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Abstract 

After a brief historic overview the basic equations for three-nucleon (3N) scattering based on general two- 
nucleon and 3N forces are reviewed and the main steps for their derivation are given. Also the expressions for 
the various observables, elastic and breakup cross sections, as well as the great variety of spin observables are 
displayed and derived. The treatment of the 3N Faddeev equations in momentum space and in a partial wave 
decomposition is outlaid in some detail, the handling of the singularities in the integral kernel described and the 
algorithms and techniques used to solve the large set of equations in the discretized form are presented. Accuracy 
tests in form of benchmark calculations, where our results are compared to the ones of other techniques, are 
given. The bulk part of this review, however, is devoted to the comparison of very many observables in 
elastic nucleon-deuteron (Nd) scattering and the breakup process to the predictions based on the most modern 
nucleon-nucleon (NN) forces AV18, Nijmegen93, Nijmegen I and II and a recently updated OBE-potential 
CD Bonn. Overall the agreement with the data is excellent and there is little room left for the action of a 
three-nucleon force (3NF). The effects of the 7r - 7rTT, 7r - p and p - p exchange 3NF’s of the Tucson-Melbourne 
model are studied. They are in general small and in the few cases where discrepancies to data occur using NN 
forces only, they go into the wrong direction. We propose quite a few measurements, which should help to get 
more information on the potential energy of three nucleons. Several special topics are discussed: Do certain 
3N scattering observables scale with the triton binding energy? Which of the 3N breakup cross sections are 
totally insensitive to the choice of the NN force and which are very sensitive? How well can one extract the 
nn scattering length from the 3N breakup? We discuss the outsticking discrepancy of the 3N analyzing power 
AY in low energy elastic Nd scattering; the eigen phase shifts and mixing parameters in elastic nd scattering; 
the simplifications of 3N scattering at high energies and the formulation of the optical potential for elastic nd 
scattering and its limiting form at high energies. Alternative approaches to solve 3N scattering: in configuration 
space, using finite rank expansions of NN forces, variational techniques and the hybrid Sendai method are 
briefly described as well as the proton proton Coulomb force problem in the pd system and the question how 
to incorporate relativity. Finally some applications are sketched where a 3N final state occurs and where the 
interaction among the nucleons requires a correct treatment. We mention inelastic electron scattering as well as 
r-absorption on 3He (3H) and nonmesonic decay of the hypertriton. 

PACS: 21.45.f~; 24.10.-i; 25.10.+s 
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1. Introduction 

Since the early days of nuclear physics the few-nucleon systems received special attention. We cite 
a few of the very early articles: [ 503,476,132,133,393]. It was natural that one wanted to see whether 
the NN force models of those days had a chance to provide the binding energies of *H, 3H and 3He 
and also of 4He by estimating solutions to the nonrelativistic Schrijdinger equation. These estimates 
led to important insights, among them [ 4761, that the NN forces have to have a finite range in order 
to avoid a collapse. There was a long period where variational and other approximate techniques have 
been used, whose spirit can be found in [ 541, for instance. Nuclear reaction theory written out in 
the form of multiple rescattering was formulated [ 497,148,267], especially for nucleon scattering on 
a nucleus. Thereby already interactions within a pair of nucleons were stmnned up to infinite order 
into a t-matrix, where however at intermediate states Hamiltonians of subclusters were carried along. 
The KMT formulation [267] of nucleon-nucleus scattering led recently to a successful application 
in working out optical potentials [ 871. Interestingly enough one of the nontrivial ingredients in that 
approach is the three-body problem formed by the projectile, one active nucleon in the target and 
the remaining nucleons considered as a whole through a mean field. In the formal approaches of the 
fifties like the ones mentioned above, the 3N scattering problem in the form of multiple scattering 
was apparently not in the center of the interest. We are aware only of the work by Everett [ 1261, 
who concentrated on the 3N system. He wrote down the multiple rescattering series for nucleon- 
deuteron scattering in terms of the two-nucleon off-shell t-matrices (including the kinetic energy of 
the third particle in the intermediate free propagator between two pair interactions), but he did not 
take the next step to split that infinite series into three parts, which would obey a set of three coupled 
integral equations. These would have been already the Faddeev equations. The work on general 
nucleon-nucleus scattering mentioned above did in fact that step with respect to the different nucleon 
target-nucleon interactions, however in the context of a many body system. It was Faddeev, who wrote 
down these coupled equations for three particles and for general interactions the first time [ 1281. 
Mitra [ 3431, studying the bound state problem of three particles with separable pair forces, found, 
that the Schrodinger equation could be reduced exactly to an equation (or coupled equations) for 
amplitude(s) in one vector variable. They are known nowadays to be Faddeev equations specialized 
to those forces. Amado [23] found a linear equation for an off-shell nucleon-deuteron scattering 
amplitude, assuming the deuteron to be an elementary particle with a decay vertex into two nucleons. 
The resulting equation was a special case of the Faddeev equations based on separable forces but the 
general case as formulated by Faddeev was not obvious from that very first step. 

The well-founded mathematical structure of the Faddeev equations was worked out by Faddeev 
himself [ 1291. Important for us here is, that the once iterated kernel of the Faddeev integral equations 
is connected and that for short range pair forces, typical for nuclear physics, it is compact, which 
guarantees the convergence of the numerically discretized form of it. Also the uniqueness of the 
solution of the Faddeev equations is of equal importance. 

The actual application of the Faddeev equations posed severe problems at that time due to the very 
restricted computer facilities, and simplifications were eagerly searched for. The separable structure 
of the two-nucleon t-matrix in the spin-angular momentum state of the deuteron close to the deuteron 
pole invited to search for finite rank approximations for two-nucleon t-matrices. The virtual state 
in the NN state ‘So was also such a natural source of separability. This was pushed quite strongly 
and beautifully by Lovelace [ 3181 and led to the Lovelace formulation of the Faddeev equations, a 
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coupled set of one-dimensional equations, which were then feasible for numerical treatments. This was 
generalized in [ 131 starting from suitable transition operators and separating the general two-nucleon 
t-matrices into a part of finite rank and a remainder. The resulting set of multi-channel two-particle 
Lippmann-Schwinger equations was then the starting point for numerous numerical studies using 
finite rank NN forces. This set runs under the name Alt-Grassberger-Sandhas (AGS)-equations. We 
cite from this work [ 131, that the direct solution of the Faddeev equations without using finite rank 
devices “reveals nearly unsurmountable calculational difficulties”. It is exactly that what we are doing 
and what will be the technical message contained in this article. The physical aim will be the test of 
nuclear Hamiltonians. 

One of the reasons Faddeev formulated his equations was that the Lippmann-Schwinger equations 
(LSE) [ 3161 for three particles have serious drawbacks. Their kernel is not compact or connected 
even after any number of iterations and such a LSE does not have a unique solution. This was 
pointed out before in [ 138,124,161]. What was considered to be a drawback was turned into 
something useful [ 1681 by demanding, that a specific 3N scattering state should not obey just one 
LSE equation but three at the same time. In this manner it could be shown that the solution is uniquely 
defined, in other words all the boundary conditions are fixed. Such a set of three LSE’s equations 
is called nowadays the triad of LSE’s [ 3151. They are well suited for formal manipulations. Thus 
the Faddeev equations or the AGS equations for the arrangement operators follow from that triad 
directly [ 1721. That triad can be generalized to four [479,420,489,78,172] and even to a general 
number N of particles, like the Faddeev equations, the generalization of which have been worked out 
by Yakubovsky [ 5281 and carry his name. An equivalent coupling scheme was given in [ 198,141. 
One way to solve the triad directly has been already indicated in [ 1681 and appeared later again as 
“Faddeev choice” [ 4201. 

For some time in the seventies interest turned into deriving connected kernel equations [ 447,43,212, 
295,399,478,420,8 1,299,490], different from the Faddeev-Yakubovsky ones. Thereby often states with 
auxiliary indices, dummy indices, were introduced [ 420,421], which obey a set of coupled equations 
and whose solutions are such that the states collapse just to one, the desired solution. Unfortunately 
nearly all of these formulations turned out to possess not only one solution, the physical one, but 
also on top spurious ones [ 131,81,299,491,5,172]. 

The first numerical calculations [ 121 using separable spin-dependent s-wave Yamaguchi forces gave 
qualitative agreement to the simple low energy data: angular distributions in elastic nd scattering, the 
total nd breakup cross section, the total cross section and some kinematically incomplete nd breakup 
cross sections. This was considered to be a success, since it showed, that the correct treatment of the 
quantum mechanics of three particles was an important key for understanding at least qualitatively the 
data, independent whether the forces are chosen to be fully realistic. Including a separable three-body 
force chosen ad hoc on top of separable Yamaguchi forces led to an even better agreement [ 3731 
with the same type of data. This very first period was followed by a rapidly increasing number of 
studies, where ad hoc chosen separable forces, also of second and higher ranks, including also p- and 
d-wave forces, more or less adjusted to NN phases known at that time, were applied. Representative 
work can be found in [72,381,3,59,113,119,382,383,114,384,69,115,278,372,439,535,211,70,205, 
472,207,455,116,280,456,442,426,532,223,457,533]. Certainly some qualitative insights could be 
achieved like sensitivities of certain 3N observables to the ‘So force, to the 3S1 - 3D1 tensor force, 
to 3P wave forces, etc., but conclusions drawn from a quantitative agreement or disagreement have 
to be considered with great caution. For instance the 3N analyzing power A, turned out to be well 
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described in [ 2071, while nowadays we know that modem NN forces adjusted to the most recent NN 
phase shift analysis (PSA) are not able to achieve it and a serious problem exists. Some pd breakup 
data [ 681 are well described by [ 1191, while the same forces are not able to reproduce more modem 
data [397], which however are well described by modem NN interactions. 

The beginning of investigations using realistic forces, which were well adjusted to NN data, like 
the Paris [310], Nijmegen [349], AV14 [505] and OBE-potentials [ 3201, came with high rank 
approximations to those potentials (see Section 8.4). Thus the first time one saw the beautiful 
agreement of that Faddeev theory with the low energy data of the differential cross sections and the 
angular distribution of certain spin transfer coefficients in elastic nd scattering [ 282,386,283,284], but 
also the first time a clear statement was made that the 3N analyzing power AY in elastic nd scattering 
shows a significant discrepancy [283]. In that work of the Graz-Osaka collaboration the breakup 
process was not dealt with, since their codes relying on contour deformation have some technical 
difficulty to evaluate the breakup amplitude. 

The Utrecht group started already quite early [275,276] using nonseparable local forces, though 
still restricted to s-wave interactions, the so called Malfliet-Tjon (MT) potentials [ 3241. They lead to 
two-dimensional integral equations in contrast to the one-dimensional ones for finite rank forces. This 
was a decisive technical step forward. In that work the determination of the breakup cross section 
was now included and a very interesting study [ 2751 covering the whole phase space was performed. 
Using different s-wave forces regions in phase space were identified which were very sensitive to the 
choice of the forces and others which were not. We shall repeat that study but based on the most 
modem forces and including all the relevant higher partial wave NN force components in Section 7.1. 

This first pioneering study was later followed by more advanced work [463-465] using now the 
more realistic Reid potential [ 4001. However, tensor force couplings and higher NN force components 
were still treated only approximately, in a perturbative manner. As we know now [ 5 131 this was not 
justified and therefore those results do not represent the correct predictions of that force. Nevertheless 
it was a significant step forward and the rich variety of cross sections and spin observables in elastic 
neutron-deuteron (nd) scattering and the breakup process were investigated. Another remarkable step 
forward was done in [44], where the Faddeev equations in configuration space were solved for the 
local de Tourreil and Sprung NN interaction [488] including some higher partial wave NN force 
components exactly, some d-wave force components however still perturbatively. In view of very 
recent investigations [ 179,370] on the asymptotic behavior of Faddeev amplitudes in the breakup 
channel and the special care required for its correct treatment the accuracy of the results in [44] 
cannot be judged by us since not sufficient information in that respect was provided in that article. 
Altogether the situation remained open in an unfortunate sense, that the existing discrepancies to data 
could possibly be considered to be caused by the hopelessly complicated nature of the 3N potential 
energy and not by the simple fact that the reason might be that just the 3N Schrodinger equation 
with fully realistic NN forces was not solved sufficiently accurate enough. This only changed when 
it finally turned out to be possible [ 5 lo,51 1 ] to solve the Faddeev equations exactly for any type of 
realistic NN force, for elastic scattering and the breakup process, and the true predictions of all the 
different NN forces could be gained and compared to data. (See also [ 475,641.) The outcome of 
that new development is the subject of this review. 

In Section 2 the basic 3N equations are reviewed and briefly derived in a heuristic, physically 
transparent (Subsection 2.1) and a more formal algebraic approach (Subsection 2.2). The extension 
necessary to include 3N forces (3NF) are given in Subsection 2.3. We display in Subsection 2.4 the 
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expressions for the very many 3N scattering observables discussed in this review. The partial wave 
decomposition in momentum space including two representations of particle permutation operators, 

which are central to any three-body problem, and the complexity of the partial wave decomposition 
of a 3NF are presented in Section 3. The way we handle the singularities of the momentum space 
Faddeev kernel, the skew arguments introduced into the unknown amplitudes by the permutation 
operators and the big matrices are described in Section 4. The technical sections are finished by the 
description of accuracy tests and presentations of benchmark calculations in Section 5. The bulk part 
of the review lies in Sections 6 and 7, where theory is compared to experimental data. In Section 6 
we cover very many of the measured cross sections and spin observables for elastic Nd scattering and 
the breakup process. First we use only NN forces (Subsection 6.1) and then we also show effects of 
the Tuscan-Melbourne 3NF [ 961 in a great variety of 3N scattering observables (Subsection 6.2). 
Section 7 is devoted to the following special topics: a survey of 3N breakup cross sections over all 
phase-space with the aim to separate it into domains which are very insensitive to the choice of NN 
forces and domains with the opposite property (Subsection 7.1) ; a presentation of the difficulties and 
the chances for extracting the nn scattering length from the 3N breakup process (Subsection 7.2) ; 
the discussion of the A, puzzle in low energy elastic nucleon-deuteron scattering (Subsection 7.3); 
a display of the complex eigen phase shift and mixing parameters for elastic nd scattering above the 
breakup threshold (Subsection 7.4); simplifications for 3N scattering at high energies (Subsection 
7.5); the formulation and the properties of the optical nucleon-deuteron potential (Subsection 7.6); 
the connection between the total nd and np and nn cross sections in the high energy limit (Subsection 
7.7) and finally possible 3NF effects at higher energies between 100 and 150 MeV (Subsection 7.8). 

Up to that point all the theoretical analysis of the data is based on the momentum space treatment 
of the Faddeev equations. In Section 8 we present then competing rigorous techniques carried through: 
in configuration space (Subsection S.l), in form of the Sendai approach, which uses the method of 
continued fractions and works partially in configuration and partially in momentum space (Subsection 
8.2), the pair correlated hyperspherical harmonic basis method (Subsection 8.3) and last not least the 
progress achieved using high-rank expansions of realistic NN forces (Subsection 8.4). The pending 
difficult pp Coulomb force problem in pd scattering is touched in Subsection 8.5 and the equally 
challenging question to incorporate relativity into 3N equations in Subsection 8.6. 

Finally some selected applications of 3N scattering theory to cases, where one has to expect a 
strong final state interaction among three final nucleons are described briefly in Section 9. These are 
inclusive and exclusive electron scattering on 3He (3H) (Subsection 9.1), photodisintegration and pd 
capture in the 3N system (Subsection 9.2), pion- and muon absorption on 3He ( 3H) (Subsection 
9.3) and the nonmesonic decay of the hypertriton (Subsection 9.4), 

We finish with conclusions and an outlook in Section 10. Appendices contain additional and more 
detailed information. We also list the specialized workshops and conferences we are aware of and 
which are a very useful additional source of information on the subject of this article. 
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2. Theoretical formulation 

2. I. Heuristic approach 

Let us assume three particles, numbered 1, 2, and 3, where 2 and 3 are bound to each other and 
are hit by the free particle 1 in the initial state. Let the three particles interact by pairwise-forces. 
Then the amplitude for the breakup process, where in the final state all three particles are free, is 
described by the following obvious Born- or Neumann series: 

= WI + v241 + v,GoW, + WO&#JI + Wov241 + - - - (1) 

We denoted the pair interactions like V,, = V,, etc., the initial state by 4, and the free three-particle 
propagator between consecutive pair interactions by GO. This is the whole physics, a sum over terms 
which are composed of interactions within all pairs and free propagations in between. The first 
interactions to the right have to be of course between the projectile numbered 1 and the constituents 
of the target, the particles numbered 2 and 3. The superscript 1 for the breakup operator Uh” stands 
for the projectile to be particle 1. 

We would like to work with the Faddeev scheme. Then one splits that infinite sequence of processes 
into three parts, which will be shown to be coupled by three integral equations. The natural way to 
define the three parts is to combine all processes which end up with one specific pair interaction to 
the left. Thus 



+ 

+ 
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where the second superscript denotes the free particle to the left. A little inspection reveals that 

T T /\ 

(3) 
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+ y=@qD + qj& (5) 

In other words, after the last pair interaction to the left and a free propagation one encounters again 
the infinite three subseries. 

Now comes the decisive step to sum up the pair interaction within one and the same pair to infinite 
order. This is accomplished by putting the amplitude on the right hand side, which has the same 
second index as the amplitude on the left hand side, to the left and inverting the operator acting on 
it, 

(1 - v, Go>@‘~’ 4, = v,&, + v, Go (U,$‘**) + Uf*‘)) c$, 

U;1*3’ #, = t3q$ + t3 Go (U;‘**) + Uh’*l)) 4, 

The quantity t3 has been defined by 

(6) 

(7) 

t3 - (1 - v, G&v, (8) 

and is obviously the two-nucleon t-matrix for particles 1 and 2 living in the space of three nucleons. 
It obeys the LSE 

t3 = v, + V3 Go t3 

Similarly we get 

Ui”*) 41 =t&, + t2 Go(U,$LT3) + U;‘*“) 4, 
Up 4 1 = tl G,, (UfT3) + U;‘**‘) ,$, 

(9) 

(10) 

(11) 

Eqs. (7), ( lo), and ( 11) form a set of three coupled Faddeev equations. 
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The last step is to antisymmetrize. It is sufficient to do that for the initial state. Thus we replace 

41 by 

In & particle i is the free one and the remaining ones form the two-body bound state, which is 
assumed to be antisymmetric. This guarantees that the linear combination, Eq. (12), is antisymmetric 
in all three particles. Clearly one can repeat now the above steps for +2 and +3 separately. The 

properly antisymmetrized breakup amplitude is then 

Uo 41 - Uh” 41 + Ui2’ 42 + Ui3’ 43 = C C Uikvi) 4k G C U0.i #J] 
i k i 

Adding the three sets for Uik’ one easily derives 

(13) 

UOJ 41 = t1(42 + 43) + tl Go(U0.2 + Uo.3) 41 (14) 

U0.2 41 = t2(43 + 41) + t2 Go(Uo,3 + &,I) 4, (15) 

Uo,3 41 = t3(6 + 42) + t3 Go(Uo,l + Uo,,) 4, (16) 

The three equations (14)-( 16) look remarkably similar and one expects that the second and third 
one are just a cyclic and an anticyclic permutation of the first one. Inspection of UO,i as defined in 
Eq. ( 13) reveals that indeed 

uO.2 = PI2 p23 uO,l 

uO.3 = PI3 p23 uO,l 

(17) 

(18) 

Thus defining 

P = 42 p23 + pl3 p23 (19) 

and 

T E Uo,, (20) 

we end up with 

T$ = tPc$ + tP G,Tcj (21) 

(we dropped the index 1 at t and 4). This is our basic Faddeev-like equation. Its iteration generates 
a multiple scattering series in two-nucleon t-matrices among all pairs. The full breakup operator is 
then given as 

UO=(l+P)T (22) 

Once T is known the operator for elastic scattering follows by quadrature. Again we would like 
to sketch that feature first heuristically, using the Neumann series, which nicely describes all of the 
ongoing physics. Let us start from the analog of Eq. ( 1) , now for elastic scattering 
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T 1 T T 1 T 

+e+&+&fD 

(23) 

Note all processes are initiated from the right by the projectile-target interactions except that to the 
very left a pair interaction between particles 2 and 3 forming the final bound state is not allowed to 
occur. Thus processes like 

T T 

I . . . . . . I 
* 

T 

I ’ 
* A 

(24) 

do not occur in the above infinite sum. Namely to the very left one encounters in the graph (24) the 
state (4, IV, GO, which is just (+,I, due to the two-body Schrijdinger equation and the on-the-energy- 
shell condition of the final free particle numbered 1. Thus all these processes (24) are already taken 
into account in the set (23). 

Let us now antisymmetrize the initial state as above, 

+ dTi) + (&&D 
(25) 



Inserting the corresponding 

u+=PG,‘#+PT+ 
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sums it is very easy to recognize the relation 

Thus the operator for elastic scattering 

2.2. Algebraic approach 

There are various ways to derive the 

(26) 

follows from T. This ends the heuristic approach. 

