower with an area of 100cm? for each module,

which are set behind 300 pieces of scintillator pedal detectors (SPD’s) with thickness of 5mm. The

! soLiD (Solenoidal Large Intensity Device) Preliminary Conceptual Design Report, The SoLID Collaboration,July 8,
2014, p4.



energy resolution is equal to 10%/+/E, it reaches a 50:1 ratio of pion suppression with electron efficiency
betterthan 90%, and 5:1 photon suppression.

The SIDIS detector system consists of two parts: the forward-angle electromagnetic calorimeter
(FAEC) detectorand the large-angle electromagnetic calorimeter (LAEC) detectors. A forward-angle
shashlykisusedforpionand electron separationinthe FAEC; this system has momentum coverage of
0.8-7.0GeV/c. The LAEC isusedfor electron detection, and has a momentum range of 3.5-6.0GeV/c. One

can see the SIDISin Figure 3:
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Figure 3: SIDIS diagram

The PVDIS (Figure 4) is designed to measure parity-violating asymmetries in the SoLID. Italso has
a “shashlyk” EM Calorimeterthatis used as the trigger, in addition to assistingin pion/electron

separation.
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To briefly summarize the situation that | started with, at the beginning of the spring semester|
had a working simulation program for both the showerand preshower scintillator configurations, which
tracked the positions, boundary collisions, and overall efficiency percentages of either scintillator with
varyingreflectivity values. The additions I've made since then are as follows: First, | wrote a program in
ROOT that would plotthe results of the previous semester’s efficiency vs. reflectivity tests with error-

bars derived from the following equation:

S = JNx(1-e)xe
p=+———

~ (Equation1)

Sp representsthe standard deviation (orerror-barwidth), N represents the number of photons
generatedinthe simulation, and e represents the absorption efficiency. Theseresults are displayed
below:

Table 1 and Figure 3 describe the preshower scintillator varying the boundaries’ normal reflectivity [the
reflectivity when the incident angle toaboundary is less than the critical angle @ riticar = arcsin(%)]
SClL

while keepingthe reflectivity of the total internal reflection constant at 99%:



Table 1: Absorption efficiency of preshower with variable reflectivity (non-total internal reflection)

Reflectivity | 70% 75% 80% 85% 90% 95% 100%°
Absorption | 68.13% 70.19% 73.16% 75.69% 79.69% 85.94% 97.25%
efficiency
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Table 2 and Figure 4 describe the preshower scintillator varying reflectivity when varying with the critical

angle, while keeping the reflectivity of the non-total internal reflection constant at 80%:

Table 2: Absorption efficiency of preshower with variable reflectivity (total internal reflection)

Reflectivity | 90% 92% 94% 96% 98% 100%”
Absorption | 69.66% 70.20% 71.30% 71.81% 72.92% 73.20%
efficiency

*The percentage valueused 2000 photon events and reflectivity of 99.9999% due to the limitations of the .dat file
size. However, the absorption efficiencyis lessthan 100% primarily because the reflectivity of the total internal
reflectionis held constant at99%.
3 For this valuel used 2000 photon events rather than 10000, and the value99.9999% rather than 100% for the
same reason as above. However, the absorption efficiencyis less than 100% primarily because the reflectivity of
the non-total internal reflectionis held constantat80%.
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Table 3 and Figure 5 describe the shower scintillator varying the floor and ceiling’s reflectivity, while
keepingthe 6 hexagonal sides’ reflectivity constant at 80% and the reflectivity of total internal reflection
constantat 99%:

Table 3: Absorption efficiency of shower with variable reflectivity (non-total internal reflection, floor and ceiling only)

Reflectivity | 70% 75% 80% 85% 90% 95% 100%"

Absorption | 70.51% 71.32% 72.19% 72.82% 74.25% 76.25% 88.00%
efficiency
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* For this valuel used 2000 photon events rather than 10000 for the same reason as the note justabove. However,
the absorptionefficiencyis lessthan 100% primarily because the6 hexagonal sides’ reflectivityis held constantat
80% and the reflectivity of the total internal reflectionis held constantat 99%.




