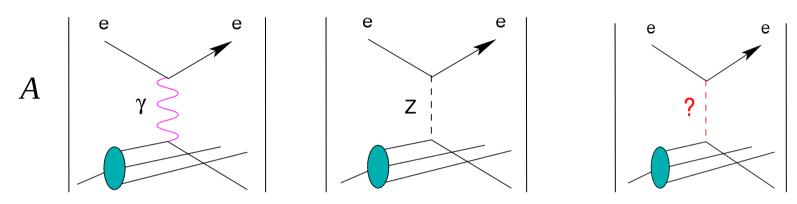
Measurement of Deuteron PVDIS Asymmetry at 6 GeV

Xiaoyan Deng University of Virginia April 2010

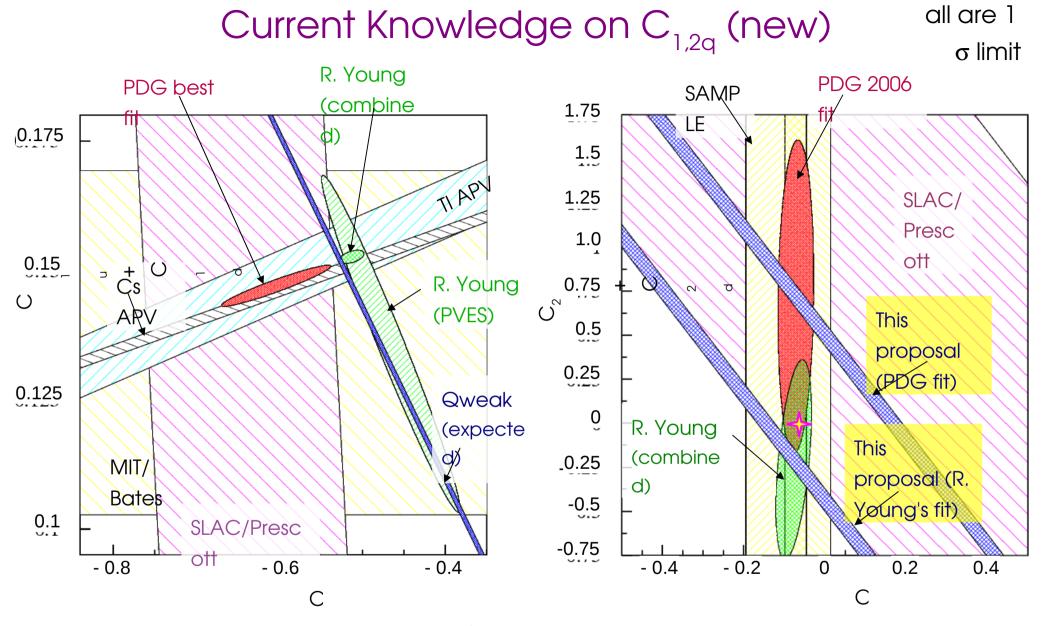

Will discuss about:

- The Physics of PVDIS
- Experimental Setup and General Summary of the Running
- Expected Results and Uncertainties
- On-Going Data Analysis Deadtime Measurement
- Deadtime extraction from rate scan
- Deadtime extraction from the tagger data

The Physics of PVDIS at 6 GeV (E08-011)

- Measure PVDIS asymmetry on a deuterium target, $A_{a'}$ at $Q^2=1.10$ and 1.90 GeV² to 2% (stat.);
 - From Q²=1.10 can help to investigate if there are significant HT effects;
 "Baseline" measurement for the future 12 GeV program.
 - If HT is small, from $Q^2=1.90~{\rm GeV^2}$ can extract $2C_{2u}-C_{2d}$ to ± 0.033 , a factor of 7.4 improvement;
- Total request 46 days, with 13 days approved (A-), $\Delta(2C_{2u}-C_{2d})=\pm0.066$.