Faddeev equations for scattering states or transition operators, 
as quoted in the introduction. Here we would like to start from the basic set of LSE’s [ 1681, often 
called “triad of Lippmann-Schwinger equations” [ 3151. A (stationary) scattering state initiated by 
an asymptotic arrangement of particles, described by a state 4 (like 41 in Section 2.1) is given by 

yI(+) = li+i itz 
1 

E+ie-H 4 (27) 

where H is the total Hamiltonian and E the energy connected to (p. In the three-body system the 
Hamiltonian can be decomposed as 

H = HrJ + t$ + v’ = Hi + vi (28) 

where Ho is the kinetic energy, Hi the so-called channel Hamiltonian with one pair interaction I,$ - yk 
(j Z i, k # i) and Vi the sum of the remaining two interactions with the particle i. (We shall use 
this convenient notation to denote a pair by the number of the third particle.) Obviously #i is an 
eigenstate of Hi to the energy E. Now using the resolvent identities 

1 1 1 1 

E+ie-Hz E+iE-Hi 
+ 

E+ie-HiV’E+ie--H (29) 

fori=1,2,3oneisledto 

PC+) = lim 
r-~E+~~_H;~‘~~E+i~_~iviE+~~_H~ 

As an example let us choose $J z +i, then it is not difficult to show that 

(30) 

lim ” 
r-+0 E + ie - H, 

41 = sil+l 

This is called the Lippmann identity 
in the second term and denoting the 
lim,_o(E+i~-Hi)-‘) 

PI(+) = ail+, + GiViP1(+) 

(31) 

[ 317,451. Disregarding the subtleties connected with the limits 
special scattering state initiated by 41 as !P1(+’ one gets (Gi = 

(32) 

These are three equations which form the triad, one inhomogeneous and two homogeneous ones. It 
is shown in [ 1681 that this set fixes all the boundary conditions and defines therefore Pi(+) uniquely. 
The argument is very simple. The states Pi+) and Pi+’ initiated by 42 and &, respectively, obey 
corresponding sets, where the driving terms occur for i = 2 and i = 3, respectively. Clearly requiring 
the three equations of the set (32) to be fulfilled simultaneously, rules out a possible admixture of 
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PC+) and Pi+’ 2 in the general solution of the set (32). Furthermore it is also obvious that any solution 
of the set (32) has to be a solution of the Schrodinger equation at the energy E. The only other 
scattering states are the ones with three free particles in the initial state, described by three-particle 
plane wave states 40. Now the application of ieGi onto &, is not zero, but generates two-body 
scattering states in the subsystem (jk) Z i. Therefore the specific driving terms (4, or zero) in the 
set (32) rule out any admixture of that last group of scattering states and the set (32) generates 
W(+) uniquely. 1 

As a sideremark we mention that in the case of four particles one needs a set of seven homogeneous 
and inhomogeneous LSE’s in order to fix all boundary conditions and to define a specific scattering 
state uniquely [ 420,781. This has been generalized also to N particles [ 479,420,489]. 

In scattering processes one is usually interested in transition operators from a specific asymptotic 
configuration to the same or other ones. Regarding the asymptotic behavior of GiViP’I(+) in configu- 
ration space in the channel, where the pair jk, (j f i # k) is bound and particle i is free one reads 
off the amplitude accompanying the outgoing radial wave as 

Ai, E ($ilVilW[+)) (33) 

Clearly the transition operator connected to that amplitude is 

Uil]di) E v’(W[+‘) (34) 

The set (32) provides now in a very natural manner three coupled equations for the three operators 
Ui,, i = 1,2,3. Namely regarding 

U111&) = (v, + wqo)) (35) 

we operate by V2 and V, onto the equations with i = 2 and 3, respectively, and correspondingly for 
U2, and Us, by V, on the equation with i = 1 and get 

U,,d, =W2U2,41 + W3U3141 (36) 

U2141= VI& + KGU,,4, + W3U3141 (37) 

U314, =VqA + VGU,,h + v2G2U2141 (38) 

Since 

and 

the set (36)-( 38) CEUI be rewritten as (Sii _ 1 - Sii ) 

(39) 

(40) 

which are the Alt-Grassberger-Sandhas ( AGS) equations [ 13 J for the arrangement amplitudes. 
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Let us now antisymmetrize. Again we assume that the channel state 4 is already antisymmetrized 
in the two-body subsystem, which is in a bound state. Then 

I@(+) - limk 
1 

(1 
l --O E+itz-H 

(41 + 42 + 43 ) = ,1(+, + !P(+) 2 + @+I (42) 

is antisymmetric. Therefore the transition operator into the state di resulting from a fully antisym- 
metrized scattering state is 

ui4, s c Uik@k (43) 
k 

From the three equations (41) follows again a set of three coupled equations 

ui+l = c Gg’4k + c tjGOuj@I (44) 
k+i j#i 

Now we can see directly the relations between Ur , U2 and U,. According to Eqs. (43), (34) and 
(42) one has 

u1#1 = c U&k = c V’IWj+‘) = VIP;+) 
k k 

i&b, = V2PAf) 

i&b, = V3W;+’ 

Consequently 

(45) 

(46) 

(47) 

u24 = p12p23ulh and u34’, = p13p23ulh (48) 

and as expected only one operator, say U,, is independent. Therefore we can choose one equation 
from the set (44) and get (U s U1 ) 

Uc$ = G,’ Pcj + PtGoUcj (49) 

to generate the operator for elastic scattering. Again we dropped the indices on 4 and t. Eq. (49)) 
however, provides also information on the full breakup process. General scattering theory tells (it 
follows directly from the homogeneous LSE using the free resolvent operator Go instead of the Gi’s 
in Eq. (30) ) that the transition amplitude into the state, where all particles are free, is given by 

Therefore the transition operator is 

u@$ - EKE@+) 
i k 

Let us now use again the basic 
respectively. One easily reads off 

UO+ = C F#i + C tlGoU4 
i 1 

(51) 

set (32) for k = 1 and the corresponding sets for k = 2 and 3, 

(52) 
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Since K$i = Gc’4i the first terms in Eq. (52) will not contribute to the on-the-energy shell amplitude 
in Eq. (50) and we can make a choice for U, dropping them. Then 

U,& - (1 +P)tG,,&$ (53) 

This equation provides the breakup operator, once the operator for elastic scattering, U, is known. 
Getting U0 is just a quadrature. 

We shall show in Section 4 that this formulation has serious drawbacks [57] for general forces. 
However it is ideal and has been essentially always used in case of finite rank forces [ 318,131, 
[ 430,385]. Since we shall work with general forces throughout we now identically rewrite Eq. (49). 
Define 

T f tG,U (54) 

Then it follows from (49) 

Tc$ = tPqb + tG,PTqb (55) 

which is the equation found before in Section 2.1 for the breakup process. Again we see 

U,+ = (1 + P)T4 

and the connection to the operator for elastic scattering 

UC#J=PG,‘~~+P@ 

(56) 

(57) 

The central equation for all our numerical performance is Eq. (55). This concludes the formal 
derivation of our basic equations (55)-(57) valid for arbitrary two-body forces. 

2.3. Inclusion of three-nucleon forces 

Quark physics, meson theory and relativistic extensions, all tell that 3NF’s should be present. Their 
strength is still under debate, but they will be there. Therefore we would like to extend the formalism 
for the inclusion of 3NF’s. We shall be more brief now and refer the reader to [ 297,298,172,173,175] 
and [ 2361 where both algebraic and heuristic (in the sense of the Neumann series) approaches are 
displayed. We denote the 3NF by V,. Then the set (32) is just modified by the occurrence of the 
additional interaction V4 in all three integral kernels. It appears natural to add a fourth equation 

!Py(+) = G4(V, + v, + V3)!P;+) 1 

This directly results from Eq. (27) using the resolvent identity with the Green operator 

(58) 

G4 E lim 
1 

e-0 E+k-Ho-V4 
(59) 

and 

lim i.eG& = 0 
6’0 

(60) 
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Then we introduce an auxiliary transition operator 

U‘$,& Z (v, + v, + Y#&o’ 

and derive the slight generalization of Eq. (41) 

Uir+r =~,,G,‘+I + C tjGUjr$r + v4GaU4141 
j+i 

(61) 

(62) 

which can be combined into the compact notation 

U,,4, = &,G+#J, + 1 tpGoUpl 4, (64) 
P+a 

with CY,~= 1,. . . ,4. We introduced the three-body t-matrix t4 driven alone by V,: 

t4 = v, + biGot4 (65) 

The antisymmetrization follows from the same steps as above and we end up with the generalization 

of Eq. (49) 

Uqb = PC,‘4 + PtG,U@ + t4GOU& (66) 

U4c,b = ( 1 + P)G,@ + (1 + P) tGoU# (67) 

Here U is again the operator for elastic scattering and U4 is defined by 

(68) 

k=l 

This set (66)-(67) is suitable for finite rank forces and has been used in [ 3341. For general forces 

we rewrite it by defining 

T E tG,U (69) 

T4 G t,G,U (70) 

into 

Tc$ = tP@ + tGoT,& + tPGoTrj (71) 

T4@ = (1 + P)t& + (1 + P)bGoT+ (72) 

(Note that the operator P commutes with t4). From Eq. (66) we directly read off the operator for 
elastic scattering 

Uqb=PG;‘c$+K’-$+T4# (73) 

and the operator for the breakup process turns out to be a nearly obvious generalization of Eq. (56), 
namely 

U&=(l+P)T++T& (74) 
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It is the set (71) -( 74)) which we shall use later in the numerical applications, when 3NF’s are 
present. 

2.4. 3N scattering observables 

The main dynamical ingredients for calculating observables are the transition amplitudes (+‘lUl#) 
for elastic scattering and (~$0 I&/4) for the breakup process. Now we have to be more specific and 
concentrate from now on on nucleon-deuteron scattering. The initial channel state 14) carries the 
information about the spin quantum numbers md and m N of the incoming deuteron and nucleon, 
respectively, as well as the relative momentum q,, of the nucleon with respect to the deuteron. Also 
later on we shall add the charge states of the particles in an isospin formalism. Thus for now 

(75) 

and I$‘) carries corresponding primed quantum numbers. The free state 40 describes the relative 
motions of three free particles and their spin magnetic quantum numbers. Again later on one has to 
add for each particle the information, whether it is a proton or a neutron. 

We describe the relative motions for three particles by standard Jacobi momenta 

pi=;(kj - kk) (76) 

q;=$(ki- $(ki +kk)) (77) 

for ijk = 123 and cyclically, expressed in terms of the individual momenta ki of the three particles. 
The free motion can be described in terms of any of the three pairs of Jacobi momenta. For brevity 
we now just write 

140) = IP4ml m2m3) (78) 

We normalize the momentum states as 

(PIP’) = &P - P’) 
kIl4’) = SC!7 - Q’) 

(79) 

(80) 

2.4. I. Cross sections 
One can derive the cross sections in two ways. Either one regards the asymptotically outgoing 

fluxes in the elastic and breakup channnels as it follows from the LSE’s for the fully antisymmetric 
scattering state Pi +) or one uses the standard time dependent scattering theory which leads to the 
transition rate in the distant future. 

Let us begin with the first approach. The antisymmetrized scattering state Pi+) obeys three inho- 
mogeneous LSE’s [ 1681. Each one of them can be used to extract the asymptotic behavior in the 
elastic channel. Take for example 

PC+) = 4, + GIL’%‘;+) a 

Let us denote by 

(81) 
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r =X2-X3 (82) 

R=x, - i(x2 + x3) (83) 

the standard Jacobi vectors conjugate to the Jacobi momenta p, and q,. Then the Green function G, 
in configuration space and restricted to the deuteron channel is 

The (negative) binding energy of the deuteron is denoted by Ed and the nucleon mass by m. Thus 
the asymptotic behavior of Pi+) in the deuteron channel is 

{ 

eiqR 2m 1 &d-R 

~:+‘(CR)jd+%(r) - - 3% 
(2GT)3/2 

R 

x 
J 

&‘dR’qTd ( r’) e-iq’.R’ (85) 

where d - ,/tn( E - Ed) ii G qOfi points into the direction of observation 8. It follows immediately 
that the differential cross section for elastic Nd scattering in the center of mass system is given by 

(86) 

where 

A4 +?I:,,,,(4’,%) = -~w7Q2wlw) (87) 

is the elastic scattering amplitude expressed with the help of the operator U from Section 2.2. We 
added the more detailed information on magnetic spin quantum numbers present in the states c$’ and 
4 on top of q’ and q,,. 

In case of the breakup process it is most convenient to use a homogeneous LSE with the free 
Green operator Go 

ry(+) = GOw;+’ (I (88) 

(Note that V denotes here the full potential energy.) The configuration space representation of Go is 
known [ 4101 and given as 

(rRIGolr’R’) = &(i)3i’$ fZ:“(Xx&?) 

with X2 = (r - r’)2 + !(R- R’)2. 
Let us now regard the limit Irl and [RI + co for fixed r’ and R’: 

X-p-ir’costJ+ lf $lW sirit 

(89) 

(90) 
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where we introduced the polar coordinates p and 5 

r =pcos[ 

R = fipsint 

Consequently using the asymptotic form of the Hankel function one has 

(91) 

(92) 

(93) 

with 

p - JmEicos~ (94) 

q=&Zfifisint (95) 

Note that the way r and R tend towards infinity fixes the asymptotic relative momenta p and q. Then 
using Eq. (93) it follows immediately from Eq. (88) 

!P(+)(r R) a ’ 

_iJ, eiGp 

e 4 pv2 
-(w3(PqIw:+)) 

One encounters an outgoing wave in the hyperradius p modulated by the breakup amplitude 

(4ol~ol~) = (P4lv:+‘) 

which tells how the energy is distributed over the two relative motions and which depends 

(97) 

on the 
directions of observations i and 8. Regarding the continuity equation it follows that the flux passing 
the surface element at asymptotically large p as fixed by 3 - i, 4 z i? is given by 

(96) 

1 3 3/2 
dN=; 0 ; didk cos’ 5 sin2 tdt 2 

= ~mpq2dqd~d~l(~ol~oI~>12 (98) 

Therefore dividing by the incoming flux one is lead to the five-fold differential cross section in the 
center of mass system: 

d5u 
(2?r)4m2 pq21(~ol~o14)12 

dp^dQdq = 3 q. (99) 

The second more standard way to arrive at the breakup cross section is to use the result of time- 
dependent scattering theory [ 121,254,241]. We sketch the derivation in Appendix A. Thereby we 
follow very closely the steps used in potential scattering as outlined for instance in [ 1721. The results, 
Eqs. (A.17) and (A.24), agree with the expressions found in the time independent approach. 

The transition rate, Eq. (A.23) from Appendix A, for the breakup process 

dN = 2r I(~ol~ol~>l’/- dpdq8 3q’ 3q2 4m + Ed - ; - 4m t 1w 
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can be rewritten as 

dkldk2dk3 6( klab - k, - k2 - k3) S Elab + l d - 2 - 2 - 2 

Thereby we introduced the projectile momentum in the laboratory system klab, its energy Elab z 

( 1 Pm) k:,b + (3/4m)4; and the final laboratory momenta ki of the three nucleons. 
It is natural to define and separate the phase space factor. For certain directions dii, dft, and an 

energy interval dE, around El z kf/2m the phase space factor kE is 

kE d& dl& dEl - J dkldk2dk3 S( klab - k, - k2 - k3) S( Ejab + Ed - c kf/2m) 

= di, dk2dE, 
m* ,/m-k; 

I-(k,,ck,).h+2k21’ 
t 102) 

Here k2 is given by the zero’s of the argument of the energy conserving S-function: 

k; - k2 . ( kla,, - k,) + k: - k, . klab - mEd = 0 (103) 

This equation (103) apparently defines an ellipse in the kl-k2 plane. The physically accessible 
kl, k2-values have to be nonnegative. Depending on the external parameter klab, the momentum k, 
and the directions ki and is, either the whole ellipse lies in the first quadrant, or only parts of it or 
there are no physical solutions at all. The points lying on that ellipse or on the corresponding curve 
in the El-E2 plane comprise the so-called kinematically allowed S-curve on which the physically 
accessible events have to lie. We provide an overview over all cases in Fig. 1. Let 0, and 02 be the 
angles between the beam axis and k, and i2, respectively. Then, as shown in Appendix B, certain 
regions of 6’i-values are kinematically forbidden. These are the values P) 5 8,) 6$ 5 O(+), except 
for the triangular like area at 8i M > 19’~). In the area surrounded by the circle like dashed curve in the 
center of Fig. 1 there are no real solutions to Eq. (103). All the curves shown in Fig. 1 are ellipses 
in the k,-k2 plane. The dot defines our convention for the starting value of the arclength S = 0, which 
is measured counterclockwise. 

The form of the phase space factor in Eq. (102) has the disadvantage that it diverges at the k,- 
values at which the ellipse has an infinite derivative. Therefore one replaces usually the E,-variable 
by an arclength S along that curve. It is a matter of convention to choose the location S = 0 on that 
curve and we use the one defined in Fig. 1. Now one has 

Consequently 

k-k dEl m2k2k2 1 2 
s 

E dS = 
k:(2kz - %2. (hat, -k,))* + k;(2k, - I, * (k,ab - kd)* 

Finally dividing by the incoming flux in the lab. system the breakup cross section is 

( 104) 

t 105) 
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Fig. 1. The different types of kinematically allowed loci in the kl-k2 plane as a function of 64, 82 and 412 = 90”. Only the 
positive kl and k2 values are physically allowed. The border of the mathematically forbidden area is given by the dashed 
circle like curve. The dashed straight lines separate physically allowed from physically forbidden regions (see text). The 
definition of the arclength S = 0 is given by the thick dots and S is measured counterclockwise. For further explanation see 
text. 

(2~)41(~~I~01~)12~2k:k~ 2m 
= - 

kf(2kz - i2. (klab - k,))* + k;(2k, - $1 . (klab - k2))* 3% 
(106) 

All the cross section formulas presented up to now refer to specified magnetic quantum numbers 
of all particles in the initial and final states. Not observing polarizations one has to sum over the final 
magnetic quantum numbers and average over the initial ones. 

The total cross section CT,~, for neutron-deuteron scattering is most easily determined via the optical 
theorem (see Appendix A and Section 5): 

(107) 

Again strictly spoken this refers to definite spin magnetic quantum numbers. 

2.4.2. Spin observables in elastic scattering 
In 3N scattering there is a rich variety of spin-observables. Besides the vector polarizations of the 

nucleons there are also vector and tensor polarizations of the deuteron - and this for elastic scattering 
and the breakup process. 

Let us first regard elastic scattering. A basis in spin space is 
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where mN and md assume all allowed values. In terms of that basis one can express an arbitrary 
initial pure spin state as 

ItZ) = C Uj”‘lAi) (109) 

The density operator for a mixed state formed with probabilities p,, is then 

b = C In)Pn(4 = C lAi)Pij(Ajl 
” ij 

with 

pij = c aj”‘p,a>“‘* 

n 

(110) 

(111) 

This 6 x 6 matrix p can be expanded in the complete set of 6 x 6 matrices 

{SP} E {,(i) 8 S(j)) (112) 

with the 2 x 2 matrices U(O) = 1, cCk) = flk, k = 1,2,3 (the usual Pauli matrices) and the 3 x 3 
matrices S(j), j = 0, . . . ,8 for spin 1 [ 3571. The latter ones are constructed from the spin 1 angular 
momentum operators 

and the unit 3 x 3 matrix. A convenient set [357] is 

S4) = &PXY = &3&S,, S5’ = fiPYZ = &3s,s,, S6’ = &PXZ = &3s,s, 

S7) = &(P,, - Pyy) = &(3&S, - 3S,S,), s’*’ = &Pzz = &(3S,S, - 21) 

The set of 36 matrices So is orthonormal with respect to the trace 

Tr (Y‘S”) = (2. i + 1)(2* 1 + 1) S,, = 6 6,” 

Now one can expand p and using Eq. ( 115) one gets 

p = d cS“Tr (pP) 
IJ 

(114) 

(115) 

(116) 

For a given density matrix the expectation value of any operator 8 is 

(6) = Tr (~0) 
Tr (14 

(117) 
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with 

0, E (Ai/G[Aj) 

Thus we have 

pi = :Tr (pi) C SP(SP)i 
cc 

(118) 

(119) 

In Eq. (119) we added an index i in order to denote the case of the initial state density matrix pi 
expressed in terms of the initial state expectation values (Sfi)i. 

What is the spin state in the final state of elastic scattering? Supplementing the notation in Eq. (85) 
for spin states (see [ 1721 for instance), the state accompanying the outgoing wave is 

If’“‘) = C [Ai) C MijUj”’ (120) 

i i 

with 

Mij = -im(2r)* (4’]Ul+) = -:m(27r)* (Ail(dlUlq)IAj). 

Eq. ( 120) defines the coefficients 

(121) 

t 122) 

for the superposition of spin states and thus the density matrix for the final state is 

tPf)ij = C(af)~n)Pn(af)i”)* = C Mik(Pi)kl”i 

n kl 

Now one can calculate the expectation value of any quantity P: 

(123) 

Defining 

z = Tr tMpiM+) 
Tr (Pi> 

(124) 

t 125) 

which is easily seen to be the elastic cross section of Eq. (86) summed over the spin orientations in 
the final state, one ends up with the most general expression for spin observables 

(P‘)fZ = i C(S”)iTr (MS”kCS’) (126) 

For later use we also need the unpolarized cross section. Assume the initial state to be unpolarized: 

(Sfi)i = 0 for all Y except for So - 1~~2 @ lsXs (127) 

Then the initial density matrix is simply given by 

pi = :Tr (pi> 12x2 @ 13x3 (128) 
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and from Eq. ( 125) the resulting spin averaged (unpolarized) differential cross section I,, is found 
to be 

1, = ;Tr (MM’) (129) 

Let us now regard the spin observables, in turn, which have been measured up to now. 

The nucleon analyzing power A, 
Assume the nucleon spin to be polarized in the initial state described by the polarization vector 

P = (U)i (130) 

All other initial state expectation values are assumed to be zero (unpolarized deuteron) , except for 
the one of the unit matrix, of course. 

We regard now the cross section (,u = 0) and get from Eq. ( 126) 

(131) 

Because of the initial state polarization there is an additional contribution on top of IO, which defines 
the nucleon analyzing powers 

A 

k 
_ Tr (MakM+> 

Tr (MM+) 
(132) 

In all what follows we choose the scattering plane according to the Madison convention [ 391 to 
coincide with the x-z plane and the y axis to point into the direction ki, x k,,,, where ki,, and k,,, 
are the momenta of the incoming and outgoing particles, respectively. The parity conservation leads 
then to the statement [ 3571 that A, = A, = 0. 

The deuteron analyzing powers 
As a spin 1 object the deuteron can be both vector and tensor polarized. The two cases are described 

by the polarization vector Pi S (pi) and the polarization tensor Pjk = (pjk), 
PI, + pyy + Pz, = 0 [ 3571, thus only two of the three are independent. 