Table 4 and Figure 6 describe the showerscintillator varying the hexagonal sides’ reflectivity, while
keepingthe floorand ceiling’s reflectivity constant at 80%, and the reflectivity of the total internal

reflection constant at 99%:

Table 4: Absorption efficiency of shower with variable reflectivity (non-total internal reflection, hexagonal sides only)

Reflectivity | 70% 75% 80% 85% 90% 95% 100%

Absorption | 70.87% 71.81% 72.62% 72.84% 73.56% 74.08% 74.55%
efficiency

| Shower: noncritical angles' ref. (hex sides) I
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Table 5 and Figure 7 describe the shower scintillator varying the reflectivity when dealing with the

critical angle, while keeping the reflectivity of the non-total internal reflection constant at 80%:

Table 5: Absorption efficiency of shower with variable reflectivity (total internal reflection)

Reflectivity | 90% 92% 94% 96% 98% 100%°
Absorption | 63.23% 64.50% 65.86% 67.51% 70.09% 75.85%
efficiency

> For this valuel used the value 99.999% rather than 100% and 2000 photons instead of 10000 for the same reason
as the notes above. However, the absorption efficiencyis lessthan 100% primarily because the reflectivity of the
non-total internal reflectionis held constantat80%.




Shower scintillator: Critical angle ref.
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Figure 9

Whenviewingthe graphs, one aspectto consideristhe apparentvisual differences in the widths
of the error-bars. These differences can be attributed to the vertical axes covering differing ranges, thus
the scaleis differentin each.

Next, |added a feature to my simulation programs that had been neglected up until that point:
attenuation. Thisisthe phenomenon where the medium that the photon passes through has a chance
to absorbit. Physically, the attenuation lengthisadistance A5 into a material where the probability of a
particle’s (inthis case, aphoton’s) transmission through that material without being absorbed decreases
to 1/e. This isshown by the Beer-Lambert Law:

P(x) = e */8 (Equation 2)

However, it was found® that the distance thata photon travels through the scintillating material
directly affectsits attenuation length. The paper cited displays data on the dependence of the
attenuation length onthe light propagationinthe scintillator (Figure 8) and fitsit to the function (with
fitting parameters A, B,and \):

Ap(x) = A(1—e*/*) 4+ Bx (Equation 3)

6 Properties of Ukraine polystyrene-based plastic scintillator UPS 923A (Nuclear Instruments and Methods in Physics
Research), A. Artikov et al,availableonline 3 October, 2005, p 126.
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Fig. 2. Dependence of the bulk attenuation length iy on the light

propagation in the scintillator.

Figure 10: Attenuation length and distance traveled

My simulations accounted for this by running each individual photon simulation as before, buta
new variable was added to the code that kepttrack of how far through the material the given photon
traveled. If the photon ended up escaping, no attenuation calculationis necessary to testforabsorption
efficiency, as escaping the scintillator and being absorbed by the medium both resultin a photonlost.
However, if the photon collided with and was absorbed by a WLS fiber, it would undergo an additional
checkto seeif, at some pointduringits lifetime, it would have been absorbed by the medium.

First, Ag is calculated by the photon’s total distance traveled fromits point of generation to the
pointwhere it collided with the fiber being used as the input “x” in Equation 3 (the values of whose fit
parameters can be seenin Figure 8; forthe sake of simplicity | neglected the uncertainty of those
parametersin my code). Next, the valuesfor A5 and “x” are plugged into Equation 2; from that we see
the probability of the photon transmittingin spite of attenuation. Arandom numberfromOto 1 isthen
generated, and checked against the “P” from Equation 2; if the numberis equal to or lowerthanP, the
photonis successfully absorbed by the WLSfiber, and else itis assumed to have been absorbed by the

medium at some point.



The nexttask | worked on was to investigate the uniformity of the two scintillator
configurations. By uniformity, | referto how the absorption efficiency can be affected by the initial
position of the photons. This study required that | make a few small alterations to my simulation
programs: firstand foremost, | changed the random-generation of the photons’ positions to be user-
inputs at the beginning of the program, which remain constantasit runs; in other words, the initial
position remained constant, while the initial direction-vectors were still randomly generated. Next, |
beganthe uniformity study by observing how the absorption efficiency changed when the initial position
shifted along one axis. Forthe preshower, | held the Y-coordinate equalto 0 and the Z-coordinate equal
to 0.5cm, and varied the initial X-coordinate. Forthe shower, | setthe Z-coordinate equal to 0.05cm and
Y-coordinate equal t0 0.469 cm (this value is about halfway between two rows of fibers that lie nearthe
middle of the scintillator; referback to Figure 2), and X-coordinates vary along that axis. Figure 9(a-b)
shows the results of the preshower’s uniformity along the x-axis both neglectingand including

attenuation:
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Figure 11 (a): Preshower uniformity study; attenuation neglected
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Figure 11 (b): Preshower uniformity study; attenuation included