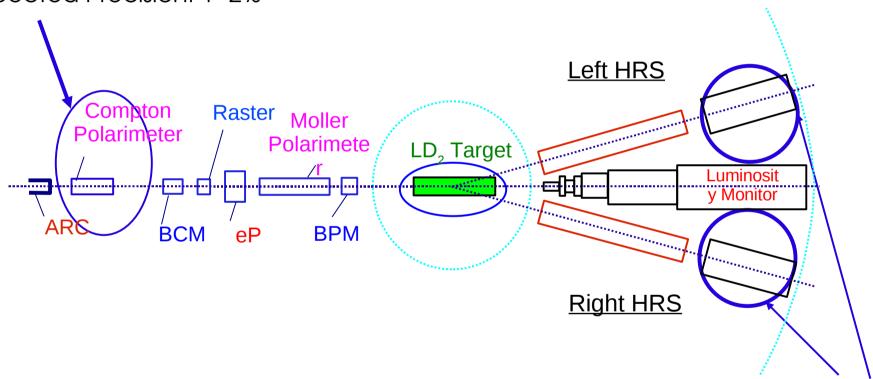
PVDIS Asymmetries



Deuterium:

$$\begin{split} A_{d} &= (540 \; ppm) Q^{2} \frac{2 \; C_{1u} [\; 1 + R_{C}(x)] - C_{1d} [\; 1 + R_{S}(x)] + Y (2 \; C_{2u} - C_{2d}) \, R_{V}(x)}{5 + R_{S}(x) + 4 \, R_{C}(x)} \\ C_{1u} &= g_{A}^{e} g_{V}^{u} = -\frac{1}{2} + \frac{4}{3} \sin^{2}(\theta_{W}) \\ C_{1d} &= g_{A}^{e} g_{V}^{d} = \frac{1}{2} - \frac{2}{3} \sin^{2}(\theta_{W}) \\ C_{2d} &= g_{V}^{e} g_{A}^{d} = \frac{1}{2} - 2 \sin^{2}(\theta_{W}) \\ \end{split}$$

- Can extract $C_{1,2q}$ (and $\sin^2\theta_W$) discover new physics beyond the SM
- Sensitive to: Z' searches, compositeness, leptoquarks


$$\text{Mass limit:} \qquad \frac{\Lambda}{g} \approx \frac{1}{\left[\sqrt{8}\,G_F \middle| \Delta (2\mathrm{C}_{2\mathrm{u}} - C_{2\mathrm{d}}) \middle| \right]^{1/2}} \approx 1.0\,\mathrm{TeV}$$

• Best: PDG2002 $\Delta(2C_{2u}-C_{2d})=0.24$ factor of 7.4 improvement (same as PR05-007);

In Addition to the Standard Hall A Setup

Expected Precision: 1~2%

 fast-counting DAQ, design goal:
 1MHz; (scaler-based, partially w/ FADC)

Kinematics

Kinematics	I	II
X _{bj}	0.25	0.3
$Q^2 (GeV/c)^2$	1.11	1.9
E _{beam} (GeV)	6.0	6.0
E' (GeV)	3.66	2.63
θ(°)	12.9°	20.0°
W ² (GeV) ²	4.16	5.30
Υ	0.470	0.716
R_{C}	<0.001	0.001
R_s	0.052	0.041
R_{\vee}	0.872	0.910
A _d (measured, ppm)	-91.3	-160.7
e-rate/HRS (kHz)	269.8	25.1
π^{-}/e^{-} ratio	0.9	6.4
e+/e- ratio	0.073%	0.463%
Total rate/HRS (kHz)	513.0	186.2

Expected Uncertainties on A_d

Source \ $\Delta A_d/A_d$	Q ² =1.1 GeV ²	Q ² =1.9 GeV ²	
Δ P _b /P _b =1% Deadtime correction Target endcap contamination Target purity Pion background	1.0% 0.3% 0.4% <0.02% <0.2%	1.0% 0.3% 0.4% <0.02% <0.2%	now 5mil Al (was 3mil Be)
Pair production background	<0.2%	<0.2%	D e)
Systematics	1.36%	1.36%	
Statistical	2.11%	2.09%	
Total	2.52%	2.49%	

Deadtime Measurement – Before the experiment

- A scaler-based counting data acquisition (DAQ) system is used for the first time in Jlab
- Before the experiment, a series of tests have been performed to determine the new DAQ system's deadtime (will show Ramesh's one figure in the spin conference)

Deadtime Measurement – extraction from rate scan

• Ideally, Rate=aI(1-DT), where $DT=aI\times \omega$, a is a positive constant related to the whole physics, and ω is the deadtime expressed in width. BCM=bI, then

Rate
$$|BCM = aI(1-aI\omega)/bI = a/b - a^2\omega \times BCM/b^2$$

Deadtime Measurement – extraction from tagger data

Idea: a pulser signal with rate R mixed with a PMT signal was input to PVDIS DAQ. The output trigger was ANDed with the tagger giving R0 as the output. So DT=1-(1-p)R0/R, where p is a correction factor for the pileup effect. (will add a tagger diagram)