For an unpolarized nucleon but vector and tensor polarized deuterons the 
again contributions on top of Z0 (see Eq. ( 126) for ,u = 0) 

respectively. Note that 

cross section picks up 

(133) 
i ik 

This defines the so-called vector and tensor analyzing powers of the deuteron, Ai and Ajk, respectively, 

A,= Tr (MPiM’) A, 
Tr (MpjkM') 

1 Tr (MM+) ’ Jk= Tr (MM+) 
(134) 

Again [357] parity conservation puts A,., A,, Axy and A,, to zero. In spherical tensor notation the 
nonvanishing and independent analyzing powers are defined by 

iT,, = $ A ?” T20 = &A;z , T2, = -$AXZ , T22 = &(A,, - A,,) (135) 
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The spin transfer coeficients 
In this case some of the spin directions are fixed in the initial state as well as in the final state. 

Assuming that only the incoming nucleon is polarized, the polarization of the outgoing nucleon in 
the final state (denoted with primes) can, according to Eq. ( 126), be written as 

(136) 

Here Pk describes the polarization of the incoming nucleon beam and P/(O) is the polarization of the 
outgoing nucleon as generated by the unpolarized nucleon beam (Pk = 0) 

p/(O) = Tr (MM+al) 

Tr (MM+) 
(137) 

The polarization transfer coefficients Kl provide information about the transfer of the incoming 
polarization to the outgoing nucleon and are given by 

Kl~ _ Tr (M@h) 
k Tr (MM+) 

(138) 

The vector and tensor polarizations of the outgoing deuteron can be expressed in an analogous way 

p; . I= z. 4’“’ + c p,K; , P; . I = IO f’;(O) + c pkK,f’ 

k k 

(139) 

Here the vector and tensor polarizations of the outgoing deuteron created in unpolarized nucleon- 
deuteron scattering are 

p;(O) = Tr (MiV+Pl) p!~~~ = Tr (MM%) 

Tr (MM+) ’ ” Tr (MM+) 

and the nucleon to deuteron polarization transfer coefficients are 

Kr _ Tr (MPIMtgk) , K”’ = Tr (M’PIjM+(Tk) 
k- Tr (MM+) k Tr (MM+) 

(140) 

(141) 

Again parity conservation allows only the following coefficients to be different from zero: Pi(‘), 

K,“‘, K;‘, KyY’, K,X’, and K,Z’ for nucleon to nucleon transfers, and P,,j(‘), Px~x~(o), Pxt,,(o), P,,fy;(“, 

Pz,z,(o) K;‘; K;‘, KY’, K,x’, K;‘, K;‘y’, K;‘Iz’, K$‘, K;‘“‘, K;‘“, K;‘“‘, 
deuteron polarization transfers. 

KI’Y’, and K;‘z’ for nucleon to z 

The spin correlation coeficients 
In the past even more complicated spin observables for elastic proton-deuteron scattering were 

measured with both protons and deuterons polarized in the initial state. In such a case on top of 
already known quantities new terms defining the spin correlation coefficients C,i and Cik,i (see 
Eq. ( 126) ) arise: 
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I = 10 1 + C P,NAr + i C P,dA;f + f C P$Ajk + f C PFPpCk.[ + 5 1 P,NPlCli.k (142) 
k k jk kl kli 

with indices N and d referring to nucleon and deuteron, respectively. The spin correlation coefficients 
are given by 

ck,l = 
Tr ( kfakp,k!+ ) 

9 C&k = 
Tr (i%fakP[iM+) 

Tr (MM+) Tr (MM+) 
(143) 

Again, parity conservation reduces significantly the number of nonzero coefficients to C.,.,, Cz,l, 

C.1-?,1, Cyz,x, Cy,?y Cxz,!, Cxx.!, C?.,,,.v, C:,,>,, Cx,z, Cz,z, Cxjz and C?,z,z. 
One also uses the notation, for instance S G -iC!,:Y and T E -iCxx,, - C.ry,s. 

2.4.3. Spin observables in the breakup process 
Let us now regard the breakup process. Here the spin state accompanying the outgoing wave in 

Eq. (96) is (up to a constant which drops out) 

lg’“‘) _ C ]/li) C Nija,;“‘, (144) 
i j 

where the spin basis for the three final nucleons is now 

{Ini>> = {lml)lm2)lm3)) 
and where we introduced the notation 

Nij E (4°1uOl+) = (-41(P41UOl~O)IAj) 

for the breakup amplitude. 
From Eq. ( 144) we read off the coefficients 

( af) I”’ E C Nijaj”’ 

which define the density matrix for the final state 

(145) 

(146) 

(147) 

(148) 
kl 

In comparison to Eq. (123) only the elastic amplitudes Mik are replaced by the breakup amplitudes 
Nik. Therefore all the expressions for the various spin observables given above remain formally the 
same for the breakup process. Up to now only some vector and tensor analyzing powers, as well as 
some spin transfer coefficients have been measured. 

It should also be noted, that for the breakup process, in which two of the three final nucleons 
are detected, one can consider either coplanar (all momenta including the beam momentum lie in 
one plane) or non-coplanar configurations. In case of the coplanar geometries parity conservation 
causes the observables to vanish which correspond to the ones vanishing in elastic nucleon-deuteron 
scattering. However, for non-coplanar configurations parity conservation does not rule out any of the 
spin observables. For the discussion of this interesting aspect we refer to [ 357,359]. 

This concludes the description of the basic formalism. 
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3. Technical performance 

We work in momentum space and in a partial wave representation. Partial wave projected states 
Iplm) are defined in relation to the full momentum states of Eqs. (79) -( 80) as 

(149) 

Then we can introduce states of total angular momentum in the two-nucleon subsystem as 

IP Us>.@) g C C(M p m - Alp Wb m - 14 (150) 
Ir 

where 1s m,) are states of total two-nucleon spin s = 0, 1. The motion of the third nucleon in relation 
to that two-nucleon subsystem is described correspondingly by 

(151) 

States of total three-nucleon angular momentum are then given as 

= - CC(jlJ,pM--ll)lp (Is)j~)/q(A~)ZM-EL)CC(t~T,YMT--)ltv)I~MT--) 
CL V 

(152) 

We added the isospin state to total isospin T and magnetic quantum number MT coupled out of two- 
nucleon isospin t = 0, 1 and the isospin $ of the third particle. Summing over all discrete quantum 

numbers and integrating over p and q one has a complete set of states in the three-nucleon space. Of 
course the states (pqa) are orthonormalized: 

(P’d m’lpq 4 = 
@q - 4’) S(P -P’> a 

44’ 
pp’ ffd (153) 

The basic equation to be solved is (see Eq. (55) ) 

TI4) = Q’l+) + tFGTI#) (154) 

The state 14) composed of a deuteron and a momentum state of the third particle is antisymmetric 
in the two-nucleon subsystem. Thus its representation in the basis Ipq (.y) requires not all states but 
only the antisymmetric ones in that subsystem. This is simply achieved by restricting the two-nucleon 
quantum numbers to 

1-i-s-I-t = odd (155) 

Since the operator tP is symmetric under exchanges of the particles in that two-nucleon subsystem 
also the representation of tPl#) needs only that subset of basis states. From Eq. (154) it then 
follows trivially that this is true also for T/4). Thus TIr$) is antisymmetric under exchange of the two 
nucleons in that subsystem. This is of course required to guarantee the overall antisymmetrization of 
the breakup amplitude in Eq. (56). 
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To be specific let us number the two nucleons in that subsystem by 2 and 3 in the following. 
Henceforth the decomposition of unity will always be 

(156) 

where the condition (155) applies. 
Let us now embark into the representation of Eq. ( 154) in the basis of Eq. ( 152). One gets in a 

first step 

(PVITM) = (P44w4 + $ ‘$ “( pqcz t p’q’d)(p’q’cI’lPIp”q”d’)(p”q”d’~GOT~qs) (157) I I 

The t-matrix element is relatively simple. The quantum numbers of the third particle are not affected 
and the free propagator in the LSE for t picks up just the eigenvalue of the kinetic energy of the 
third particle. Thus 

(pqc+( E) Ip’q’d) = S(qq;,q’) s,&,,, 

x(p (Zs)j (t$T MTltl E ( - $q2) jpf (ZY)j’ (t’i)T’ M;) (158) 

as follows from an easy algebra. The NN t-matrix t” is to a very high degree of approximation diagonal 
in spin s and isospin t, but at least in the state ‘SO (we use standard spectroscopic notation 2sf’Z,,) it 
depends on the charge state of the two nucleons. Thus 

(pqcr( t( E) Ip’q’Ly’) = “‘qq;, “) SAA&&’ &Sjj~ &,;c C t T,v MT-v)C(t;T’,v MT-v) ( ; 
Y 

(p’ (Z’s)j tv) (159) 

Obviously v = 1 , 0, -1 refer to the pp, np and nn systems, respectively. Since we neglect the 
Coulomb force throughout, there is no difference between pd and nd scattering and we can restrict 
ourselves to nd scattering for instance, which has MT = - i. On the right hand side we encounter the 
two-nucleon t-matrix depending on the energy E - $-q’, which is the total energy minus the relative 
energy of the third particle, on the relative momenta p and p’ and the discrete quantum numbers 1, 
Z’, s, j and t. Clearly 1 can be different from 1’ due to the action of the tensor force. 

Let us now just concentrate on the isospin features [ 5161 and drop all other dependencies. Evalu- 
ating the Clebsch-Gordan coefficients one gets 
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We explicitly see the need of the T = 3/2 state in order to be able to distinguish between the $2 and 
fL;=,’ interactions. 

In reality only in the two-nucleon state ‘So charge independence breaking has been clearly estab- 
lished experimentally, that is ?i;’ Z $:. As seen from Eq. (160) this will couple T = 3/2 states to 
the initial T = l/2 states. For certain observables the inclusion of T = 3/2 states is crucial, for others 
not. This will be discussed in Section 6. Even neglecting T = 312 admixtures, the linear combination 
it,’ + !t&’ from Eq. (160) can easily be taken into account without enlarging the set of coupled 
equations. From now on we shall write Eq. ( 159) as 

where Cu includes the information ZsjtT. 
The matrix representation of the permutation operator requires more work. This is a purely geo- 

metrical problem, though, and its solution is presented in [ 1721. There are various ways to evaluate 
P, see for instance [237]. For Eq. (157) the most convenient form is 

(p’q’a’lPIpqa) = Jfx S(pd,;T’) a(p,l,2r2) G,,,(q’qx) 
-1 

(162) 

with 

v=&$GZ, ?r2=Ja (163) 

and 

G,,,( q’qx) = c pk(x) c c q~l;+l~ql;+ll~~,~l’h (164) 
k q+r;=r 11 f/z=1 

The purely geometrical quantity ~~~llh is given in Appendix C 
Finally Go is of course diagonal with the eigenvalue (E + k - ( 1 /m)p2 - (3/4m) q2) -* . 
Equipped with all that we arrive at the following set of coupled equations: 

(pqalTI#) = (pqcYltPI& + y x /dq’ qt2 Jdx fdp’ a1’ 5: (3’4m)q2) 
Q’ a” o -1 

x Gc+att (44% 
1 (~2q’~“ITI~) ’ 

E + ik - q2/m - qf2/m - qq’x/m pi’ (165) 

It remains to display the driving term. We need 4 in the basis of Eq. (152). It is an easy exercise to 
arrive at 

where 
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cLYrN = J 2h+ 1 
~C(A~Z,OrnN)C( lZJ, m&Q) (167) 

and LYE is the set of discrete quantum numbers which in the two-nucleon subsystem contains 1 = 0,2, 
s = 1, j = 1, and t = 0, the deuteron quantum numbers. We assumed that the initial relative momentum 
q. points into the z-direction. Of course 7rl and 7r2 are now defined through q and qo. 

For each fixed total angular momentum J and parity Eq. ( 165) represents an infinite set of coupled 
integral equations in the two continuous variables p and q. There are three sorts of singularities in 
this set. The two-nucleon t-matrix f(p, p’, z) has a pole singularity for z = Q, the deuteron binding 
energy, if the channel indices coincide with 3SI -3 Dt. Since the momentum q varies between 0 and 
00 one hits that pole for a specific q-value for E above the deuteron threshold, which lies at E = q,. 

Clearly that singularity generates the elastic cut. Next there is the singularity of the free propagator. 
The x-integration generates logarithmic singularities in the variable q’ whose positions move with q. 

Finally the t-matrix f generates a square root singularity in q at q = ,/m in the amplitude 
(pqaJTJ&). All that will be displayed in some detail in Section 4. 

Let us now regard the set (71)) (72) which includes the 3NF. 
For larger computers than available right now (at least to us) the three-body operator t4 driven by 

the 3NF V4 can be evaluated directly solving Eq. (65). This requires a tremendous amount of storage 
resources and computer time. Then the solution of the set (7 1) , (72) could be obtained directly as for 
the simpler case without 3NF. Instead we have to use a perturbative expansion, where several orders, 
however, have to be taken into account. This reduces the amount of necessary computer resources 
substantially and then gets feasible. In zeroth order in V4 the set (71)) (72) is 

PO’ = tP + tPG()T(O) , T,(O) = 0 (168) 

The contribution T(‘) and Til’ of first order in V4 is 

T”’ = tGoT,“’ + tPGoT(‘) , T;l’ = v,( 1 + P) + v,( 1 + P)GOTco) (169) 

The integral kernel in the first of the Eqs. (169) is the same as in Eq. ( 168), only the driving 
term has changed. This is very important from a numerical point of view. 

Expanding t4 of Eq. (65) in powers of V, one easily finds the contribution of nth order in V4 to 
be (n > 1): 

T(“) = tG,T;“’ + tPGoT(“) 

T;“’ = V4(GoV4)“-‘( 1 + P) + ~V4(GoV4)‘-1Go(l + P)T’“-k’ 
k=l 

(170) 

This can be identically rewritten into a more convenient form, which requires only the amplitudes of 
one order below the actual one (n > 2): 

T4(“) = V4Go( 1 + P)T’“-” + VG T(“-‘) 4 04 (171) 

Then the full amplitudes are 

T+“‘, T4 = -&“i) (172) 
i=O id3 
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1 

Fig. 2. The 7r - r exchange three-nucleon force. The shaded areas do not include the forward propagating nucleon. 

The 3NF’s [97,406,100], based on the = - T, ‘TT - p and p - p exchanges split naturally into three 
parts according to the nucleon that undergoes (virtual) meson-nucleon scattering. Then V, has the 
structure 

v,(l+P)=(l+P)v~“(l+P) 

where V,(’ ) is one of the three parts. Consequently we can write 

(173) 

T,(“E(l +P)T *;” 
3 ?;I’ = V;“( 1 + P) (1 + GJco)) (174) 

and for n 2 2 

Ti”’ = (1 + P)?:“’ , fin’ = v,“‘( 1 + P)Go(T(“-‘) + f;‘+“) 

The set of Eqs. ( 172)-( 175) is the one we employ. 

(175) 

The partial wave representation is analogous to the one displayed above for the zeroth order 
(Eq. ( 168) ) and we refer the reader to the detailed exposition in [ 2351. 

A new feature, however, is the partial wave representation of the 3NF itself, which requires some 
explanation. The 7~ - r exchange 3NF [97] is a prominent process and is depicted in Fig. 2. The 
shaded area represents the full n-N off-the-mass-shell scattering amplitude except for the forward 
propagating nucleon, which generates just an iteration of the one-pion-exchange among the three 
nucleons and which is of course included in the NN force itself. The rr - rr Tucson-Melbourne 3NF 
model [96,97] has the following form: 

(k:k;k;lVd’)lW2&) = &W, 

HtQ*) H(Q’*) 
'(Q*+p*) (Q'*+p*) 1 r2’T3 

+ k2 + k3 - k; - k; - k;) & 
N 

u2.Qq+Q'[u+bQ-Q'+c (Q*+Q",] 

+d73 x 72 02 . Q u3 + Q’ 01 . (Q x Q') } (176) 

where 
2 

(177) 

stands for the strong form factors at both ends of the pion lines. /i is a suitable cut-off parameter 
and a, b, c, and d are constants of the theory. The task is to present that form in the basis given 
in Eq. (152). This leads to quite formidable expressions, which are outlaid in detail in [ 971 and 
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[460]. Here we would like to point out only the most elementary structure, which illustrates already 
the complexity ] 1751. 

Let us neglect spin- and isospin dependencies and keep only the meson-propagators 

(P’dIv’IPq) = l l 
Q2+p2Q"+p2 

(178) 

This corresponds in configuration space to a product of two (regularized) Yukawa potentials between 
particles 1 and 2 and 1 and 3, which obviously is a 3NF. Now the pion momenta expressed in term 
of the Jacobi variables are 

Q=p-p’-;(q-q’), Q’=p-p’+;(q-q’) (179) 

and one can see that the individual angular dependencies with respect to 6, pI’, 4, and 4’ are buried 
in the expression ( 178). Thus 

(p’q’(Z’A’)L’M’IV4”Jpq(ZA)LM) =/d/Y’ dQ’ d@ d~J$;!“*(~‘~‘) 

1 1 
X 

(p-p' - ;(q_ qf))2+P2 x (p-p'+ ;(q_q'))2 +P2 yY(p4) 

x c /+$A= J (21, + l)! 

(2A,) !(2A2)! *3+A4=,2 qA3q’b 
c 

d 

(212 + l)! 

hl+Az=ll 
(2A3)!(2A4)! 

x C(A,Z&OO) C(A2Z21’,00) C(A3&A,00) C(A&A’,OO) 

(180) 

with 

Hl,l,,, = jldrl pdx2 i’ 
1 

dx3pI,(xl)S,(x2)p~j(x3) 
AFA$ ((A: + $A; + p2)2 - A:A;x:) 

(181) 

-I -I -1 

and 

A, =dm, A2=dw (182) 

One encounters unavoidably a threefold x-integral. Including the spin dependencies the expressions 
get even more complicated and experienced programming is required in order to make the expressions 
tractable in a reasonable time. This has been achieved [ 2354601. 

4. Numerical algorithms and techniques 

Though the number of equations in the set (165) is infinite the short range nature of the NN force 
allows a very systematic truncation. For a given energy the two-nucleon t-matrix can be neglected 
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beyond a certain total two-body angular momentum jm,. Therefore under this assumption for a 
given total three-body angular momentum, the number of discrete sets of Q’S, called channels in the 
following, is strictly finite. The concrete realization will be described in Section 6. As an example we 
display in Table 1 a small subset of discrete quantum numbers hidden in the index IX In praxis the 
number of coupled equations is of the order 60. This together with the two continuous variables p and 
q, which require typically 30 and 40 grid points, respectively, leads to a matrix representation of the 
integral kernel of a typical dimension 72000 x 72000. A direct inversion appears right now not to be 
possible. Consequently we used an iterative procedure, which requires only matrix-multiplications and 
where the integral kernel is built up for each iteration from pieces, which are evaluated beforehand. 
See [ 511,103,236] for detailed information. Putting Eq. (165) into the form 

T = T”’ + KT 

one gets the multiple scattering series by iteration 

7’ = T(O) + m’o’ + K*T’O’ + K3T’O’ + . . . 

(183) 

(184) 

Obviously the different terms are generated recursively as 

T’“’ = J&r@-l) (n 2 1) 

The Born series 

(185) 

T = FTC”’ (186) 
n=o 

diverges for the state of total angular momentum and parity 5” = l/2+, the quantum numbers of the 
3N bound state. This is even true at M 100 MeV and beyond. For all other J” states the Born series 
converges but rather slowly for 1” = 3/2+. Therefore it is mandatory to use an algorithm which 
makes sense out of that divergent series and which provides a fast result in case of convergence. 
The method of PadC approximants [33,493] turned out to be very convenient and very accurate. For 
3N scattering it has been used the first time in [276]. As an example we display in Table 2 the 
individual terms of the Born series, the partial sums up to a certain n and the PadC approximants to 
that order. The example refers to J” = l/2+, the first channel from Table 1 and to p = 0.50 fm-’ and 
q=O.43fm-‘.Cl early the Born series is strongly diverging, whereas the series of PadC approximants 
is beautifully converging. The second example in Table 2 is for J” = 3/2+, where the Born series is 
slowly converging and the PadC approximants reach the final sum significantly faster. The examples in 
Table 2 are based on the realistic NN force AV18 [ 5071 and incoming nucleon lab. energy E = 22.7 
MeV. 

Let us now regard the singularities in the set ( 165). The deuteron pole l/( z - cd) of tl( z ) carries 
over to the amplitude T as is obvious from ( 165). Therefore it is advisable to define new quantities 

(PPlfM) 

(pqalTl& - E + in - (3,“Wq* - ~ci 
for a = ad 

T=i+ for a # ffd 

(187) 

and 
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Table 1 
A subset of discrete quantum numbers (Y defined in E$. ( 152) corresponding to J” = l/2+. 