In the figures above, the solid vertical lines represent the radius from the center where the ring

of fiberinthe preshower configuration liesin the given cross-section. The horizontal axis represents the

displacementfromthe originandthe vertical axisisthe percentage of photons that were absorbed. For

the uniformity simulations | set the reflectivityto 90% when a photon’sincidentangleisless thanthe

critical angle and 95% when it experiences total internal reflection. Figure 10(a-b)’s axes are defined

identically, and the solid lines represent the locations of two rows of fibers in the shower configuration

(the darkerblue lines represent the first row of fibers above the centerrow, and the lightercyan lines

represent the X-coordinates of the fibersinthe centerrow):
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Eff 2 graph (shower)

Efficiency

From these we observe some reasonable trends. Referring to Figure 9, the absorption efficiency
increases as the initial position draws closerto the point nearest to the fibers; howeverthe point
directly underthe fibersisn’t the maximum. Thisis likely due to the fact that when directly under the
fiber-ring, the solid-angle that the ring takes up is smallerthan the solid angle when the initial position is
displacedslightly fromits path, since the efficiency reached its maximum just outside the fiber-ring. A
similaroccurrenceisseenin Figure 10, such that whenthe photons are generated directly under one of
the fibers, they are most likely to be absorbed since the solid-angle of the nearestfiberis greater (see
Figure 11(a)). We also see a sharp decrease when the photons are generated between the fibers of both
rows (see Figure 11(b)); thisislikely due to the fibers’ arrangement, such that many will “line up” and

the photon’sline of sightonly allowsitto see the nearerfibers. Figure 11 is arrange d such that the black
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Figure 12 (b): Shower uniformity study; attenuation included
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The last task | worked on was to make an alteration to the physics of reflections forboth
scintillator configurations. Up to this pointthe code was setto deal with reflection accordingto the Law
of Reflection, as described in the fall-semester section of this report, butit was brought to my attention
that due to the nature of the apparatus, diffusive reflectionisa more accurate description of the
photon’s behavior. This means thatinstead of reflectingatan angle equal tothe angle of incidence, the
photonwillinstead briefly enterthe boundary’s materialand then return with arandom 3-dimensional
directionvector. Thisapplies only forincident angles less than the critical angle, so my code that
accounted for diffusive reflection stillapplied the Law of Reflection when the photon experienced total
internal reflection. I will soon repeat the uniformity study with diffusive reflection accounted for, as well
as expand the study toinclude different values onthe Y-and Z- axes to see if furtherinsightsinto the
absorption efficiency can be made. Figures 14-15 show some of the results of the simulation using

diffusive reflection:
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Figure 14 (a): Preshower scintillator; attenuation neglected
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Figure 14 (b): Preshower scintillator; attenuation included

Comparingthese new efficiency studies with the data provided in Figure 11, we can see that
incorporating diffusive reflection intothe simulation has increased the absorption efficiency provided.
The overall shape of the curves remain the same as in the simulation which used the Law of Reflection
for all boundary reflections, but the datashownin Figure 14 has essentially been translated upward
beyond the widths of the error-bars. To compare the graphs that accounted for attenuation, the
minimum forthe standard reflection lies around 39.5% and its two maxima stand at roughly 55%,
whereas the diffusive reflection has calculated the minimumto lie at approximately 48% and its maxima
to standjust above 58%. Asthe Y- and Z- values were constant between the two different simulations,
thisyieldsthe interestingresultthatthe preshower scintillator’s absorption efficiency may be slightly
higherthaninitially calculated based on the Law of Reflection. Diffusive reflection also, predictably, has
a smaller difference between the maximaand minimumthanits earlier counterpart, downto
approximately a 10% spread from 15%.

Next, | ran several points along the X-axis of the shower scintillator justas shownin Figure 12:
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Figure 15 (a): Shower scintillator; attenuation neglected
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Figure 15 (b): Shower scintillator; attenuation included

Comparing Figure 15(b) with Figure 12(b), we see a similar change to the absorption efficiency
as we didwhen we incorporated diffusive reflection into the preshower. We see the absorption
efficiency hasimproved overall after switchinginto diffusive reflection: the minimum values along the
“lowerlip” of the data-set have moved from 32.5% in the mirror-reflection versionto a little over 39%

when using diffusivereflection, and the overall maximum values have moved from 44.5% to about 47%.



Diffusivereflection again, as expected, has asmallerdifference between its maximum and minimum
values, decreasing from a difference of 12% to 8%.

