Effect of Deadtime + random Cerenkov on asymmetries

C. Furget, collaboration meeting, 05/24/07

From Doug's simplified formula

$$A_{m} = A_{s+b}$$

$$-\left(\tilde{s} + \tilde{b}\right) I \tau_{d} \left(A_{s+b} + A_{I}\right)$$

$$-\frac{\tilde{r}_{1}\tilde{r}_{2}}{\left(\tilde{s} + \tilde{b}\right) + \tilde{r}_{1}\tilde{r}_{2}} I \tau_{r}} \left(A_{s+b} - A_{I} - A_{r1} - A_{r2}\right)$$

$$where
$$A_{s+b} = (1-f) A_{s} + f A_{b}$$

$$y_{n,\pm} = y_{c,\pm} \left(1 - y_{c,\pm} \tau_{d}\right)$$

$$y_{c,\pm} = I_{\pm} \left(\tilde{s}_{\pm} + \tilde{b}_{\pm}\right) + r_{1,\pm} r_{2,\pm} \tau_{r}$$

$$with \qquad r_{i,\pm} = I_{\pm} \tilde{r}_{i,\pm}$$

$$r_{1} : Cerenkov$$

$$r_{2} : CED-FPD coinc.$$$$

Same using different notation

$$A_{meas} = A_{coinc} \qquad \rightarrow \text{Asymmetry from signal + background}$$

$$A_{sys} \begin{cases} -DT \times (A_{coinc} + A_{I}) & \rightarrow \text{Systematic asymmetry due to dead} \\ -f_{rand} \times (A_{coinc} - A_{I} - A_{\pi} - A_{CER}) & \rightarrow \text{Systematic asymmetry due to pion} \\ where \quad A_{coinc} = (1 - f_{back}) A_{el} + f_{back} A_{back} \end{cases}$$

$$contamination (CER \otimes CED-FPD CER)$$

- → Asymmetry from signal + background
- → Systematic asymmetry due to deadtime
- contamination (CER ⊗ CED-FPD coinc.)

Deadtime + random effects on the asymmetry

To be more precise ...

$$A_{meas} = A_{coinc}$$

$$A_{sys} \begin{cases} -DT \left(A_{coinc} + A_{I} \right) \\ -f_{rand} \left(A_{coinc} - A_{I} - A_{\pi} - A_{CER} \right) \end{cases}$$

$$where \quad A_{coinc} = \left(1 - f_{back} \right) A_{el} + f_{back} A_{back}$$

→ The deadtime should be decomposed in several contributions because it is due to coincidences, single MT and single CFDs

$$-DT\left(A_{coinc}+A_{I}\right) \quad \Rightarrow \quad -DT_{coinc}\left(A_{ALL\ coinc}+A_{I}\right)-DT_{MT}\left(A_{MT}+A_{I}\right)-DT_{CFD}\left(A_{CFD}+A_{I}\right)$$

- → The deadtime on one cell (i,j) is due to the whole coincidences (electron+pion)
- → In practice it is difficult to separate all contributions

Questions :

- How small can we reduce systematic asymmetries by performing deadtime & random corrections?
- ✓ Can we have a rough estimate of systematic asymmetries right now?

Very rough estimate of systematic asymmetry

(for LD2 at 362 MeV and 35 μ A)

Before deadtime and random corrections

$$A_{meas} \left(elastic \right) = A_{coinc}$$

$$A_{coinc} = -15 ppm$$

$$-DT \times \left(A_{coinc} + A_{I} \right)$$

$$-f_{rand} \times \left(A_{coinc} - A_{I} - A_{\pi} - A_{CER} \right)$$

$$-15\% ?? \times -15 ppm$$

$$where \quad A_{coinc} = \left(1 - f_{back} \right) A_{el} + f_{back} A_{back}$$

$$\Rightarrow \quad A_{sys} / A_{meas} \approx 25 \%$$

After 1st-step deadtime and random corrections

$$A_{meas} \left(elastic \right) = A_{coinc}$$

$$A_{m} = -15 ppm$$

$$-DT_{residual} \times \left(A_{\sin gle} + A_{I} \right)$$

$$-f_{residual, random} \times \left(A_{coinc} - A_{I} - A_{\pi} - A_{CER} \right)$$

$$A_{m} = -15 ppm$$

$$-3\% \times -5 ppm ? \left(= A_{\sin gle CFD \text{ or MT}} \right)$$

$$-5\% ?? \times -15 ppm$$

$$\Rightarrow A_{sys} / A_{meas} \approx 6\%$$

- \checkmark Hypothesis: A_{l} , A_{π} and $A_{CER} \square A_{s+b}$
- \checkmark DT deduced from Philippe's study. In DT term, $A_{coinc} < A_{elastic}$
- Residual deadtime is supposed to come from single CFD and MT only
- √ f_{rand} obtained from Herbert's studies

Current Status

- Deadtime contribution to A_{sys}
 - ✓ 1st-step deadtime corrections are required to minimize systematic asymmetries
 - ✓ Is the 2nd-step corrections required? The gain could be small.
 - ✓ Calculate several contributions (coinc, single MT and CFD) to A_{svs}?
- Contribution of pion contamination to A_{sys} (Random CER \otimes CED-FPD coinc.)
 - ✓ Main contribution to A_{sys}, which should depends on different settings (energy, target)
 - ✓ Several inputs need to be cross-checked (f_{rand}) and/or measured (A_{π} , A_{cer} ...)
- Others contributions to be included ???
 - ✓ Random CED ⊗ FPD in electron and pion matrix
 - ✓ Background subtraction within each cell (not discussed here) could remain the main contribution to A_{sys}
 - **√** ...

Fraction of events in electron matrix, elastic region (35 uA 362 MeV beam, LD2 target):

						Janı	ary	fract		ebru	ary			
A+F+G:	Aero	*	CED	*	FPD	848	36. /	78%	79.	-83	. /7	13%		
B: C: D: E:	Aero Aero Aero	*	FPD		FPD FPD CED FPD	121 1.3- 0.4- 0.4-	2.0	90 90	1.	4- 3 6- 1	6	8		
B+C+D+E	ran	do	oms			141	16. /	22%	17.	-21	. /2	27%		
values an	re ran	ge	es fo	or	octants	1-4,6-	-8; a	fter	'/"	are	for	octa	ant	5
				•										
A CCOCT A MI	TO TOO	TTT	ZC.											

ASSOCIATED ISSUES:

- multiple hit losses
- dead time losses

Raw Blinded asymmetry Summary

	LH2 687 MeV	LH2 362 MeV	LD2 687 MeV	LD2 362 MeV	
	Asym (ppm)	Asym (ppm)	Asym (ppm)	Asym (ppm)	
Elastic electron	-39.7(1.7)	-10.59(0.7)	-43.83(2.9)	-14.9 (0.7)	
Rand corr.			-46.8(3.8)	-15.7(0.9)	
Inelastic Elec.	-21.7(1.9)	-2.76(2.3)	-18.53(2.7)	-3.9(1.9)	
Rand corr.			-22.7(4.6)	-6.2(3.9)	
Elastic pion	-12.2(2.4) ppm	-10.7(1.7)ppm	-6.7(2.9) ppm	-5.4 (1.2)	
Inelastic pion	-3.3(1.7) ppm	0.83(3.1)ppm	-1.9(1.5) ppm	-1.6(1.3)	
Elastic Rand.	Not available	Not available	-14.07(7.6)	-14.6(1.9)	
Inelastic Rand.	Not available	Not available	-0.75(4.2)	-3.95(2.8)	