No 1 S j A I t T J 

I 0 0 0 0 l/2 
2 0 0 0 0 112 
3 1 1 0 1 l/2 
4 1 0 1 1 l/2 
5 1 0 1 1 312 
6 0 1 1 0 l/2 
7 0 1 1 2 312 
8 2 1 1 0 l/2 
9 2 1 1 2 3/2 
10 I 1 1 1 112 
11 1 1 1 1 312 

1 l/2 
1 312 
1 l/2 
0 112 
0 II2 
0 l/2 
0 112 
0 112 
0 12 
1 l/2 
1 l/2 

l/2 
II2 
II2 
112 
112 
II2 
12 
12 
I 2 
II2 
l/2 

&c&p, p’, E - (3/Wq*) 
Tcbr p,p’, E - -&q* E + k - (3/4m)q* - Ed 

for (Y = ad 

for ff # (Yd 

It results 

x &,I! (qq’x) 
1 

E + ic - q*/m - q/*/m - qq’x/m 

x 1 

E + ie - (3/4m) q* - Ed 
+ am,,,, h?‘~“IW4 

7ri’ 

(188) 

(189) 

The integral over q’ can be discretized in the usual manner using Gaussian quadrature points for 
instance after an appropriate substitution. We cut off the integral at a value q = q, which is sufficiently 
large to guarantee convergence and independence of that specific choice. The deuteron pole is then 
treated by a standard subtraction technique. Much more delicate is the free propagator singularity. 
One can rewrite the free propagator as 

1 m 1 

E+k- (l/m)(q*+q’*+qq’x) =-99/x-x0-k 
(190) 

with 

x0 = 
mE - q* - q’* 

44’ 
(191) 

For suitable q and q’ values 1x01 2 1 and we encounter a singularity in the x-integration. Collecting 
the x-dependence of the other terms into f(x) one has the following structure treated again by 
subtraction: 
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Table 2 
The Born terms of Eq. (186), its partial and Padt sums. An element (pqcYITI4) for (Y = 1, p = 0.50 fm-‘, q = 0.43 fm-’ 

at E = 22.7 MeV has been chosen. The upper part refers to J” = l/2+, the lower part to J” = 3/2+. The realistic NN force 
AVl8 was used. 

n P(P9 4) CL, T?'(P, q) PadC 

1 16.026 - 29.292 i 16.026 - 29.292 i 16.026 - 29.292 i 

2 10.134 + 54.000 i 26.160 + 24.708 i - 11.835 - 8.850 i 
3 - 54.328 + 24.747 i - 28.168 + 49.455 i - 13.774 + 1.211 i 
4 - 55.570 - 54.848 i - 83.738 - 5.393 i - I 1.793 - 3.429 i 

5 44.977 - 84.504 i - 38.761 - 89.897 i - 11.149 - 4.964 i 
6 120.522 + 18.136 i 81.761 - 71.761 i - 11.047-4.378i 

7 23.629 + 150.770 i 105.390 + 79.009 i - 10.894 - 4.343 i 

8 - 170.670 + 88.851 i - 65.280 + 167.860 i - 10.871 - 4.476 i 
9 - 172.330 - 169.791 i - 237.610 - 1.931 i - 10.820 - 4.432 i 
10 134.710 - 272.919 i - 102.900 - 274.850 i - 10.813 - 4.415 i 

11 379.050 + 54.490 i 276.150 - 220.360 i - 10.818 - 4.420 i 
12 83.880 + 474.290 i 360.030 + 253.930 i - 10.817 - 4.420 i 

13 - 534.210 + 286.130 i - 174.180 + 540.060 i - 10.818 - 4.420 i 
14 - 551.600 - 526.114 i - 725.780 + 13.946 i - 10.818 - 4.420 i 
15 412.620 - 865.716 i - 313.160 - 851.770 i - 10.818 - 4.420 i 
16 1196.580 + 153.550 i 883.420 - 698.220 i - 10.818 - 4.420 i 

17 285.780 + 1490.540 i 1169.200 + 792.320 i - 10.818 - 4.420 i 
18 - 1669.470 + 926.280 i - 500.270 + 1718.600 i - 10.818 - 4.420 i 

19 - 1762.030 - 1632.221 i - 2262.300 + 86.379 i - 10.818 - 4.420 i 

1 - 6.291 - 7.546 i - 6.291 - 7.546 i - 6.291 - 7.546 i 
i 

i 

2 0.504 - 0.732 i - 5.787 - 8.278 i - 6.074 - 7.999 
3 - 0.821 - 0.527 i - 6.608 - 8.805 i - 6.414 - 8.122 

4 - 0.301 + 0.739 i - 6.909 - 8.066 i - 6.491 - 8.296 i 
5 0.669 + 0.090 i - 6.240 - 7.976 i - 6.501 - 8.276 i 

6 - 0.078 - 0.593 i - 6.318 - 8.569 i - 6.524 - 8.283 i 

7 - 0.492 + 0.202 i - 6.809 - 8.367 i - 6.510 - 8.269 i 
8 0.285 + 0.378 i - 6.524 - 7.989 i - 6.509 - 8.270 i 

9 0.261 - 0.331 i - 6.263 - 8.320 i - 6.509 - 8.270 i 
10 - 0.344 - 0.150 i - 6.607 - 8.470 i - 6.509 - 8.270 i 
11 - 0.051 + 0.330 i - 6.659 - 8.140 i - 6.509 - 8.270 i 

12 0.296 - 0.030 i - 6.363 - 8.171 i - 6.509 - 8.270 i 

-1 -1 -1 

The first integral in Eq. ( 192) dropping f(xo) leads to 

In 
I I 

s +i&)(l _ [x01) = In qq’+q2+q’2-mE 

qq’-q*-q’*+mE 
+i7rO l- 

0 ( 

mE-q2-q’* 

44’ 

(192) 

1 
(193) 
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4 YE qmaz 

Fig. 3. The location of the logarithmic singularities in Eq. (193). Along the solid lines the logarithm is singular, in the 
shaded area the &function contributes. 

and the second one, with the singularity removed, can be discretized conventionally. We always use 
Gaussian quadrature. The logarithm in Eq. (193) gets singular along two lines in the q-q/-plane, 
which form a moon shape region and which are displayed in Fig. 3. In the interior of that moon 

shape the imaginary part in Eq. (193) is present. Except for q = 0, qE = m and q = @ E qmox 

in the interval q 2 qmx the integral in q’ hits two logarithmic singularities. Their positions depend 
on q and are known as the notorious moving singularities in every three-body problem [ 4301. We 
treat them again by subtraction. One can also use special integration rules based on logarithmic 
weight functions [ 1031. This obviously requires quadrature points which change with q. It appears 
therefore unavoidable to interpolate the amplitude (v2q’Ly”IfI4) in the variable q’. We use a Spline 
interpolation of the form 

f(4’) = 2 &(q?f(qk) 
k=l 

(194) 

which is based on cubic Splines and has been worked out in [ 1711. The detailed and rather lengthy 
layout of that whole subject of singularities can be found in [ 511,103,236]. 

The complicated x-dependence buried in 7rI and 7r2 requires also an interpolation of the two-nucleon 
t-matrix and the amplitude f. Again we use the same Spline method. 

The integration for q’ 2 qmnx does not require interpolation and is standard except for the deuteron 
pole subtraction mentioned before. 

Finally we mention that (pqcy(ff’lg3) behaves as 

bq4%4 = A + B&m - q2 (195) 

for q --+ qmx from below. This follows trivially from the fact that the two-nucleon t-matrix has 
exactly that behavior as a function of the subsystem energy (E - (3/4m)q*). In the interpolation in 
the variable q one has to take that into account by changing to the variable dm in a proper 
interval below qmx. For more details we refer the reader to [ 103,236]. 



144 W Gliickle et al. /Physics Reports 274 (1996) 107-285 

If one would have worked with Eq. (49) for the operator U the deuteron pole would have been 
affected by the x-integration, too, which is introduced through the permutation operator P. Thus that 
simple pole would have also been “smeared out” into logarithmic singularities. This is the reason, 
why we work with the breakup operator T and its integral equation given in Eq. (55). 

Since the moving logarithmic singularities are the main challenge to be overcome in solving 
the three-body equations above the breakup threshold, we would like to finally mention a recent 
investigation [237] which avoids that difficulty, but unfortunately aggravates the treatment of the 
virtual pole position of the NN t-matrix in the state ‘So. For other three-body systems, which do not 
have nearby t-matrix pole singularities, that new approach might be very profitable. Looking back 
to Eq. ( 154), inserting intermediate states and exhibiting the deuteron pole as in Eqs. ( 187)) ( 188) 
one has 

I 

+ w “(pq~lilp’q’~‘)(p’q’a’IPlp”q”~‘~) E + ie _ @,*,; _ (3,4m)q,,* 

{ 

8 #an 
x E+ie- (3/4m)q”2-Q 

(p”q”dlQ#+ + Lad ( p~~q%~~/ilc#+} (196) 

The second part of the kernel on the right hand side contains only one pole. Instead of using the 
form (162) of the permutation operator one can use another one. Altogether there are six different 
forms corresponding to different momenta as arguments in the S-functions and their possible usage 
is discussed in [ 2371. Thus let us consider 

(p’+JlP Ip”q”a”) = 7dx Q+;+;l) Q$;+T) G&p (p’q’x) 

-1 
(197) 

with 

(198) 

and c given in Appendix C. Then the second part of the kernel will become 

fl 

“bPl&w4 
1 

E + ie - pQ/m - (3/4m)qt28d”aA - I 
dx &wr (p’q’x) 

(iirij2at”]Iil+) 

-I 
..oe;,, 

(199) 

Since the !-matrix is diagonal in q the free propagator has just a simple pole in p’ whose position 
is determined by q, which can simply be treated by subtraction like in a two-body LSE. However 
one faces a two-fold interpolation for f. 

Now the first part in Eq. ( 196) is the more interesting one. Using there also the same permutation 
operator would introduce into the deuteron pole a x-dependence and consequently logarithmic singu- 
larities. Therefore nothing would have been gained. The simple trick is now to write the product of 
two poles as a difference of two terms 
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1 1 

E + ic - p” ‘/m - (3/4m)q” 2 E + ic - (3/4m)q” 2 - Ed 

i 

1 1 

= E+it:-p”2/m-(3/4m)q”2-E+ie-(3/4m)q”2-~d p’12/m-ed 1 

1 
(200) 

Since Ed < 0 the last factor is nonsingular and well behaved. The first part on the right hand side can 
be treated as above using Eq. ( 197)) which just leads to a simple pole. In the second part one can use 
the first type of permutation operator given in Eq. (162), which does not affect q” and again one just 
encounters a simple pole. This form has been applied in [237] to realistic calculations. Though the 
programming is much simpler the code is more time consuming because of the two-fold interpolation. 
However, the most serious drawback of that approach is the reliable control of the virtual state pole 
in the ‘St, NN t-matrix. It lies on the second energy sheet and leads to a q-dependence 

(P4~lM) = 0 
1 

E - (3/4m)q2 + i&%/ 
(201) 

where Ev x -100 keV is the location of the virtual state in the second sheet. In the approach 
described before, which we are actually using, that pole can be safely handled by cumulating a 

sufficient number of quadrature points near qmax = 
J- 

$mE. In the approach avoiding logarithmic 
singularities one has to put much more effort in treating that pole safely. The difficulties are caused 
by the numerically small value of 1 Ev(. For more details we refer to [ 2371. 

5. Accuracy tests 

Our internal tests lead us to the result that the observables, cross sections and spin observables 
in elastic Nd scattering and the breakup process, have at most numerical errors of l-2%. More 
convincing for the readers, however, might be comparisons to the other work performed by other 
groups using independent and quite different algorithms. Before we come to that we would like to 
mention one simple test. A necessary requirement for having solved the 3N equations correctly is to 
fulfill unitarity. The Faddeev equations as an exact framework have unitarity built in. The unitarity 
relation for the elastic transition operator coupled to the breakup process can easily be derived from 
Eq. (49): 

Choosing specifically 4’ = 4 one gets the optical theorem (see also Appendix A) 

a 

- WWI49 =7+0m J 41(4,1~14~12 + +m J @4q2P4 (~ol~old4 I2 
0 

(202) 
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Table 3 
Verification of the optical theorem (203). II and I2 denote the two integrals on the right hand side of Eq. (203), 1, the 
left hand side. 

hb [MeVl 

10.0 
22.7 
65.0 
180.0 

11 [ mbam] 

0.2629 
0.1608 
0.0519 
0.0148 

I;? [mbam] 

0.0433 
0.0707 
0.0688 
0.0615 

II + Iz[mbam] 

0.3052 
0.2315 
0.1210 
0.0763 

Z3 [mbaml 

0.3053 
0.2319 
0.1215 
0.0760 

(203) 

We evaluated the forward scattering amplitude and the two integrals and verified Eq. (203) to be 
fulfilled within less than 0.5%. Examples are given in Table 3 for various energies and using the 
Bonn B NN force [ 3211. The numbers in Table 3 are fully converged with respect to the number of 
partial waves. 

A more detailed and independent test was to compare individual observables evaluated also by 
other groups. In one study [ 1021 we used approximations of finite rank to the Paris potential [ 3101, 
including all relevant partial wave NN force components. In other words the NN forces in all its 
complexity has been involved (see Section 8.4). Since our algorithm is general we can use also these 
finite rank forces without making use of their special feature. On the other hand that feature allows 
to reduce the Faddeev equations to a coupled set of one-dimensional integral equations, which are 
easier to solve than the two-dimensional ones we are using. Moreover the complex structure of the 
moving logarithmic singularities can be avoided in these one-dimensional equations by rotating the 
contour of integration to complex momenta. In that special form the Faddeev equations look quite 
differently from ours and the comparison of 3N observables achieved by the two methods represents 
a highly nontrivial test. We compared in [ 1021 observables for elastic nd scattering obtained by our 
method to the ones of the Graz-Osaka group using the one-dimensional equations. One example (the 
tensor analyzing power Tzl) is shown in Fig. 4. The agreement is essentially perfect. 

In a second study [238] we compared elastic Nd phase-shift and mixing parameters below the 
breakup threshold to results achieved in a totally different approach in configuration space. There 
wave function components are written as a product of a short range correlation function and a part 
which can be expanded in hyperspherical harmonics. That treatment is called the pair correlated 
hyperspherica1 harmonic basis method and will be described in Section 8.3. 

The partial wave projected S-matrix for elastic Nd scattering 
behavior of the Faddeev component 

is defined through the asymptotic 

@(r, R) + c (PI(T) c { owLYl)j=, {YA(B)X,,Z},}JM 
ko.2 A’I’ 

1 
X ( > -- 

2iqoR 
[8nn,S,,,~-i(40R-~la) _ ei(“R-~A’n)S:‘,,,~,~ 

As shown in [238] that S-matrix is connected to the U-matrix of Section 2.2 via 

(204) 

(205) 
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I 1 

0.04 -Flab = 10.0 MeV 

Fig. 4. A comparative study based on finite rank approximations of the Paris potential, see text. The solid line is our 
momentum space result at E = 10 MeV, the crosses are the Graz-Osaka results. 

where 

uAJ’,‘,A, = 
ES 

+‘P’~w(P’) 
s 

dpp2~r(p)(p’qo(~‘l)I(~‘f)~‘JMI~lpq,(ll)l(h~)lJM) (206) 
1’1 

In Eqs. (204) and (206) spl are the deuteron wave function components in configuration and 
momentum space, respectively. Following Seyler [438] we used the channel spin representation, 
which is based on the channel spin J$ 

z = j, + sN 

and which requires the following recoupling: 

(207) 

The S-matrix given in Eq. (205) in the AZ- or in the above introduced channel spin representation 

is unitary below the breakup threshold. For the two parities T = ( -)J*i it is, except for J = i, a 
3 x 3 matrix describing the following couplings: 

s = NLZW) = 

( 

S:,it Jrjf S:,$S I*$$ %ft J&it 
S:,&$j S;*;$:J*;$ S:*&*# (209) 

S:*$j,Jr$ j s:*j j,J*jf ?*j j,,*j j ) 

In case of J = 2 ’ it is only two-dimensional. The S-matrix can be diagonalized 

S = lJT$AU (210) 

where A is the diagonal matrix of eigen phases Si, and the unitary matrix U can be chosen as 

u=vwx (211) 

with 
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( 
1 0 0 

u= 0 COSE sin E (212) 
0 -sine COSE 

i 

cost 0 sin5 
w= 0 1 0 

) 
(213) 

-sin5 0 cosl 

( 

cos 77 sin77 0 
x= -sin77 cosr] 0 

) 
(214) 

0 0 1 

It is important to use a convention to built up U out of the three eigenvectors of S. In that respect 
we refer to [ 2381. As examples we depict in Table 4 some eigen phases and mixing parameters 
obtained with the realistic AV14 NN potential [ 5051. The agreement between our results and the one 
achieved by the pair correlated hyperspherical harmonic basis method is essentially perfect. For the 
complete survey see [ 2381. 

At the energy of the Nd threshold (incoming nucleon lab. energy E = 0) only the s-wave scattering 
lengths survive, the doublet (2 = $) and the quartet ( Z = i) ones. They are defined as the limits 
q. --f 0 of the corresponding eigen phases 

Sio + -*a. qo 

Sf + -‘a - q. (215) 

We show various results in Table 5. The agreement among different groups is very good. Due to 
the wrong 3H binding energy given by the potentials used in Table 5 the doublet scattering length, 
which is correlated to the 3H binding energy, deviates from the experimental value of 0.65 f 0.04 
fm [ 1 lo]. We come back to that point in Section 6. The quartet case is less sensitive and theory 
agrees reasonably well with the experimental value of 6.53 f 0.02 fm [ 1 lo]. 

In case of the breakup process we had to be satisfied up to now with two somewhat restricted 
comparisons. One is within our momentum space approaches. In Section 4 we showed that logarithmic 
singularities can be totally avoided. This leads to a quite different kernel as defined in Eqs. ( 196)- 
(200) of the corresponding Faddeev equation in comparison to the one given in Eq. ( 189) we 
normally are using. Since that alternative method runs into difficulties in treating the iSo virtual pole 
singularity we dropped that force component totally, but kept all others up to j,, = 2. Again the Bonn 
B NN force has been used. The agreement for elastic and breakup observables using both methods 
was very good. For breakup the nn QFS posed the most difficult task and the maximal difference 
there was up to 3%. That can be reduced if necessary by increasing the number of discretization 
points. We refer the reader to the detailed presentation in [ 2371. 

The other comparison [ 1561 is for the breakup amplitude in a model calculation using the Malfliet- 
Tjon (MT) spin-dependent s-wave NN forces [ 3241. The comparative study was a configuration 
space solution of the Faddeev equations (see Section 8.1 for a brief description of that method). In 
configuration space the Faddeev component has the following asymptotic form 

(216) 
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Table 4 

Comparison of nd eigen phase shifts S:, and mixing parameters (in degrees) determined in our momentum space Faddeev 
method (Bochum) and in the pair correlated hyperspherical harmonic basis method (Pisa). 

&b = 1 h’kv .I& = 2 MeV &b = 3 MeV 
Bochum Pisa Bochum Pisa Bochum Pisa 

% 

5/2+ 

l/2+ 

-0.999 - 1 .oo -2.57 -2.58 -3.91 -3.91 

-17.8 - 17.7 -28.0 -27.9 -34.9 -34.9 

1.03 I .04 1.20 1.21 1.25 I .26 

-4.20 -4.20 -6.66 -6.67 -7.54 -7.54 

12.4 12.4 20.5 20.5 25.0 25.0 

3.73 3.73 5.37 5.38 7.23 7.24 

-47.2 -47.2 -61.3 -61.3 -70.5 -70.5 

0.579 0.579 1.54 1.55 2.41 2.42 

- 1.07 - 1.08 -2.77 -2.77 -4.22 -4.22 

0.65 1 0.65 1 0.716 0.717 0.779 0.783 
0.544 0.546 1.01 1.01 1.43 1.44 
-0.113 -0.113 -0.246 -0.245 -0.386 -0.385 

0.124 0.125 0.502 0.501 0.942 0.943 

-4.14 -4.15 -6.50 -6.52 -7.21 -7.25 

14.3 14.3 22.7 22.7 26.3 26.3 

-1.31 -1.29 - 1.96 - 1.94 -2.75 -2.72 

-0.186 -0.182 -0.273 -0.272 -0.265 -0.268 
-1.11 -1.10 -2.30 -2.30 -3.78 -3.77 

-0.0153 -0.0151 -0.0923 -0.0926 -0.21 I -0.21 I 

0.574 0.575 1.53 1.53 2.38 2.38 

-1.14 -1.14 -2.98 -2.98 -4.57 -4.57 

-0.286 -0.285 -0.306 -0.3 11 -0.323 -0.33 1 
-0.286 -0.287 -0.516 -0.520 -0.727 -0.733 

-0.873 -0.872 -1.58 - 1.58 -2.17 -2.16 

13.4 13.3 22.0 21.9 26.3 26.2 

-0.0644 -0.0645 -0.258 -0.258 -0.478 -0.477 

0.130 0.131 0.523 0.523 0.969 0.969 

0.470 0.467 0.493 0.49 1 0.518 0.5 13 
0.417 0.416 0.734 0.732 0.993 0.993 
-0.132 -0.132 -0.258 -0.257 -0.365 -0.364 

- 1.06 -1.06 -2.73 -2.73 -4.14 -4.15 

0.00792 0.00783 0.0480 0.048 1 0.110 0.1 IO 

-0.0160 -0.0159 -0.0966 -0.0969 -0.220 -0.219 

0.377 0.361 0.383 0.383 0.367 0.370 
0.452 0.453 0.838 0.846 1.21 1.21 
-0.152 -0.152 -0.317 -0.318 -0.484 -0.490 
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Table 5 
nd doublet and quartet scattering lengths for NN forces only. (cd denotes charge dependence of the potential; in all these 
cases the NN forces were kept up to j,, = 4.) 

Potential *a [fm] 
Bochum [861 ~2701 

4a [fm] 

~2711 Bochum I861 [2701 12711 

MT I-III 
RSC 
AV14 

AV18(cd) 
Nijm93 (cd) 
NijmI( cd) 

NijmII( cd) 
Reid93 (cd) 

CD-Bonn( cd) 

0.70 

1.19 

1.27 
1.20 
1.15 

1.24 
1.22 

0.924 

0.70 6.45 6.44 
1.520 6.302 
1.20 1.196 6.39 6.372 6.380 

1.27 6.33 6.33 
6.35 
6.32 

6.35 
6.34 

6.35 

Table 6 
Doublet breakup amplitudes A(B) of Eq. (217) for nd scattering in units of fm -5/2 The format is x.xx[n]~:x.xx 10”. . 