Next, | decided to test the uniformity at more varied coordinatesin 3-space. Forthe preshower,
my choice in coordinates are based onthe axes shownin Figure 16, where the horizontal axis represents

the x-axis and can range as far as 6.25cm from the origin, the vertical axis represents the y-axis and can
- o . . 3
range as far as 5.41cm fromthe origin (this distance is equal to the hexagon’s side-length *g), andthe

z-valuesrepresent the final dimension with possible values ranging from 0to 2cm.

Figure 16: Axes for preshower uniformity

The followingfigures describe the results of my expanded uniformity study (these made use of
the diffusivereflection code and set 90% reflectivity for small incident angles and 95% reflectivity for
total internal reflection; forthe sake of simplicity | included only the graphs that accounted for
attenuation):
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Figure 17 (a): y=5 (close to the top of the hexagon)
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Figure 17 (b): y=5 (close to the top of the hexagon)
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Figure 137 (c): y=5 (close to the top of the hexagon)

From Figure 17(a-c) we don’t see a significant dependence on the height of the z-axis, but there
doesseemtobe a slightincrease of the maximum when Z=1.0cm as opposed to beingcloserto the floor
and ceiling of the scintillator. The deviations are hardly outside the widths of the error-bars, however. In
addition, as ourrun across the x-axis is beyond the perimeter of the fiber-ring, we see only one central

maximum rather than two marking the positions nearthe locations of the fibers.
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Figure 148 (a): y=4 for preshower scintillator
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Figure 158 (b): y=4 for preshower scintillator

In Figure 18 (a-b) we see an overall increase in absorption efficiency as well as the return of two
maximasymmetrically placed on the graph, indicating that the positions measured run underthe ring of
fiberinthe preshoweragain. Again, the difference in the initial z-coordinate doesn’t make asignificant
difference inthe absorption efficiency. The maximaalongy=4are significantly higherthan the maximum
alongy=5, rising from under53% to just over59%.

Figure 19 (a-b) shows the result generated by setting y=3 and testing two differentinitial z-
positions:
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Figure 169 (a)



Eff 2 graph (preshower)Y=3, Z=1
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Figure 17 (b)

In Figure 19 (a-b), there isn’tasignificant difference in either overall shape or heights of the
maxima compared to Figure 18 (a-b); Figures 20 (a-b) and 21 (a-b) are arranged similarly fory=2and y=1
respectively. Inthese, the absorption efficiency again doesn’t vary significantly when altering the initial
y- and z-coordinates.
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Figure 20 (a)
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Figure 20 (b)
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Figure 218 (a)
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Eff 2 graph (preshower)Y=1, Z=1.5
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Figure 219 (b)

Overall, inthe preshower scintillator the maximumi initial point for absorption efficiency that |
calculatedis X="3.3, Y=3, Z=1, butits valueisn’tsignificantly higherthan the maximafrom othery-and
z- initial positions.

Next, | continue the uniformity study of the showerscintillator. To save time, | concentrated my
effortsona single quadrant of the hexagoninthe same orientation asshownin Figure 2 (the coordinate
system will differslightly from that of Figure 16). My conventionisto run my scan alongthe area where
the y-coordinate lies halfway between two rows of fibers; the datashownin Figure 15 is for the section
between the centerrow and the row just above it (referback to Figure 2), Figures 22-26 will present
data between the rows above themin ascending order, e.g. the graph titled “2™ row” was measured
between the first two above the central row of fibers, the 3™ isjustabove that one, etc. For the sake of
simplicity | used only values with positive x-coordinates and assumed that there would be symmetry
alongthe y-axis. These figures all include attenuation and make use of diffusive reflection.
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Figure 20: 2nd row (y=1.407cm)
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Figure 21: 3rd row (y=2.345cm)
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Figure 22: 4th row (y=3.283cm)
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Figure 23: 5th row (y=4.221cm)
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Figure 24: 6th row (y=5.1575 cm)

Based on Figures 22-26 we can see that as the point of origin deviates fromy-0, the absorption
efficiency beginsto decrease, as the maximum absorption efficiency valuefrom each figure decreases
fromapproximately 47% in Figure 22, to approximately 46 in Figures 23 and 24, to approximately 44%in
Figure 25, and finally to 41% in Figure 26. This decrease is reasonable as the photons will be more likely
to escape before colliding with afiberif their point of generationis close to one of the scintillator’s

boundaries.

In conclusion, the work done on the simulations this spring has produced anumber of useful
results, from those that made the simulation amore accurate representation of the physical processes
involved (such as the addition of attenuation and diffusive reflection) to the detailed uniformity study
that provided asignificantamount of information on the absorption efficiency of the scintillator based
on the point of photon generation.