Re A(B) (‘SO) Im A(B) (‘SO) Re A(8) (‘5’1) Im A(B) (“Sl) 

0 Bochum LA/Iowa Bochum LA/ Iowa Bochum LA/Iowa Bochum LA/Iowa 

O0 4.99[-11 5.01[-11 5.56[-l] 5.56[ -11 -1.17[-21 -1.30[-21 2.64[-l] 2.63[-l] 

loo 4.92[-11 4.94[ -11 5.91[-I] 5.91 [-l] 1.48[ -21 1.33[-21 2.66[-1] 2.66[-l] 
2o” 4.58[-l] 4.59[-I] 6.70[-l] 6.70[-l] l.OO[-l] l.OO[-11 2.85[-l] 2.85[-l] 

30” 3.63[-l] 3.62[-11 6.67[-l] 6.66[-l] 2.37[-l] 2.42[-l] 3.67[-I] 3.70[-l] 

40” 2.18[-l] 2.19[-l] 4.63[-11 4.63[-l] 3.85[-I] 3.85[-11 5.39[-11 5.39[-l] 

50” 8.73[ -21 8.78 [ -21 2.09[ -11 2.09[ -11 5.06[-l] 5.07[-11 7.23[-l] 7.23[-I] 

60” -3.50[ -21 -3.50[ -21 -2.53[ -21 -2.57[ -21 6.19[ -11 6.20[-l] 9.33[-11 9.34[ -11 

70” -2.10[ -11 -2.10[-l] -2.98[-11 -2.99[ -11 7.00[-l] 7.00[-I] 1.25[0] 1.25[0] 
80’ -7.05[-11 -7.05[-11 -8.14[ -11 -8.14[-l] 5.67[-l] 5.69[-l] 1.70[0] 1.70[0] 

90” -4.45[0] -4.46[0] 1.63[0] 1.63[0] -8.54[ -21 -8.52[ -21 1.83[0] 1.83[0] 

where the scattered elastic waves have been ignored. The hyperspherical (polar) coordinates p and 
,$ are defined as in Section 2.4. The breakup amplitude A([) is connected to the (on-shell) breakup 
amplitude T introduced in Section 2 and Eq. ( 165): 

(217) 

where ( l/m)p2 + (3/4m)q2 = gd + (3/4m)qi = E 
As an example we display in Table 6 the two doublet amplitudes of the Los Alamos-Iowa group 

in comparison to ours for Elab = 42.0 MeV. The agreement is essentially perfect. For more results see 
[ 1561 where also various breakup cross sections have been displayed, which perfectly overlap. 

Our results for phase shifts in nd scattering above the breakup threshold could be compared up to 
now only for the MT model potential. The perfect agreement between our and the Los Alamos-Iowa 
results is demonstrated in Table 7. See also [ 1551 for comparison with other methods. 

This concludes the comparison of our results to the ones of other groups and techniques. 
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Table 7 
nd elastic scattering phase shifts and inelasticities based on the MT potentials. 

14.1 MeV doublet Bochum LA/Iowa 

Ret@ 
rl 

105.50” 105.48” 
0.4649 0.4648 

14.1 MeV quartet 

Re(& 
rl 

68.96” 68.95” 
0.9782 0.9782 

42.0 MeV doublet Bochum LA/Iowa 

Re(& 
71 

42.0 MeV quartet 

41.37” 41.34” 
0.5022 0.5024 

Re(@ 
71 

37.71” 37.71” 
0.9033 0.9035 

6. Comparison of theory and experiment 

In the first attempt we choose a 3N Hamiltonian with only two-body forces. The two-body forces 

are taken to be the unmodified NN interactions acting between two isolated nucleons. There are several 
so-called realistic NN forces in the literature, purely phenomenological ones and forces which are 
linked to meson theory. Up to very recently the most prominent representatives were the Paris [ 3101, 
the Nijmegen [ 3491, the AV14 [505] and the Bonn B [320,321] potentials. The Bonn B and the 
Nijmegen interactions are of the OBE type, the Paris interaction has a background in dispersion 
relations and the AV14 potential is essentially phenomenological with a one pion exchange tail. 
These potentials give a fairly good description of the NN data, but in detail one finds that their NN 
phase-shift parameters differ quite a bit. We shall be more quantitative later and show that these 
on-shell differences show up clearly in some of the 3N observables. This blurs the aim of the whole 
study, since ideally one would like to answer the question, whether one can see clearly defects in 
that most simple choice of the Hamiltonian, choosing just unperturbed NN forces. Therefore on-shell 
deficiencies should be absent. An important step forward in that respect occurred very recently and 
was connected to the most recent phase-shift analysis (PSA) of the Nijmegen group [466] performed 
between 0 and 350 MeV for the pp and np systems. In [277] a PSA based on np data alone using 
information from energies up to 500 MeV was announced. They claim that the available 2N data 
constrain the NN phases in a multi energy PSA very well leading to very small error bars (less than 
1%) for the “experimental” phases. Adjusted to those phases and to the 2N data appeared now some 
new potentials: the AV18 [ 5071, Nijmegen93 and three new phenomenological potentials Nijmegen I, 
II and Reid93 [ 4671. They all are charge dependent and have a x2 per degree of freedom very close 
to 1 (with the exception of Nijmegen93, which is less perfect), in contrast to the older NN potentials 
mentioned before with a x2 of x 2-4. Also Bonn B has been updated to CD Bonn and achieved 
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x2 M 1 [ 3221. Thus five new NN potentials are now available with a perfect x2 and predictions from 
the corresponding 3N Hamiltonians will be now more conclusive than before. Possible deviations to 

experimental 3N data can no longer be attributed to defects in the description of the NN data. If they 
will occur they have to be either caused by wrong off-shell behavior or 3NF effects, which includes 
changes of NN forces due to the presence of the third nucleon. We display in Table 8 examples of NN 

phase shifts for the various potentials and compare them to the values of the Nijmegen PSA and the 
Arndt PSA [26-28,417]. Unfortunately the two PSA’s do not agree sufficiently well. The necessary 
theoretical assumptions entering into the multi-energy PSA’s differ in the two approaches. In the 
Nijmegen approach the NN force is parametrized for each partial wave between 0 2 r < 1.4 fm by 
energy dependent constants and for r 2 1.4 fm a potential is chosen consisting of an electromagnetic 
part and a nuclear part. The electromagnetic part comprises the Coulomb potential, the magnetic 
moment interaction and the vacuum polarization potential in case of pp and for np it is the magnetic 
moment interaction only. The nuclear part has the OPE tail, allowing for different pion masses, and 
the intermediate range force given by heavy boson exchanges in form of the Nijmegen 78 potential 
[ 3491. Moreover the latter one is modified by an overall multiplication factor in order to allow for a 
more perfect fit to the NN data. One can say a NN force model is fitted to the data and interrelates the 
information from all energies. In the Virginia Polytechnic Institute and State University (VPI-SU) 
approach by Amdt and coworkers [26-281 the NN phase shifts are parametrized in terms of an 
energy dependent K-matrix, which consists of an OPE part and a sum over contributions resulting 
from Yukawa forces of different ranges with free adjustable strength constants. The discrete ranges 
are replaced by continuous mass distributions in the more recent analysis. 

In both analysis the high partial wave phase shifts are taken from the OPE; the Nijmegen analysis 
introduces in addition an intermediate range of j-values, where the phases are not freely adjusted but 
taken from the Nijmegen NN potential prediction. 

The amount of 2N data and their precision is not good enough to unambiguously carry through 
a single energy PSA. Thus there appears to be still room for some doubts, whether the present day 
“experimental” NN phase shifts are the final and true ones, since they necessarily depend on the 
choice of the parametrization of the energy dependence in the multi-energy analysis. We come back 

to that point later. 
Looking again into Table 8 we see that the phases of the Amdt group deviate from the ones of the 

Nijmegen group rather strongly, for instance in ‘Pi and ~1 up to nearly 30%, in 3P states up to 6% 
and in ‘D2 up to 10%. Since the newest potentials addressed in Table 8 are also fits to the NN data 
directly, they can be considered as other PSA’s and they can equally well be claimed to be the “true” 
phases of the NN systems. Thus there are still ambiguities in modem PSA’s. The table reveals that 
there are very significant deviations among these phases and in relation to the Nijmegen and Virginia 
PSA’s. For gl, ‘PI, 3D1, 3P~, 3P2 and ‘D2 these deviations are often 3-8% and sometimes even higher. 
This does not include the energy ranges, where phases cross zero, of course, and where the deviations 
can be much larger; also around 200 MeV and higher the deviations are quite large. All that tells that 
the very basic requirement for nuclear physics, the “true” NN phases and correspondingly adjusted 
NN potentials, leaves still room for improvements. Nevertheless the optimal x2 value very close to 1 
for the newest five potentials is a significant improvement over the previous situation. 

In solving the Faddeev equations the action of the NN force has still to be truncated to the dominant 
lower partial waves, up to a certain total two-nucleon angular momentum jm,. By increasing j,,, we 
checked that the changes in observables caused by that truncation stay well below the experimental 
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Table 8 
Selected NN phases for various NN forces in comparison to the results of the Nijmegen and Virginia phase-shift analysis. 

EM, [ MeV 1 Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

1 62.069 62.156 62.065 62.113 62.087 61.892 62.015 62.078 
2 64.465 64.573 64.460 64.533 64.49 1 64.202 64.388 64.478 
3 64.656 64.762 64.650 64.740 64.686 64.334 64.560 64.67 1 
5 63.627 63.708 63.619 63.735 63.663 63.884 63.503 63.645 
10 59.96 60.00 59.94 60.10 59.99 59.46 59.78 59.97 
20 53.57 53.77 53.54 53.72 53.58 53.05 53.31 53.56 

30 48.49 49.00 48.42 48.61 48.44 48.02 48.16 48.43 
50 40.54 41.66 40.38 40.56 40.35 40.18 40.09 40.37 
100 26.78 27.86 26.17 26.44 26.18 26.32 26.02 26.26 

200 8.94 7.86 7.07 8.27 7.92 7.83 8.00 8.14 

300 -4.46 -5.55 -7.18 -4.43 -4.84 -5.17 -4.54 -4.45 

‘so pp 

1 32.684 32.591 32.817 32.798 32.804 32.795 32.682 32.788 

2 45.637 45.466 45.836 45.769 45.782 45.754 45.605 45.712 

3 51.003 50.730 51.252 51.147 51.164 51.124 50.948 5 1.055 

5 54.832 54.366 55.154 54.989 55.012 54.957 54.744 54.857 

10 55.22 54.42 55.67 55.39 55.42 55.36 55.09 55.22 
20 50.94 50.02 51.58 51.11 51.15 51.12 50.78 50.93 

30 46.51 45.87 47.29 46.67 46.71 46.72 46.34 46.48 

50 38.93 38.98 39.76 38.88 38.90 39.00 38.78 38.90 
100 24.99 25.67 26.15 24.93 24.89 25.07 25.01 24.96 
200 6.55 6.44 7.45 6.64 6.55 6.60 6.99 6.67 

300 -6.15 -6.40 -6.62 -6.20 -6.13 -6.11 -5.64 -6.15 

1 .180 .190 .182 ,178 .177 .177 .180 .I77 

2 ,480 ,506 .488 .476 ,473 .474 .483 .474 
3 .836 .876 .851 .831 .824 ,826 .843 ,826 

5 1.626 1.690 1.660 1.617 1.604 1.611 1.643 1.608 

10 3.65 3.74 3.75 3.64 3.61 3.64 3.71 3.62 

20 6.95 7.06 7.14 6.96 6.90 7.00 7.10 6.92 

30 9.04 9.23 9.27 9.09 9.02 9.21 9.26 9.04 

50 10.70 11.16 10.81 10.81 10.76 11.13 10.99 10.79 
100 8.46 9.42 7.87 8.57 8.65 9.22 8.69 8.70 

200 - 1.44 -1.39 -3.21 - 1.60 - 1.42 - .74 - 1.43 -1.31 

300 - 11.47 -12.62 -13.38 -11.46 - 11.43 - 10.57 - 11.06 -11.23 
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Table 8 -continued 

&b WeVl Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

1 .134 .140 .137 .134 .133 .133 .136 .134 
2 .416 .43 1 .425 .415 .412 .412 .42 1 .415 
3 .769 .792 .787 .768 ,763 .763 .780 .768 
5 1.582 1.612 1.621 1.580 1.568 1.570 1.607 1.580 
10 3.73 3.73 3.83 3.73 3.70 3.71 3.80 3.73 
20 7.28 7.21 7.50 7.29 7.23 7.28 7.45 7.29 
30 9.58 9.52 9.83 9.61 9.53 9.64 9.81 9.60 
50 11.48 11.67 11.62 11.55 11.48 11.67 11.75 11.56 
100 9.45 10.35 8.88 9.50 9.55 9.79 9.61 9.63 
200 -.37 .14 -2.14 -.63 -.47 -.32 -.50 -.38 
300 - 10.39 - 10.78 -12.30 - 10.49 - 10.49 - 10.29 -10.17 - 10.33 

‘9 np 

1 -.I87 -.175 -.186 -.189 -.190 -.187 -.190 -.189 

2 -.482 - .449 - .477 - .486 - ,490 - .480 - ,489 - .487 

3 -.810 -.753 - .802 -.818 -.824 -.808 -.823 -.818 

5 - 1.487 - 1.375 -1.471 - 1.502 -1.515 - t .484 -1.514 - 1.503 

10 -3.04 -3.77 -3.00 -3.08 -3.11 -3.04 -3.11 -3.08 

20 -5.40 -4.78 -5.31 -5.48 -5.55 -5.43 -5.54 -5.47 
30 -7.11 -6.24 -6.97 -7.23 -7.34 -7.20 -7.31 -7.19 

50 -9.67 -8.60 -9.42 -9.80 -9.96 -9.89 -9.85 -9.69 

100 - 14.52 -13.74 - 13.96 - 14.42 - 14.59 -14.91 - 14.20 -14.15 
200 -22.18 -21.94 -20.77 -21.51 -21.52 -22.15 -20.79 -21.34 

300 -27.58 -27.28 -24.87 -26.52 -26.43 -26.69 -26.28 -27.52 

1 147.747 147.781 147.768 147.757 147.747 147.73 1 147.749 147.748 

2 136.463 136.488 136.495 136.476 136.461 136.442 136.465 136.463 

3 128.784 128.788 128.826 128.798 128.780 128.760 128.786 128.783 
5 118.178 118.129 118.240 118.193 118.171 118.152 118.182 118.175 

10 102.61 102.41 102.72 102.62 102.59 102.59 102.62 102.60 

20 86.12 85.67 86.35 86.11 86.08 86.12 86.16 86.09 
30 76.06 75.46 76.40 76.00 75.98 76.06 76.12 75.99 
50 62.77 62.12 63.36 62.64 62.62 62.78 62.89 62.63 
100 43.23 42.98 44.33 42.98 42.95 43.18 43.51 42.93 
200 21.22 20.88 22.82 21.08 20.98 21.31 21.94 20.88 
300 6.60 5.08 8.44 7.00 6.90 7.55 8.13 6.70 

errors. If not otherwise stated j,, is chosen to be three. Only at the highest energies (about 100 
MeV and higher) we could see significant effects of the NN forces in the states j = 4. Thus the 
results to be displayed now can be considered to be the “full” predictions of the various NN forces. 

Quite a few results of recent years, achieved with the help of the “older” generation of NN forces, 
are to a large extend reviewed in [ 177,178,180,519,261,183,184,187]. 
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EM [ MeV I Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

“DI np 

I - ,005 - .004 - .005 - .005 -.005 - .005 - ,003 - ,005 

2 -.026 - .020 - ,025 - .026 - .026 - .025 -.018 - ,026 

3 - .063 - .049 - .062 - ,063 - .063 - ,062 -.052 - ,063 

5 -.I83 -.144 -.182 -.183 -.183 -.181 -.167 -.184 

IO -.68 -.55 -.67 -.68 -.67 -.67 -.65 -.68 

20 -2.05 -1.76 -2.02 -2.05 -2.05 -2.01 - 1.99 -2.06 

30 -3.55 -3.17 -3.50 -3.56 -3.55 -3.49 -3.46 -3.58 

50 -6.43 -6.01 -6.32 -6.45 -6.45 -6.31 -6.28 -6.49 

100 - 12.23 -11.91 - I 1.99 - 12.26 -12.31 - 12.07 -12.04 - 12.37 

200 -19.71 -19.12 - 19.52 - 19.62 - 19.85 - 19.46 -19.82 - 19.79 

300 -24.14 -22.86 -24.36 -24.21 -24.26 -23.64 -24.83 -24.03 

EI np 

1 

2 

3 

5 
IO 

20 

30 
50 
100 
200 
300 

.I05 .109 ,104 .104 ,104 .I04 I 06 ,105 

,253 ,262 .250 ,251 .249 ,249 ,252 ,254 

.402 .414 .396 .399 .396 .396 ,399 ,403 

,672 .683 .661 .667 .660 .660 ,664 ,674 

1.16 1.16 1.14 1.15 1.13 1.14 1.14 1.16 

1.66 1.78 1.61 1.64 I .61 1.61 I .63 1.66 
1.89 2.26 1.81 1.87 1.81 I .83 1.87 I .90 

2.11 2.89 1.97 2.09 2.00 2.03 2.11 2.12 

2.42 3.26 2.16 2.44 2.25 2.36 2.52 2.45 

3.13 3.22 2.86 3.27 3.03 3.40 3.43 3.22 
4.03 4.41 4.00 4.10 4.12 4.74 4.43 4.04 

‘PI np 

1 -.108 -.108 -.105 -.108 -.I07 -.107 -.107 -.108 

2 - .286 - ,286 - .277 -.284 -.283 -.283 -.283 - ,284 

3 -.491 - ,492 - .476 - .489 - .487 - .487 - .486 - .489 

5 -.937 -.941 - .907 -.933 - ,928 - .929 - .927 -.932 

10 -2.06 -2.07 -1.99 -2.05 -2.04 -2.05 -2.04 -2.05 

20 -4.03 -4.01 -3.88 -4.02 -4.00 -4.01 -3.99 -4.01 

30 -5.65 -5.56 -5.45 -5.63 -5.61 -5.63 -5.58 -5.62 

50 -8.25 -8.01 -8.02 -8.25 -8.24 -8.26 -8.15 -8.23 

100 -13.24 -12.83 -13.17 -13.30 - 13.33 -13.38 - 13.07 - 13.23 

200 -21.30 -21.32 -21.33 -21.41 -21.38 -21.35 -21.22 -21.25 

300 -28.07 -28.67 -27.68 -28.17 -27.85 -28.31 -28.49 -28.08 

6.1. NN force picture only 

6.1.1. Total cross section 
Experimental results are compared to various NN force predictions in Table 9. We see that there 

is negligible dependence on the choice of NN forces (differences less than l-3%) and therefore we 
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Table 8 -continued 

&b [MeVJ Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

“PI pp 

I 
2 

3 
5 

10 

20 
30 

50 

100 
200 

300 

-.081 - .082 

- .247 -.251 

-.450 -.458 
- .902 - .920 

-2.06 -2.10 

-4.07 -4.13 
-5.71 -5.73 

-8.32 -8.23 

-13.26 -13.09 
-21.25 -21.52 

-27.99 -28.79 

- .079 -.081 
-.241 -.246 
-.438 - .448 
-.877 - .898 
-2.00 -2.05 
-3.94 -4.06 
-5.52 -5.69 
-8.10 -8.31 
-13.19 -13.30 
-21.27 -21.32 
-27.57 -28.02 

-.081 -.081 -.081 -.081 
-.245 - .246 -.246 -.247 
-.446 - .447 -.447 -.450 
-.894 - .896 -.896 -.901 
-2.04 -2.05 -2.05 -2.06 
-4.04 -4.05 -4.04 -4.07 
-5.67 -5.68 -5.66 -5.71 
-8.30 -8.30 -8.23 -8.32 
-13.33 -13.30 -13.11 -13.28 
-21.29 -21.26 -21.16 -21.20 
-27.71 -27.86 -28.37 -27.97 

‘D2 np 

1 .OOl .OOl .OOl .ool .OOl ml .OOl .OOl 
2 .006 .006 .006 .006 .006 .006 .006 .006 
3 .014 .014 .014 .014 .014 .014 .014 .014 
5 .042 .042 .042 .042 .042 .041 ,042 .042 

10 .16 .16 .16 .16 .16 .16 .I6 .16 
20 .49 .48 .49 .50 .49 .48 .49 .49 
30 .88 .85 .88 .89 .88 .87 .88 .89 

50 1.73 1.62 1.71 1.72 1.72 1.69 1.70 1.72 

100 3.90 3.53 3.75 3.83 3.85 3.79 3.81 3.86 
200 7.29 7.01 6.88 7.43 7.38 7.26 7.30 7.45 

300 9.69 9.95 8.77 9.82 9.73 9.63 9.43 9.75 

ID2 PP 

1 .OOl .OOl ,001 .OOl .OOl .OOl .OOl ,001 
2 .005 .006 .005 .006 .005 .005 .006 ,005 
3 .014 .014 .014 .014 .014 .014 .014 .014 
5 .043 .044 .044 .044 .044 .043 .044 ,044 

10 .17 .17 .I7 .17 .17 .16 .17 .17 
20 .51 .50 .51 .51 .51 .50 Sl .51 
30 .89 .87 .89 .90 .89 .88 .90 .90 
50 1.71 1.62 1.70 1.71 1.70 1.68 1.73 1.72 

100 3.79 3.46 3.67 3.73 3.75 3.71 3.84 3.78 
200 7.06 6.83 6.69 7.20 7.15 7.08 7.37 7.28 
300 9.42 9.68 8.52 9.52 9.42 9.40 9.52 9.54 

saved computer time and did not calculate all cases in the table. The agreement with the data is 
excellent and well within the error bars. A pictorial overview is given in Fig. 5, where for the sake 
of a better presentation at each energy always only one potential prediction has been included. The 
stability of that dynamical picture under exchange of the NN force is an important fact to be noted. 
We shall see that this remains essentially true for all observables, not only integrated ones. It is also 
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-% 1 MeV 1 Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

1 

2 

3 
5 
IO 

20 
30 
50 

100 
200 

300 

3p2 PP 

.022 .022 .024 .022 .022 .022 .022 ,022 

.062 .064 .069 .063 .063 ,064 .064 .064 

.115 .118 .128 .117 .116 ,118 .119 .I 18 

.251 .267 .276 .254 .252 .256 .257 ,255 

.71 .73 .77 .71 .71 .72 .72 .72 

I .90 1.94 2.01 I .91 1.90 1.93 1.91 1.92 
3.24 3.29 3.36 3.25 3.24 3.30 3.24 3.26 

5.89 5.98 5.92 5.88 5.87 6.00 5.86 5.91 

10.94 11.31 10.67 10.89 10.88 11.20 11.00 10.98 

15.46 16.49 15.51 15.48 15.42 16.01 15.86 15.62 

16.95 17.76 17.02 17.08 16.99 17.34 16.91 17.04 

1 .014 .013 .015 ,014 .014 .014 ,014 ,014 
2 ,046 .045 .05 1 .047 .046 .046 ,047 .047 
3 .092 .091 .102 .093 .092 .092 ,094 ,093 
5 .214 .212 .236 .217 .216 .215 .219 .217 

10 .65 .64 .70 .66 .66 .65 .66 .66 
20 1.83 1.80 1.93 1.84 1.83 1.83 1.83 1.84 
30 3.17 3.11 3.29 3.18 3.17 3.16 3.16 3.18 
50 5.85 5.73 5.89 5.85 5.84 5.83 5.79 5.84 
100 11.01 10.95 10.75 10.96 10.97 10.97 10.98 10.97 
200 15.63 16.03 15.70 15.65 15.63 15.63 15.91 15.68 
300 17.17 17.26 17.28 17.26 17.21 17.15 17.01 17.12 

1 .OOO .ooo .ooo .ooo .OOO .ooo .ooo 
2 .OOO .ooo .ooo .OOO .OOO .ooo .OOO 
3 .OOO .ooo .ooo .ooo .ooo BOO .OOO 
5 .002 .002 .002 .002 .002 ,002 .002 

10 .Ol .Ol .Ol .Ol .Ol .Ol .Ol 

20 .06 .06 .06 .06 .06 .06 .05 

30 .13 .14 .13 .13 .13 .13 .12 

50 .30 .34 .32 .31 .31 .30 .28 

100 .76 .83 .84 .76 .77 .75 .67 

200 1.33 1.21 1.26 1.28 1.31 1.27 1.15 

300 1.19 .89 .44 1.06 1.14 1.12 .77 

,000 
.OOO 
,002 

.Ol 

.06 

.12 

.29 

.68 
1.15 
1.18 

interesting to see how the 3N observables are built up out of the various NN force components. To 
that aim we performed separate calculations, where the NN force was truncated to act only in the 
states ‘So and 3S, -3 D, (called “s-waves” in the following), in all states up to j,, = 1, j,, = 2, 
jmax = 3 and j,, = 4, respectively. The result of such an investigation for crtot is displayed in Fig. 6. 
The relative changes in relation to the value of u,,~ calculated with j,, = 3 are shown. One sees that 
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Table 8 -continued 

f&b [MeVl Nijm PSA 

3Fz PP 

Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AVl8 CD-Bonn 

1 
2 

3 
5 

10 

20 
30 

50 

100 
200 

300 

E2 np 

.ooo .ooo 

.OOO .OOO 
BOO BOO 
.002 ,002 
.Ol .Ol 
.07 .07 
.I5 .16 

.34 .38 

.82 .90 
1.42 1.31 
1.34 1.00 

.ooo BOO ,000 
900 .ooo BOO 
.OOO .OOO .OOO 
.002 .002 .002 

.Ol .Ol .Ol 

.07 .07 .07 

.15 .15 .I5 

.36 .34 .34 

.90 .82 .83 
1.36 1.39 1.42 

.59 1.20 1.29 

.OOO BOO BOO 

.OOO BOO .ooo 

.ooo .ooo BOO 

.002 .002 .002 

.Ol .Ol .Ol 

.07 .07 .07 

.15 .I4 .14 

.34 .32 .32 

.81 .73 .74 
1.36 1.24 1.24 
1.25 .90 1.29 

1 

2 

3 
5 

10 
20 
30 

50 

100 
200 

300 

-.OOl .ooo -.OOl 

- .007 -.015 - ,007 

-.016 -.018 -.016 
-.049 -.048 - .049 

-.18 -.18 -.18 

-.56 -.55 -.56 
-.95 -.92 -.96 
-1.63 -1.57 -1.66 

-2.58 -2.50 -2.67 
-2.70 -2.73 -2.77 

-2.30 -2.13 -1.91 

-.OOl -.OOl 

-.007 -.007 

-.016 -.016 
- .049 -.049 

-.18 -.I8 

-.55 -.55 
-.94 - .94 
-1.61 -1.62 
-2.54 -2.54 
-2.73 -2.71 

-2.36 -2.35 

-.OOl -.OOl -.OOl 

-.007 -.007 -.007 

-.016 -.017 -.016 
-.048 -.049 - .049 
-.I8 -.I9 -.18 
-.55 -.56 -.56 
-.94 -.97 -.95 
-1.60 -1.68 - 1.63 
-2.54 -2.69 -2.62 
-2.79 -2.82 -2.76 
-2.36 -2.21 -2.05 

l 2 PP 

1 -.OOl .OOO -.ool -.OOl -.OOl -.OOl -.OOl -.OOl 
2 - .007 -.015 -.007 -.007 -.007 -.007 - .007 - .007 

3 -.017 -.017 -.017 -.017 -.017 -.017 -.017 -.017 

5 - .052 - .052 -.053 - .052 -.052 - .052 - .053 -.053 
10 -.20 -.20 -.20 -.20 -.20 -.20 -.20 -.20 

20 -.60 -.59 -.61 - .60 - .60 -.60 -.61 -.60 
30 -1.01 -.99 -1.02 -1.01 -1.01 - 1 .OO -1.03 - 1.02 
50 -1.71 -1.66 -1.74 -1.70 -1.70 -1.69 -1.77 -1.72 
100 -2.66 -2.60 -2.76 -2.63 -2.64 -2.61 -2.78 -2.71 

200 -2.76 -2.82 -2.84 -2.80 -2.79 -2.77 -2.88 -2.83 
300 -2.34 -2.22 -1.95 -2.41 -2.41 -2.26 -2.23 -2.10 

the j = 2 NN force contributions start to play a significant role already below 10 MeV. The j = 4 
contributions evaluated only around 100 MeV show up only at 140 MeV where they give about 2% 
contribution. 
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Table 8 -continued 

&b IMeW Nijm PSA Amdt PSA Nijm 93 Nijm I Nijm II Reid93 AV18 CD-Bonn 

‘02 np 

1 
2 

3 
5 
10 

20 

30 
50 
100 
200 

300 

.006 
,030 

.075 
,222 

.85 
2.67 
4.77 

8.97 

17.28 
24.51 

25.45 

.006 .006 .OO6 006 ,006 .006 ,006 

.03 1 .030 ,030 .030 .030 ,030 ,030 

.078 .075 .075 ,075 .075 ,075 .075 
,231 .224 ,222 .222 ,223 ,222 .222 
.88 .86 .85 .85 .85 .85 .85 
2.77 2.73 2.68 2.68 2.69 2.67 2.67 
4.92 4.92 4.78 4.78 4.80 4.77 4.76 
9.12 9.36 8.98 8.97 9.00 8.94 8.93 
17.08 18.34 17.26 17.22 17.11 17.10 17.28 
23.82 26.30 24.61 24.49 23.96 24.20 24.80 
24.32 27.47 25.32 25.52 24.84 25.01 25.45 

1000. - ~tot bbl 

Fig. 5. The total nd cross section. Comparison of experimental data (for references see Table 9) and theory. Predictions of 

different potentials are shown: Bonn B (0) , Paris (o), AV18 (D), Nijmegen93 (a). 

6.1.2. Elastic nd scattering 
Differential cross section 

The next simple observable is the differential cross section for elastic Nd scattering. Unfortunately 
there are not too many nd measurements and we are forced to regard also the pd cross sections, 
which are much more numerous and have smaller error bars. In our theory we neglect up to now 
the pp Coulomb force totally, which introduces some uncertainty in the judgement how well theory 
describes the pd data. Fortunately at a few energies there exist both, nd and pd data. Their comparison 
allows to constrain Coulomb force effects to be very small except at forward angles, where Rutherford 
scattering finally has to dominate. Some examples are shown in Fig. 7. We see that except at the 
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Comparison of experimental (taken at E( exp) ) and theoretical (evaluated at the nucleon lab energy E) total nd cross 
sections. 

E exp E(exp) AV18 Bonn B Nijm 93 Nijm I Nijm II Paris 

[MeVl [mbl WW [mbl 

1.0 

2.0 

3.0 

8.0 

9.0 

10.0 

11.0 

12.0 

13.0 

14.1 

19.0 

22.0 

24.0 

26.0 

42.5 

2893.6 f18.2 (1.0031) [92] 
2854 f39 (0.995) [ 4351 
31 lOf200 (1.0) [353] 

2550.6 fll.1 ( 1.9999) [ 921 
2537 f10 (1.981) [374] 

2600 f80 (2.0) [ 3531 

2158.0 f7.2 (2.9873) [ 921 

2240 f90 (3.00) [353] 

2160 f 86 (3.01) [504] 

1207 f 13 (8.0) [ 1071 
1213.3 f 5.58 (8.038) [ 921 

1224 i 10 (8.0) [431] 

1118 f 10 (9.015) [ 1071 

1124.8 f 5.84 (9.0251) [92] 
1120f 10 (8.77) [60] 

1055 f 10 (10.0) [ 1071 

1051.1 f 6.9 (10.026) [92] 

968 f 13 (11.0) [107] 

990.4 f 7.6 (11.016) [92] 

913 f 13 (12.0) [ 1071 
918.48 f 8.11 (12.118) [92] 

923 f 10 ( 12.0) (4311 

867 f 12 (12.995) [ 1071 

803 f 14 (14.1) [391] 

790 f 20 (14.1) [95] 
809 f 6 (14.1) [289] 
778 zt 22 (14.1) [440] 
806 f 6 (14.1) [440] 

810 f 30 ( 14.2) [ 3401 

627.96 f 12.16 ( 18.932) [ 921 
632 f 14 (19.01) 14351 

544.68 f 14.549 (22.079) [ 921 

495.49 f 16.043 (23.955) [ 921 

455 f 12 (26.015) [ 1071 
451.47 f 17.72 (26.082) [ 921 

267.7 f 3.9 (42.5) [ 4031 

1212 1212 1214 1209 1210 

1119 1119 

1039 

968.8 966.6 

906.7 910.4 

851.4 854.6 851.0 852.0 

797.2 797.0 798.5 

614.6 617.6 615.6 

534.9 539.4 

490.8 495.5 493.6 

452.5 459.6 455.1 

535.8 

491.8 

263.0 266.5 

2902 

2554 

2163 
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E 

NV1 

65.0 

93.5 

140.0 

270.0 

exp E(exp) 

lmbl lMev1 

166.5 i 2.9 (63.5) [403] 

161.7 f 2.8 (66.5) [403] 

110f 7 (93.4) [ 1041 
107 f 1.8 (98.1) [332] 

104 III 4 (95.0) [ 2581 

109.4 f 2.3 (93.5) 14033 

78.4 f 1.3 ( 140.9) [ 3321 

49 It 5 (270.0) [ 1471 
57 f 3 (270.0) [ 2591 

AS’18 

158.5 

104.8 

Bonn B 

162.7 

108.1 

77.2 

54.66 

Nijm 93 Nijm I Nijm II Paris 

lmbl 

Fig. 6. The relative total nd cross section evaluated for “s-waves” (o), j,, = 1 (o), 2 (a), and 4 (x) in relation to 

Jmm - -3. 

forward angles the experimental nd and pd cross sections practically overlap. Thus if there would be 
no charge independence breaking (CIB) or charge symmetry breaking (CSB) in the NN forces then 
the equality of the two cross sections would tell, that Coulomb force effects at the larger angles cannot 
be greater than the experimental error bars. Well established right now is only CIB in the state IS,,. 
It is manifest in the different scattering lengths for the np and pp (nn) systems. The recommended 
values [ 3421 are anp = -23.48 f 0.009 fm and arg’o”g = -17.36 f 0.4 fm: The nn scattering length 
is less well known. From ?r--absorption on the deuteron [ 159,433 ] the value -18.6 f 0.3 fm has 
been extracted. The analysis of the nn final state interaction in nd breakup processes remain still very 
controversial (see Section 7.2) and does not constrain the value of an,, sufficiently well. The 3He-3H 
mass difference can be “explained” [527] if a small CSB is assumed and the nn force in the state 
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100 

100 

10. 

U 43 !N 

0 [deg] 

135 180 

Fig. 7. Angular distributions for elastic Nd scattering. Comparison of pd and nd data. 8 MeV: nd data (0) [431], (0) 
[252], (x) [436], (a) [234]; pd data (0) [4161. 10 MeV: nd data (0) (10.3 MeV) [4311, (x) 1241, (a) [2341; pd 
data (0) [416]. 14 MeV: nd data (x) [440], (a) [234], (0) [47]; pd dam (0) [416]. 35 MeV: nd data (x) [62], (0) 
(36 MeV) [411] ; pd data (0) [ 711. The solid curve is the AV18 NN force prediction for 8, 10 and 14 MeV and the Nijm 
I NN force prediction for 35 MeV. 

‘So is slightly stronger than the corresponding pp force. Let us now regard the influence of CIB and 
CSB on the differential cross section. In Fig. 8 we display the effect of choosing different ‘So NN 
forces using the Bonn B NN force as an example. Several curves are shown. The first set of curves 
is based just on “s-wave” forces, using the original iSO np force, a modified iSO pp force and the 
correct treatment distinguishing between np and pp ( = nn ) forces. The three curves are essentially 
indistinguishable. The second set of curves includes on top of the “s-wave” forces the higher partial 
wave NN force components up to j,, = 2. Again the effects of CIB are hardly noticeable. We 
conclude that the effect of that CIB in the state iSO is very small for the differential cross section 
and the equality of the experimental pd or nd cross sections shown in Fig. 7 indicates strongly that 
Coulomb force effects should be very small for that observable (except at forward angles). 
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H [‘I(,&] 

Fig. 8. Insensitivity of the angular distribution in elastic Nd scattering against CIB in the state ‘$1. Both groups of curves 
contain three overlapping results (see text). The j,, = 2 curves are the lowest in the minimum and the largest at forward 
angles. 

Let us now compare theory with experimental data [ 427,79,392,308,197,411,242,365,305,442,206, 
426,431,223,71,396,413,416]. 

This is shown in Fig. 9 in the energy range starting from a few MeV to about 200 MeV. We do 
not display all of them, but the ones not shown are very similar. At the very low energies (below 
about 6 MeV) Coulomb force effects at forward and at backward angles are clearly visible. In the 
minimum of the cross section the agreement with theory is perfect. There is one nd measurement at 
3 MeV, which overlaps with the pd data in the minimum and therefore rules out significant Coulomb 
force effects for that angular range. (We also checked the effect of CIB at 3 MeV and found it to 
be negligible for the differential cross section.) This picture of large Coulomb force effects on the 
angular distributions in the forward and backward angular regions at very small energies is supported 
by recent results of the Pisa group [ 2711, see Section 8.5. Between 8 MeV (see also Fig. 7) and 35 
MeV the agreement with the data is essentially perfect. At 47.5 MeV and 65 MeV the nd data are in 
good agreement with theory, but pd data with smaller errors appear to be a bit above theory in the 
minimum. Since the known CIB has no visible effect we have to assume right now that this deviation 
between nd and pd data is due to Coulomb force effects. While at 93 MeV we still seem to agree 
with the data at 140 MeV and higher the data are significantly higher than theory, especially for c.m. 
scattering angles around 120” and beyond. We evaluated the relativistic phase space factor and the 
relativistic current in the total momentum zero frame. This leads to an increase of the cross section of 
l-2% at 100 MeV and higher in relation to the nonrelativistic one. This percentage number refers to 
the choice of a relativistic momentum space volume element dp/dm against a nonrelativistic 
one, dp/m. Using just dp in both cases increases the percentage change to about 10 %. In any case 
that kinematical correction does not explain the discrepancy to the data around 150 MeV. It remains 
to be seen, whether one encounters here the onset of dynamical relativistic effects. 

It is also very important to note that the theoretical predictions are very stable against interchanges 
of the NN forces. We show in Fig. 9 at the energies 3,22.7, 47.5 and 93.5 MeV, representative for the 
whole energy range under study, that the detailed properties of the forces, like having softer (Nijm 
I) or harder core (AV18, Nijm93), being strictly local (Nijm II) or having a mild nonlocality (Nijm 
I, Nijm93) do not show up in the differential cross section. Even the substantially nonlocal Bonn B 
interaction introduces no change in the differential cross section. 
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Fig. 9. Angular distributions for elastic Nd scattering. Comparison of data to various potential predictions. 3 MeV: pd data 
(0) [416]; nd data (0) [431]; predictions ( ---) Nijm I, (- - -) Nijm II, (- - - - -) Nijm 93, (. . . . . .) AVl8. 4, 5 and 
6 MeV: pd data ( o) [ 4 161; prediction (-- ) Nijm I. 9 MeV: pd data (0) [416]; nd data (0) [ 3051; prediction (--) 
Nijm I. II MeV: pd data (0) (11.1 MeV) [426]; nd data (0) [305]; prediction (--_) AV18. 12 MeV: pd data (0) 
[416], (0) [206], (x) [396]; prediction (- ) AVI 8. 16 MeV: pd data (0) [416]; prediction (---) Nijm I. 22.7 
MeV: pd data (0) [416], (0) [206]; predictions ( -) Nijm I, (- - -) Nijm 11, (- - - - -) Nijm 93, (. . . . . .) AV 18. 28 
MeV: pd dam (0) [ 2231; nd data (0) [ 1971; prediction (--_) Nijm I. 47.5 MeV: pd data (0) (46.3 MeV) [ 7 1 ] ; nd 
data (0) [411]; predictions ( --) Nijm I, (- - -) Nijm II, (- - - - -) Nijm 93, (. . . .) AV18. 65 MeV: pd data (0) 
(64.5 MeV) [442]; nd data (0) [413]; prediction ( -) AV18. 93.5 MeV: pd data (0) (95 MeV) [ 791; predictions 
(-----) Nijm I, (- - -) AV18. 146 MeV: pd data (0) f3921, (0) (145.5 MeV) [2421; nd data (x) (152 MeV) [365]; 
prediction (---) AVl8. 155 MeV: pd data (0) [ 3081; nd data (0) ( 152 MeV) [ 3651; prediction (---) AVI 8. 180 
MeV: pd data (0) ( 181 MeV) [ 2421; prediction (-- ) AV18. 220 MeV: pd data (0) (216.5 MeV) [242]; prediction 
(--) AVl8. 240 MeV: pd data (0) [ 4271; prediction (__ ) AV18. 

As a further information we display in Fig. 10 the way the differential cross section is built up 
out of the different NN force components. At 10 MeV we see that j,, = 2 is sufficient; this is even 
true at 93 MeV, except that around 60” c.m. angle the contribution of the j = 3 forces removes the 
little hump of the j,, = 2 calculation. At 180 MeV the small oscillations present in the j,,,, = 3 
calculation are reduced significantly by including j = 4 NN force components. It is obvious that the 
j = 5 force components would only represent a cosmetic modification for that observable and are not 
needed. 

Some time ago there was indication that at extreme backward angles a discrepancy between theory 
and experiment [ 43 1 ] might exist [ 5 131. Renewed measurements [ 2341 could not confirm that set 
of data [ 4311 and now theory and experiment agree perfectly well, see Fig. 7. 

It might be of interest to point out that the differential cross section is dominated by quartet 
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Fig. 10. The dependence of the angular distribution for elastic Nd scattering on the NN force components used: “s-waves” 
(-.-.), j,,,=l (......), j,,,,=2 (- ---), j,,=3 (---) and j,,=4 (--). 

scattering. This has been known for quite some time [ 21 and emphasized especially in [ 2811. 
Let us now turn to spin observables in elastic Nd scattering. 

Vector analyzing powers 
Nucleon and deuteron vector analyzing powers exhibit a serious problem. We shall devote a special 

section to that puzzle below. It occurs only at energies below M 30 MeV. For higher energies there is 
perfect agreement between theory and experiment, as shown in Fig. 11. Note that also pd and nd data 
agree among themselves, indicating small Coulomb force effects. In Fig. 12 we show how A, builds 
up in terms of the different NN force components. Clearly the NN “s-waves” are totally insufficient, 
as is also the inclusion of all forces up to j = 1. Even at 10 MeV and at higher energies the j = 2 NN 
forces crucially contribute. More detailed, the 3P2 -3 F2 forces are the most important ones among 
the j = 2 forces. At 180 MeV also the j = 3 and 4 NN force components are significant. Now if we 
regard the small energies, say below 30 MeV, then the contributions of the 3Pj NN force components 
are really the dominant ones. Moreover the three 3Pj forces determine the analyzing powers in very 
specific manners. That is displayed in Fig. 13. Switching off the NN force component 3P0 and keeping 
all others the maximum of AY jumps up, while turning off the 3P1 or 3P2 -3 F2 forces separately 
has an opposite effect. Thus one can expect that even small changes in these specific forces can, via 
that interplay, lead to substantial shifts in the peak heights of A,,. At the very low energies there is 
just one maximum around 8,,,,= 120”. Now the comparison to the data shown in Fig. 14 reveals a 
strong discrepancy: theory underestimates the data by about 30%. This is true also for all neighboring 
energies [ 480,482] (see Section 7.3). We also see from Fig. 14 that the pd data lie a bit below the 
nd data in the maximum of A,. This is presumably a Coulomb force effect (see Section 8.5). The 
prediction of the AV14 potential deviates most strongly. The reason is that its ‘Pj NN phases differ 
from the ones of the other potentials. This demonstrates how sensitively A, reacts to the very details 
of the NN force input. All the other potentials give essentially the same A, values in agreement with 
the fact that their 3 Pj phases are very close to each other (see Table 8). We shall come back to that 
puzzle in Section 7.3. 

The deuteron vector analyzing power i7’,, looks very similar to A, and exhibits perfect agreement 
above 30-40 MeV and strong disagreement below. Examples are shown in Fig. 15. Note again the 
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Fig. 14. The analyzing power A, for elastic Nd scattering at 10 MeV. Comparison of pd data (0) [ 416 1, ( x ) [ 4571, (a) 
[ 3961, ( l ) [91] and nd data (0) [ 2321 to various NN force predictions: ( ---) Nijm I, (- - -) Nijm II, (- - - - -) 
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independence on the choice of NN force. 

Tensor analyzing powers 

The deuteron tensor analyzing powers T 20, T21, and Tz2 have been measured up to now only in the 
pd system. Thus there remains an uncertainty about Coulomb force effects. As shown in Fig. 16 the 
deuteron tensor analyzing powers are very well described by theory except at very low energies for 
TzO and Tzl, where obviously Coulomb force effects are visible at extreme forward angles. Where 
we show different potential predictions we find essentially no dependence on the choice of the NN 
force. At the higher energies experimental data with smaller error bars would be very desirable. It is 
instructive to see how the Tzk’s built up, which is displayed in Fig. 17. Clearly the “s-waves” together 
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Fig. 15. The deuteron vector analyzing power lT1, in elastic Nd scattering. Comparison of data to the NN force predictions. 
3 MeV: pd data (0) [416]; predictions (---- ) Nijm I, (- - -) Nijm II, (- - - - -) Nijm 93, (. . . . . .) AV18. 5 MeV: pd 

data (0) (5.05 MeV) [ 1271; prediction (__ ) Nijm I. 10 MeV: pd data (0) 14571, (0) [426]; predictions (--) 

Nijm I, (- - -) Nijm II, (- - - - -) Nijm 93, (- . . . ‘ -) AV18. 22.7 MeV: pd data (0) [ 2061; predictions ( -) Nijrn 

I, (- - -) Nijm II, (- - - - -) Nijm 93, (-.... .) AV18. 28 MeV: pd data (0) [223]; prediction (--) Nijm I. 47.5 
MeV: pd data (0) [ 5211; predictions (-- ) Nijm I, (- - -) Nijm II, (- - - - -) Nijm 93, (. . . .) AV18. 53 MeV: pd 
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with the j = 1 NN forces are highly insufficient, even at 10 MeV. While at 10 MeV the addition of 
j = 2 forces essentially provides the final answer, j = 3 and even j = 4 forces are needed around 100 
MeV and at 180 MeV. Especially for Tzl and Tz2 one has to expect that even j = 5 NN forces will be 
significant around 180 MeV. 
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Let us now turn to the spin transfer coefficients. Three nucleon to nucleon spin-transfer-coefficients 
K,“‘, K,“’ and K;’ have been measured. We show in Fig. 18 the way they built up out of different 

NN force components. In addition to the measured ones we add K:‘ and K,Z’. Again j,, = 1 
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would be insufficient even at 10 MeV but j,, = 2 works well. For 100 and 180 MeV j,, = 3 is 
absolutely mandatory to come close to the final structure. Again at 180 MeV presumably j = 5 forces 
should better be included. Fig. 19 shows the comparison of theory and experimental data for K;‘. 
The agreement is fairly good. Again there is no dependence on the choice of the NN force among 
the most recent ones. For 19 and 22.7 MeV in the minimum of K$ theory appears to be slightly 
above the data. One reason could be Coulomb force effects, another unsettled details of the 3SI -3 D1 
tensor force and of the ‘Pt force component. In the two-nucleon system the l 1-mixing parameter 
between the 3S, and 3D1 waves and the SI, phase shift quite often act in a very similar way and 
are hard to disentangle. For the 3N observable K,” we found [474] a similar interplay between the 
corresponding force components. We would like to add two studies displayed in Fig. 20. The new CD 
Bonn potential and the Nijmegen force describes the NN data equally well and also their NN phases 
are very close to each other. Nevertheless CD Bonn has a significantly lower D-state probability of 
the deuteron (4.83%) than the NijmI (5.68%) potential. That quantity can also be considered as 
a measure of the strength of the 3SI -3 Dr coupling. Fig. 20 shows their predictions&at 19.0 MeV. 
While CD Bonn passes straight through the data, NijmI stays a bit above. The reason lies in the 
3S1 -3 D, force. Namely performing a NijmI calculation with the 3S, -3 D, force replaced by the one 
of CD Bonn shifts the NijmI prediction practically to the values of CD Bonn. (Note that also the 
deuteron wave functions are replaced). The second study highlights the danger of using predictions 
of outdated NN forces like the Nijm78 potential. The resulting K$ describes the data beautifully, but 
its phase shift parameters S lpr and e1 deviate quite significantly from the ones of the Nijmegen and 
Virginia PSA. The ‘PI phase is too weak and the l l too strong. If we perform a NijmI calculation 
and replace its ‘PI force by the one of Nijm78, we lower the minimum and if in addition we also 
replace the 3SI -3 D, force by the one of Nijm78 we get a nearly identical result as for Nijm 78. In 
view of that latter point it appears very important to settle unambiguously the problem of the true Ed- 
and alp, values in NN scattering. The Amdt PSA values [417] still differ significantly from the ones 
of Nijmegen [466] and another study [ 2241 claims even a third result, see Fig. 21. Based on the 
recent Nijmegen PSA alone and the related updated potentials Nijm 93, Nijm I, II, and AV18 there 
is a slight discrepancy in the minimum of K-c’, as we saw in Fig. 19. Note, however, that the new 
CD Bonn provides a perfect description at 19.0 MeV. CD Bonn has a significantly smaller deuteron 
D-state probability than all the other forces. It would be very important to fix the Coulomb force 
effects theoretically, in order to clarify the situation. Another possibility is to measure K;’ in the nd 
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system. Such an experimental study in the nd system just in the minimum of K;’ is in preparation 
[492]. 

Conclusions from that 3N observable K$ about specific properties of NN forces, like weaker tensor 
forces, [ 89,901, might be misleading as we know now, since 3N forces might do a similar job and 
lower the minimum. We shall come back to their possible effects in Section 6.2. 

The observable K,X’ exhibits similar sensitivities [ 4741, however less pronounced and our theoretical 
results are compared to data in Fig. 22. 

Finally Kc’ is very insensitive to details of NN forces [ 150,514} and is very well described by 
theory, see Fig. 23. 

Fig. 24 displays the nucleon to deuteron polarization transfer coefficients K,“‘, K,“‘, and K,“‘, The 
overall agreement between theory and experiment is good. Data with reduced error bars especially at 
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the smaller angles would be helpful to clarify even better the situation. 
Finally the spin-transfer-coefficients Kfz’, Kf’y’, K;“’ - KG’“, KfY’, Kfz’, Kc’,‘, KjrZ’ from the 

nucleon to tensor polarized deuterons, have been measured. Among them K:Iz’, Kfy’, and Kfz’, 
show a remarkable sensitivity to 3Pj NN forces like A,. Interestingly it is different from the one of 
A?, [ 177,178,5 171. While the maximum in A, at low energies decreases by weakening the strength 
of both the 3P1 and 3 Pz -3 Fz force components and increases by weakening the 3Po strength, the 
weakening of the 3 PO and 3P1 forces acts similarly in Kfy’ and K,“‘z’ and the effects for K$z’ are 
different in relative strengths in comparison to Ay . This is displayed in Fig. 25. Therefore precise 
measurements of these observables at low energies could provide useful information on that pending 
problem of the 3Pj NN force components. Existing pd data at low energies where Coulomb force 
effects still might play a nonnegligible role are compared in Fig. 26 to various NN force predictions. 
The agreement is relatively good and all the NN forces lead essentially to the same results. Whether 
possible small discrepancies are Coulomb force effects or defects in the strong force remains open 
right now. Recent experimental data at the higher energy 22.7 MeV do not always cover all the angles 
where the observables show prominent structure as can be seen in Fig. 27. The agreement with theory 
is good except for Kfz’ and K,Xt’. All of the existing data for spin-transfers are at low energies, 
none as far as we know exists around 60 or 140 MeV. It is interesting to note that some of these 
spin-transfer-coefficients show big 3NF effects at higher energies, see Section 7.8. Measurements 
would be important to fill that gap and exclude or detect surprises. 
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Spin correlation coeficients 
There are many more spin observables in elastic Nd scattering, like spin correlation coefficients 

where in the initial state both, nucleon and deuteron, are polarized. A few spin correlation coefficients 
have already been measured and are displayed in Fig. 28. The agreement, with the exception of C,, at 
12 MeV, is mostly good, but also the quality of the data leave room for improvements. In Fig. 29 we 
show how CxX, CT,,, and S depend on the NN force components. It is interesting to see that even at 10 
MeV the j = 2 force components for S are absolutely crucial. At the highest energy even j = 4 forces 
are presumably not sufficient. We would like to further point out that some of the spin-correlation 
coefficients ( CXY,x, CXX,Y - C,,,,, and CY,,+,) reveal at low energies (3 and 10 MeV) sensitivity to 3Pj 
NN force components (see Fig. 30). However the magnitudes of these observables are of the order 
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lab. energy of 10 MeV. Comparison of data with the NN force predictions: pd data (0) [457]; predictions Nijm I (---), 
Nijm II (- - -), Nijm 93 (- - - -) and AV18 (...s..). 

of a few percent only. In addition C,, and C,, depend on 3NF effects showing interesting scaling 
behavior at low energies (see Section 6.2). At higher energies CZ, C,,,, and C,,,, show also big 3NF 
effects, see Section 7.8. 

Let us now regard the 3N breakup process. 

6.1.3. 3N breakup process 
Energy and momentum conservation reduces the number of independent momentum components of 

the final three nucleons to five. Thus using two detectors and measuring two particles in coincidence 
four angles are fixed and it remains to measure the energy of one of the two detected nucleons in order 
to fix the kinematics. Since, however, the relation between the energies of the two detected particles is 
not unique and allows for two solutions, see Section 2.4, one usually has to measure both energies. Let 
us number the two detected nucleons in such a kinematically complete experiment by 1 and 2. Thus 
the allowed energies El and E2 are restricted to lie on a curve, as already explained in Section 2.4. 
In reality the angular and energy resolutions of the detectors, the finite size of the target and the 
energy resolution of the beam itself, broaden the curve into a band, especially in case of nd breakup. 
Now one could also fill that band with theoretical events by performing corresponding simulations 
and compare contents of certain segments thereof to experimental data. Since the statistical errors 
would be too large, this has never been done. Instead the experimental data are projected, following 
special procedures, onto a central curve situated in the middle of the band and corresponding to 
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point geometry and zero energy resolutions. Different groups are using quite different projection 
procedures. We refer the interested reader to original articles [535,191,263,192,135,354], where 
various procedures are described. Ideally theory should be handled in much the same manner as the 
data. This requires however extensive numerical studies, since all the causes for the width of the band 
have to be simulated. In the case of the pd breakup process usually the two protons are detected 
and the experimental conditions can be kept rather close to point geometry. Thus averaging of the 
theoretical data has there little effect, except for observables which show a strong variation in their 
angular or energy dependence, like e.g. final state interaction peaks [ 397,9]. 

Two breakup configurations stick out, since they have a simple two-body reaction mechanism 
underneath and historically have been analyzed in corresponding rough approximations [ 83,496,304]. 
This is the quasifree scattering (QFS) process, where in the final state one nucleon is at rest in the 
lab. system. The simple minded picture is, that the projectile interacts with one of the two constituents 
of the deuteron and the other is a spectator. We shall see that this simple mechanism is not at all true 
below about 100 MeV, but that rescattering among all three particles is strongly present. The other 
configuration is, when two particles leave the interaction region with equal momenta. Then there is 
strong final state interaction between the two. Their relative energy is zero and the NN t-matrix at 
zero energy is strongly enhanced, both in the np as well as in the nn system, due to the nearby pole in 
the state iSO. This leads to the so-called final state interaction (FSI) peak. In reality the peak height 
is not only determined by the NN t-matrix describing that interacting pair but also by the production 
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amplitude for this specific configuration. That amplitude varies with the angle under which that pair 
leaves with respect to the beam axis. 

Two more configurations found special interest, the collinear one [ 264,3 11,158,529,358,53,56,473, 
263,101] and the star configuration [ 275,462]. In the collinear case one nucleon is at rest in the 
center of mass system, consequently the other two leave back to back. The line on which the three 
final nucleons are moving can have any angle to the beam axis. In the star configuration the three 
nucleons have equal energies and interparticle angles of 120” in the center of mass system. The plane 
spanned by the three nucleons can have any orientation with respect to the beam axis. If orthogonal 
to the beam axis that configuration is often called the space star; if the beam axis lies in that plane 
one speaks of coplanar stars. These two configurations were expected [334] to be especially good 
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candidates to see effects of 3NF’s. One reason was that the most simple 3NF, the 7r - r exchange 
with an intermediate A [ 1571, has the property, that it is repulsive when the three nucleons lie on a 
line and attractive, when they are at the comers of an equilateral triangle [ 3563 J, This refers to the 
spin-isospin averaged 3N potential. (More precisely the force is repulsive whenever one angle within 
the triangle formed by the three nucleons is larger than 90” and attractive otherwise). In how far that 
expectation is realized we shall discuss in Section 6.2. 

In Fig. 31 we display the loci of three special configurations (FSI, QFS, Coll) in the space of the 
lab. angles k$ and 0, ( #12 = ffZ - & = 1800). 

Clearly there is a continuum of angular positions of the two detectors and the still nameless ones 
might carry surprises and even more information about the potential energy of the three nucleons than 
the above mentioned traditional ones. Therefore a full 47r study, covering all possible configurations, 
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would be highly welcome. 
Besides the kinematically complete measurements there are also incomplete ones, where for in- 

stance only one’s particle momentum is detected. Clearly such measurements carry less informa- 
tion than kinematically complete ones, since one has to sum over all underlying configurations, 
which accompany that special event of the singled out momentum of one nucleon. Because of 
its relative simplicity quite a few measurements of that type exist in the literature. We mention 
[ 469,441,213,305,290,443,291], [ 371. See also [ 4871 for a recent theoretical analysis. 

Let us now come to results, first just for cross sections; later we shall also regard spin observables. 
The situation will be seen to be rather controversial. There are cases of spectacular agreement and 
cases of striking disagreement. Certainly what is missing, is a well established and confirmed data 
basis and right now nearly always only one measurement for a certain breakup configuration exists. 

The total breakup cross section 

We compare in Fig. 32 data for the total breakup cross section to theory. The quality of the data is 
not satisfactory and one might see at energies below 10 MeV a discrepancy, which, however, we think 
does not reflect the real situation. We saw that the differential cross sections in elastic scattering are 
very well described at all the angles at which they have been measured. Unfortunately, the data do not 
cover the full angular range well enough to determine the total elastic cross section correspondingly 
well. Otherwise we think that the total breakup cross section, which is the difference between the 
total cross section and the one of elastic scattering, both of which are perfectly well described by 
theory, should also coincide very well with theory. Stronger efforts on the experimental side would 
be very welcome to nail down at least the total breakup cross section much more precisely. 

Quasi free scattering 
The approximation lowest order in t neglecting any rescattering is according to EQ. (154) 

T M tP (218) 

Then the breakup amplitude is 
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= (4Ol+#42 + (#Ohl~)3 + (#Olt214)3 + (4Olt214)I + (4Olt3141 + (#Olt31#)2 (219) 

The indices at the ket vectors denote the singled out nucleon which carries the relative momentum 
q. in the channel state 14) = IqDd) lqo) . 

Because of the antisymmetry of Iqd > this can be written more compactly as 

@Ol(l + P)tPl+)=(~Ol(l - P23hl&2 + (+Ol(l - P13)t214)3 + (+Ol(l - P12)f3ld& (220) 

It is also a fairly easy exercise to evaluate that further with the result 

(4ol(l + ~)W) = c ,t(P m2m3v2v3lt 

4 v; 

x (-iqo - qm$vh lid) 

+-&(-;P- $2 mlm3vlv31t E - -&(p - iqj2 
> 

lip + q. - aqmim,&%) 
m; V; 

x(-p + i4 - $70m’,wlv214Pd) 

+ C #P + $mm2w2lt E - t(P + iq)* 
> 

I - ip + q. - $qm,&v,v~) 
.1; u; 

x (P + iq - ~qom$34v314Dd) (221) 

where jp m2mg+v3), zz 
instance k,Iab = 

(1 - P.3) Ipm2m3v2v3), etc. Let us choose QFS conditions, assuming for 
0. This is equivalent to q = -iqo, which puts the argument of the deuteron state in 

the first term of Eq. (221) to zero. Under this condition the accompanying two-nucleon t-matrix is 
on shell, except for a negligible Ed correction. Namely 

E--&q* =2._&+‘d-2-~q;A2!$+Ei (222) 

is the energy related to the initial momentum q. + ‘q = iqo and this is also the energy related to the 
final momentum p since E - ( 3/4m)q2 = ( l/m)&. Thus the first term under QFS condition is the 
product of an on-shell two-nucleon t-matrix (except for Ed corrections) and the deuteron state at zero 
momentum. In the other two terms the two-nucleon t-matrices are off-shell under this condition and 
also the argument of the deuteron state is different from zero. Of course choosing k21ab(k31ab) = 0 
the second (third) term in (221) would take over the corresponding role. If q. is sufficiently large 
either the off-shell decrease of t or decrease of ppd with increasing momentum or both render the 

contributions of the second and third term in (221) and the first one sticks out. 
It is advisable and for higher energies ( 100 MeV and above) much more economic not to expand 

the arguments in the t-matrix and the deuteron wave function into spherical harmonics with respect 
to b, 4, and %, but to calculate the terms in Eq. (221) which involves no integration, exactly. Thus 
we put 

W) = W&w + (T - tP) l&w 
(SbalUoi~) = (4olU + ww = (4oltl+ m~l#)w,w + kblu + P)V- WM,)pw (223) 
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The index wpw stands for “without partial wave decomposition”, whereas pw means the treatment 
based on partial wave decomposition as described in Section 3. Of course the t-matrix t is still built 
up by partial wave contributions up to a certain j,,. Also note that in the last term in Eq. (223) 
the partial wave representation refers only to (T - tP) 14 > and not to the permutation operator P in 
( 1 + P), which of course is applied to the left and thus treated without truncation. 

Now varying q around the QFS point the argument of pd differs from zero and the first term 
decreases in magnitude. Thus we expect to see a peak. This first term in (221) (c#+,ltP/4) alone is 
often referred to [ 83,293] as the impulse approximation. The corresponding breakup cross sections 
are displayed in Fig. 33 for various energies and indeed reveal a characteristic peak. In this figure 
we did not fix p and vary just q but we fixed two detector angles and varied the energy distribution 
around the QFS condition. This leads to changes in both, p and q. 

Now we add the other two terms corresponding altogether to 

(~Ol~OI#h = (4olU + P)w4 (224) 

Here in this article we shall call that whole term full impulse approximation (FIA). This causes 
only a small shift (see Fig. 33). At 65 MeV and higher it is negligible. Then we add (without using 
PadC) rescattering terms of first order in t, which amounts to 

T+ + tPc$ + tPc,tP$, (225) 

then rescattering terms including the integral kernel twice etc. Always all the permutations are carried 
out as usual according to the j,,, chosen (see Fig. 33). Clearly that multiple scattering series 
diverges at 19 and 65 MeV. At the two higher energies shown it converges essentially after the 
first order rescattering term (except in the wings for 140 MeV, where the second order effect is 
visible). The correct final value, as given by the solution of Eq. ( 154)) exhibits also a peak, but its 
height and width is different from the one of the impulse approximation at 19 and 65 MeV. Even 
at 140 and 220 MeV the impulse approximation overshoots the correct result by about 20%, which 
is due to the first order rescattering term. We quantify the contributions of the first few terms in 
the rescattering series (not using PadC) on top of the impulse approximation in Fig. 34. There we 
show the corresponding QFS peak heights as a function of energy. Already at around 100 MeV the 
second order rescattering contribution can be neglected, but the first order one remains significant till 
the highest energy considered. The reason for the strong divergence at 19 and 65 MeV lies solely 
in the amplitude for J” = l/2+. If one drops the l/2+ amplitude the wild behavior disappears and 
it is only in the wings at 19 MeV that the higher orders contribute significantly. Moreover the l/2+ 
contribution gets less important with increasing energy [515] already around 65 MeV. At 140 and 
220 MeV the l/2+ contribution can be safely neglected. Nevertheless it should be noted that the 
multiple scattering series for Jff = l/2+ diverges also at the higher energies 65, 140 and even 220 
MeV. However correctly summed up by PadC its value is negligible in comparison to the sum of 
all other amplitudes for J” # l/2+. The dominant contributions shift to higher J’s with increasing 
energy. 

Let us now analyze a series of measurements we are aware of. They are displayed in Fig. 35 for 
energies between 10 and 65 MeV. It is again interesting to see the agreement among the different 
NN force predictions. Except for 65 MeV theory is always too high. Since these are all pd data the 
discrepancies at the lower energies might be due to Coulomb force effects [ 111. We shall come back 
to that point in Section 8.5. 
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Final state interaction peaks 
Now let us regard final state interaction peaks. This has always been an important issue, since it is 

considered to provide information on the nn scattering length. We shall come back to that aspect in 
Section 7.2. 

A quantitative description of the FSI peak requires not only s-wave interactions but also higher 
angular momenta force components. This is demonstrated in Fig. 36. We see that s-wave forces 
alone are totally insufficient. At 10 MeV j 2 2 forces suffice, however not at 65 MeV where j 5 3 
force effects are quite noticeable and reduce the peak height. 

From the expression for T which ends to the left with t(z) it is obvious that with the two-body 
energy z going to zero T has a characteristic energy variation O( 1 /,/? + id) , where ~~ = 1 Evl is 
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Fig. 34. The energy dependence of the nn QFS peak heights in impulse approximation (o), in full impulse approximation 
(o), with rescattering correction of first order (x) and second order (a) in t in comparison to the full calculation ( l ). 

about 100 keV. That wave number K is inversely proportional to the scattering length. Therefore 
the larger the scattering length the larger the peak height. It seems therefore obvious that nn and 
np t-matrices should be distinguished if one is interested in seeing differences between np and 
nn scattering lengths. Therefore in the isospin formalism a full treatment has to be undertaken as 
described in Section 3, namely on top of the total isospin T = l/2 also T = 3/2 states have to be 
included. We show in Fig. 37 results of four calculations based on Bonn B for nn and np FSI peak 
heights as a function of the lab. production angle of the pair interacting in the final state. One just 
uses Bonn B, which has been fitted to the np system, thus has a scattering length a( ‘So) = an,,. 

The second uses a modified Bonn B with a(‘&) = qpp “‘“s. The third allows for different np and nn 
t-matrices in the state l&, but neglects a T = 3/2 admixture and uses just the effective t-matrix 

&ff = 3 nn 2t + $“p (226) 

following from ( 160). The fourth calculation is based on a full and correct treatment allowing for 
a T = 3/2 admixture. All the four curves are clearly distinguishable, with the exception of small 
angular regions. In any case it is clearly seen how important it is to use the full treatment (T = 3/2) 
to extract from the peak height the value of a,,,, (see Section 7.2 for more quantitative details). 

In the past often a Watson-Migdal approximation [496,341,190] has been used to extract the 
nn scattering length from FSI peaks in the nd breakup process. In that approximation, based on a 
representation of the Jost function [ 2561, one factorizes the absolute square of the breakup amplitude 
into an energy independent constant N and an enhancement factor. Thus the breakup cross section 
has the form 

d5u 
= ksN($-f))2 

p2 + (l/r0 + Jm)' 

dkldk2dS p2 + (-l/u + &@2)2 
(227) 

where r. and a are the effective range and scattering length parameters for the nn system and p is the 
relative momentum of the two neutrons. This form has been fitted to the experimental cross sections 
in the FSI peak area with the aim to extract a and ro. 

We investigated the reliability of that procedure in the following manner. Pseudodata were generated 
in a Faddeev calculation using the Nijm93 potential and allowing for different np and nn forces in the 
state ‘So. For nn we choose an,, = -17.58 fm and ro = 2.81 fm. Then we generated nn FSI peaks at 
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Table 10 
The Watson-Migdal formula fits to FSI peaks generated at 22.7 MeV with the Nijm93 NN force for various production 
angles 19. AE denotes the maximal relative energy up to which the fit has been performed, a and ro the resulting optimal 
scattering length and range parameters (see text). The numbers in parenthesis results if ro is fixed at the correct value 2.8 1 
fm. 

6~ [deal AE [MeV] a [fml r0 [fml 

5 1.0 -17.1(-17.1) 2.8 
10 0.5 -17.2(-17.1) 2.7 
15 2.0 -17.6(-17.5) 2.7 
20 0.1 -17.7( -17.7) 2.7 
25 0.3 -17.6(-17.6) 2.7 
30 0.1 -17.6(-17.6) 2.7 
35 0.2 -17.5(-17.5) 2.7 
40 0.1 -17.5(-17.5) 2.6 
45 0.1 -17.5(-17.4) 2.7 
50 0.1 -17.4(-17.3) 2.7 
55 0.1 - 17.2( - 17.2) 2.8 
60 0.1 -17.1(-17.0) 2.8 
65 0.1 -17.5(-17.5) 2.8 

all lab. production angles 0 of the nn pair in steps of 5”. For each angle the approximate form (227) 
was fitted to the FSI peaks allowing N, a and r. to vary. Within the peak area one can restrict the 
adjustment to different ranges of the maximal relative energy AE of the two neutrons. It should be 
restricted to small values of AE, since the form (227) contains a representation of the Jost function 
valid for p --t 0. On the other hand one cannot use a too small AE interval since in praxis there 
will be not sufficient data points due to the experimental energy resolution. Thus we investigated 
the adjustment within the range 100 keV 2 AE 2 3 MeV. Within that range starting from AE = 3 
MeV downwards we determined for each AE the optimal fit by means of a x2 criterion. For most 
production angles the x2 reached a minimum within that interval, which we have chosen to be the 
optimal adjustment. As an example we display in Table 10 the results achieved at Elab = 22.7 MeV 
We see that at several angles the minimum in x2 is not reached for AE > 100 keV. The extracted an,, 
ranges between -17.1 and -17.7 fm and r. between 2.6 and 2.8 fm and are within 0.4 fm and 0.1 
fm to the correct input values for unn and ro, respectively. We display in Fig. 38 the fits for the two 
extreme cases at 8r = 5” and 20°, which look both equally good. If one fixes ro = 2.81 fm, which is 
the input value, the adjustment of an,, leads to very similar results, as also shown in Table 10. We 
repeated that study also for Elab = 13 MeV and 65 MeV and found the ranges -17.0 to -17.8 fm 
and -17.5 to -17.8 fm, respectively. The effective range parameters varied between 2.6-2.9 fm and 
2.7-2.8 fm, respectively. Again one ends up with about 0.5 fm to 0.3 fm variations to the correct 
value of unn. Also the results turned out to be similar again when allowing r. to vary or keeping it 
fixed at the right value. From that study one can conclude that the Watson-Migdal analysis is not 

Fig. 35. Breakup cross sections under QFS conditions. Comparison of d(p,pp)n data ( 10.5 MeV: (0) [350]; 13 MeV: 
(0) [397]; 19 MeV: (0) [366]; 22.7 MeV: (0) [530]; 65 MeV: (0) [ 111) to different NN potential predictions ( AV18 

( -), Nijm 93 (- - -), Nijm I (- - - -) and Nijm II (......)). 
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unreasonable, if one is satisfied with an inherent uncertainty of not better than about 0.5 fm. To 
contribute quantitatively to the question of CSB between aijg and a,,, one will, however, require 
smaller uncertainty and an analysis based on modem Faddeev calculations should be preferred. 

Fig. 36. The contribution of various NN force components to the breakup cross section in a nn FSI peak (left side) and a 
npFSIpeak(rightside):s-waves(-.-.),j<l (......),j<2(----),andj<3( -).The NN force is Bonn B. 
The pictures in the second row are zooms of the FSI peaks in the first row. 
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Fig. 37. Different treatments of CIB in the nn (a) and np (b) FSI peak: ( ..+.e.) np ‘& force, (- - - - -) nn ‘So force, 
(- - -) nn and np ‘So forces used via (226) without T = 3/2 admixture, (- ) nn and np ‘&I forces including T = 312 
admixtures. 

6. 13~ = 5” & = 157.76” 

IU 

5’ [MeV] 

4.f 

3.0 

2.0 

1.0 

0.0 

1 

] ’ dsu [ mb 
di-Ildl&dS MeV ,rz 

81 = 20° 82 = 107.1° 

Flab = 22.7 MeV 

$12 = 180” 

10 

S [MeV] 

20 

Fig. 38. Watson-Migdal approximations to nn FSI peaks for two production angles. The fits (solid curves) used all the 
pseudodata (open circles) located between the arrows. 



U? Gbckle et al./Physics Reports 274 (1996) 107-285 193 

10 20 

‘5’ [MeV] 

E lab = 13.0 MeV 

, 
0 .5 10 1 F, 

S [MeV] 

Fig. 39. Breakup cross sections under np FSI conditions (right peaks). Comparison of data ( 10.5 MeV: pd data (0) [ 203 ] ; 
13 MeV: nd data (0) [470,471], pd data (0) [397]; 19 MeV: pd data (0) [366]) to NN force predictions ( AV18 
(--),Nijm93 (---),Nijm I (- - --) andNijmII (......)). 

Let us now compare theory to experimental pd and nd results containing np FSI peaks in Fig. 39. 
Since the np scattering length is known there is no adjustment possible (small variations in the nn 
‘So force would have no effect on the np FSI peak). The agreement with the data is very good in 
the FSI peak area, especially if theory has been averaged according to the experimental conditions 
[ 397,203,366]. 

In case of nn FSI peaks highly involved projectings are required, which for measurements at 10.3 
and 67 MeV [ 3021 and at 13 MeV [485] are still in progress. We shall come back to another nd 
measurement at 13.0 MeV in Section 7.2. Quite a few of nn FSI peak measurements have been 
published in the past [ 534,59,65,535,509]. Unfortunately their documentation is so insufficient (no 
data given in tables and not sufficient information in order to set up a realistic simulation) that none 
of them can be analyzed by the modem Faddeev calculations using realistic NN forces. These old 
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data have been analyzed by highly insufficient tools and those results should be taken with great 
caution. We shall come back to that problem of analyzing the nn FSI peak in Section 7.2. 

Collinear conjgurations 
In the past [358] there arose interest whether or not any special effects occur under collinearity 

conditions. This question has been studied again more recently in [ 470,512,397,518,9,434]. These 
more recent data are compared to theory in Fig. 40. While the pd data like the theory show no 
peculiarity at all at and around the point of collinearity, the nd data show in one case a hump. In 
general the agreement between data and theory is quite good. There are however small deviations 
at all energies, the strongest one at 8 MeV and a final judgement has to wait until Coulomb force 
effects will be under control. Clearly the hump of the nd data at 13 MeV should be checked by 
another independent measurement. Preliminary data taken at TUNL for the same configuration show 
no hump [ 4851. Possible 3NF effects under the condition of collinearity will be discussed below in 
Section 6.2. 

Star conjigurations 
The space star configuration has been proposed in [275] as a promising place to search for 3NF 

effects. The argument was that the breakup cross section in that configuration is insensitive to the 
choice of NN forces, which however at that time were only simple s-wave interactions. In reality 
higher NN force components contribute significantly as is shown in Fig. 41. We see that s-wave 
forces are not sufficient and at the higher energies j 2 2 forces must be included. Nevertheless the 
claim of [275] remains true also for all the present day realistic NN forces. This is seen in Fig. 42, 
where data are compared to the various NN force predictions. At 10.5 MeV theory agrees fairly well 
with one set of nd data [462], but disagrees strongly with the other one [ 1361. Also the pd data lie 
clearly below the nd data and the theory. Similarly at 13 MeV the situation appears controversial. The 
nd [ 4705 12,47 1,5 16 ] and pd [ 3971 data differ strongly and theory lies in between. The nd data have 
been remeasured [486] and support the older nd data. Thus there appears to be a problem with theory 
based on NN forces only. At 19 MeV [ 3661 the pd data are slightly below theory. Finally the pd data 
at 65 MeV agree quite well with theory based on NN forces only. A very first estimation of Coulomb 
force effects for this particular configuration will be mentioned in Section 8.5. Another possible shift 
of theory caused by 3NF effects will be discussed in Section 6.2. A final judgement, however, is 
possible only if the pp Coulomb forces have been rigorously incorporated and well confirmed nd data 
will be available. 

The plane for the star configuration can have any orientation with respect to the beam axis. Data 
in the nd and pd systems for coplanar configurations, which contain the beam axis, are shown in 
Fig. 43. The nd data at 13.0 MeV deviate strongly from theory [ 5 121, while the pd data at 22.7 MeV 
agree perfectly. The nd data at 13.0 MeV have been remeasured and are presently being analyzed 
[ 4841. Preliminary results show a good agreement with theory and consequently disagreement with 
the old data. This underlines that a solidly confirmed set of data is badly needed, in order to come 
to definite conclusions. At 65 MeV the pd data [536] and theory show some discrepancy, which 
possibly is related to Coulomb force effects. 
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Other conjgurations 
Breakup configurations have been proposed which exhibit destructive interference minima 

[323]. They are defined by fixed values of the final state NN relative energies and a fixed value 
of the momentum of one of the emerging nucleons. This defines an one-dimensional kinematical 
locus and the configurations are named “constant relative-energy-loci”. For simple s-wave NN force 
models the breakup cross section was shown to be dominated by one of the two doublet state (total 
3N spin S = l/2) amplitudes in which the two identical nucleons are coupled to spin zero, if the 
relative energies and the fixed momentum is chosen in a particular way. Such configurations were 
at the same time claimed [275] to be most sensitive to various s-wave NN force models. A special 
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Fig. 40. Breakup cross sections including the condition of collinearity, indicated by an arrow. Comparison of data (8.0 
MeV: pd data (0) [loll; 10.5 MeV: pd data (0) [203]; 13 MeV: nd data (0) [470,47l],pd data (0) [397]; 19 MeV: pd 
data (0) [ 3661; 65 MeV: pd data (0) [9]) with NN force predictions (AV18 ( -), Nijm 93 (- - -), Nijm I (- - - -) 
and Nijm II (..a,..)). 



U? Gliickle et ai./Physics Reports 274 (1996) 107-285 197 

I.5 - 

mb [ 21 MeV sr 

82 = .19.1° 

10.0 MeV 

0.10 

o.:m 

0.20 

0. IO 

0.00 

Elab = 26.0 MeV 

3 

0 10 

J’ [MeV] 

I 
20 

O.lC 

0.0.5 

0.00 

A[ mb21 dR,d&dS MeV .er 

81 = 54.02’= o2 = Ei4.02” & = 12( 

F ,I,& = 65.0 MeV 

J 

0 20 -10 60 

S [MeV] 

Fig. 41. The contribution of different NN force components to the breakup cross section in the space star configuration: 
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case is, to have equal relative energies and symmetry with respect to the incident beam direction for 
the momenta of the two identical nucleons. Measurements for such configurations [330,355] have 
been performed and compared to simple s-wave NN force calculations. Severe discrepancies between 
theory and data in the minima have been found, which however might be due to the oversimplified 
forces (no tensor force, no 1 = 1 and 2 forces). Again, unfortunately the data cannot be reanalyzed 
using the present day realistic NN forces due to the lack of sufficient information on the experimental 
conditions. Renewed measurements would be very desirable. We shall come back in Section 7.1 to 
the question, whether the claim of [275] about the most sensitive configurations, among which are 
these constant relative energy loci, survives if modem phase-equivalent NN forces are being used. 

More recently data have been taken under detector angles, which do not coincide with the four 
standard configurations mentioned up to now. We display some of them in Fig. 44. In some cases there 
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is strong disagreement to the theory. Especially at 13 and 65 MeV one faces a 100% discrepancy. 
At 65 MeV the cross section is rather low, which is not due to the phase space factor ks given in 
Eq. (105), which is even somewhat larger than in the symmetric QFS configuration of Fig. 35, but 
due to the nuclear matrix element. Our results are stable with respect to different choices of NN 
forces. Therefore, assuming the experimental data to be correct, we face a problem. The pd data at 8 
MeV, which have a kinematics close to the collinearity condition, agree relatively well with theory, 
though unknown Coulomb force effects introduce an uncertainty. Interesting is also the disagreement 
of theory to one set of pd data at 22.7 MeV and the very good agreement with the other set (see 
Fig. 43). 

An experimental full 4~ investigation covering all possible configurations would be very welcome. 
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This would test the underlying 3N Hamiltonian in the most stringent manner. In the past “41r” data 
have been recorded [ 502,561; unfortunately they are not documented and no longer available. 

Spin observables in the breakup process 
Let us regard now spin observables in the breakup process. A first set of data are analyzing powers, 

where the projectile nucleon is polarized. Trials in kinematically incomplete setups were successful 
[ 233,273]. Recent data in kinematically complete arrangements [ 145,146,397,9-l 2,366,536] in 
comparison to the theory are displayed in Figs. 45-49. These are all pd data and the possible 
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Coulomb force effects are unknown. The observables are grouped according to QFS (Fig. 45), FSI 
(Fig. 46)) collinear (Fig. 47)) space star (Fig. 48) and coplanar star (Fig. 49). The agreement is in 
general good, with some possible exceptions at 22.7 MeV (Fig. 45) and 65 MeV (Fig. 47). In the 
latter case there is a hump in the theory not so clearly present in the data and a slight shift of theory 
in comparison to experiment. In all cases the predictions of the most recent NN forces agree with 
each other with slight differences occurring at 65 MeV in Fig. 47. 

Finally we show in Fig. 50 how A, is built up out the NN force components for an example which 
includes FSI kinematics. Clearly the j = 2 forces are needed even at 10 MeV. 

A second set of data are deuteron vector and tensor analyzing powers A,, A,, A,, at Ef;b = 16, 
52.1 and 95 MeV. The deuteron vector and tensor analyzing powers at 16 MeV, shown in Fig. 51, 
agree quite well with the data [ 1011 taken under collinearity conditions or close to it, but the data 
have relatively large error bars. 

At 52.1 MeV the symmetric collinear and coplanar star configurations have been chosen [ 3941. 
While for the deuteron vector analyzing power theory and data agree there are drastic discrepancies 
for A,, and A,,. This is shown in Fig. 52. The structures are much more pronounced in theory 
than in the data. It is interesting to see how the theoretical values are built up; this is displayed in 
Fig. 53. One sees that very important contributions come from the j = 2 NN force components. All 
the NN force predictions agree among each other and therefore we face a problem if the data will be 
confirmed by renewed measurements. At the deuteron lab energy of 95 MeV the A>,?. data [ 3 19,524] 
have been taken at a special symmetric constant relative energy geometry, which has star geometry. 
The two protons are emerging symmetrically to a plane defined by the beam axis and the outgoing 
neutron. The data are shown as a function of the angle (Y between the direction of the neutron and 
the beam axis. Data and theory agree, see Fig. 54, except around cx E 150”, where theory is rather 
smooth and does not show the peak seen in experiment. Since theory develops such a peak at an 
energy about 15 MeV lower it would be of interest, if that observable could be remeasured and then 
more systematically studied at several energies. In Fig. 55 the breakup data are shown along the 
S-curve for two fixed a-values, in the peak and outside the peak of Fig. 54. We see that the clear 
discrepancy is present for all energy distributions in the peak while theory agrees very well with the 
data for all values of S outside the peak. 

From the examples shown we see that the spin data set for the breakup process is much poorer 
than for elastic scattering. What is really needed is a firmly established extensive data basis in order 
to be able to find out possible deficiencies in the nuclear 3N Hamiltonian. 

6.2. 3N scattering including 3NF’s 

To the best of our knowledge the first time that Faddeev equations have been solved for the breakup 
process including a 3NF was in [ 333,334]. Restricted computer resources at that time imposed the 
use of only simplified two-nucleon forces and of a spin-isospin averaged 3NF [63]. The whole 
phase-space has been explored and the most promising configurations with the largest 3NF effects 

Fig. 44. Breakup cross sections for nonstandard kinematics. Comparison of data (8 MeV: pd data (0) [ 1011; 13 MeV: 
nd data (0) [470,471]; 22.7 MeV: pd data (0) [530]; 65 MeV: nd data (0) [302]) with NN force predictions ( AV 18 

(---), Nijm 93 (- - -), Nijm I (- - - -) and Nijm Ii (...---)). 
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were pointed out. Now more powerful computers came up and it got possible to use NN forces in all 
their complexities including in addition 3NF’s without further approximation. 

The most obvious 3NF is the 7r-q exchange among three nucleons with one intermediate A, the so- 
called Fujita-Miyazawa force [ 1571. This model ignores chiral constraints. The need for consistency 
with (broken) chiral symmetry for the TN scattering amplitude embedded in the processes of Fig. 
2 has been emphasized by [ 671. The Tucson-Melbourne (TM) v - 7~ exchange 3NF [ 961 was 
developed in that spirit taking into account the low-energy theorems of the current algebra-PCAC 
description of axial-vector nucleon amplitudes. On top it includes a term dominated by the A-isobar, 
which, however, does not outweigh the current algebra piece. Thereby the off-the-mass-shell r- 
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Fig. 46. The nucleon analyzing power including FSI kinematics. Comparison of data ( 13 MeV: pd data (0) [ 3971; 19 MeV: 
pd data (0) [ 3661) to NN force predictions ( AV18 (--), Nijm 93 (- - -), Nijm I (- - - -) and Nijm II (. .) ) 
For the position of the FSI point see Fig. 39. 

N amplitude is represented in a low momentum expansion, which for higher momenta obviously 
has to fail badly. That amplitude increases with momenta instead of decreasing. Since in realistic 
nuclear wave functions, momenta larger than the pion mass are significantly populated and not at all 
negligible, that wrong behavior has to be corrected by the strong form factors, which results in a 
severe cut-off dependence. 

Extending the current algebra-F’CAC approach the rr - p and p - p exchange 3NF’s have been 

constructed [ 1221 and, including the q - T exchange, all three run under the name TM model 
[ 331,98-1001. The Brazilian group [405-407,409] just took tree diagrams of effective Lagrangians 
(approximately) invariant under chiral transformations and gauge transformations, with r, p and (T’S 
to generate a model for the 7r - g, r - p and p - p exchanges. When the parameters were properly 
adjusted that force gave essentially very similar results in triton calculations [ 84,152,423] as the 
TM-model. For a recent application of the TM 3NF to 3H see [458,460]. 

Then there is a purely phenomenological approach by the Urbana-Argonne collaboration [ 73,432], 
in the form of the UB 3NF, which has the P - ?r long range features built in and a phenomeno- 
logical short range part, which balances the attraction of the long range part. That force has been 
adjusted [506] together with the AV14 NN force to the triton and 4He binding energies. Recently 
that force has been used in 3N scattering calculations below the breakup threshold [ 27 11. 

If the Hilbert space includes in addition to 3N states also states with one, two or three nucleons 
being replaced by A’s, one has to establish transition potentials between nucleons and A’s. This has 
been done [ 199,505] and applied in the 3N bound state [219,220,371,375,376,459,377-3801. That 
formulation is equivalent to introducing certain types of 3NF’s in the Hilbert space of nucleons only 
[425]. Interestingly, that formulation allows for a new dynamical feature, the so-called dispersive 
effects [ 1991. If two nucleons interact by a box diagram with one intermediate A, which is part 
of the two nucleon force, then the presence of a third nucleon modifies the intermediate propagator 
and consequently that part of the two-nucleon force. In case of the 3N bound state with a negative 
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3N energy the presence of the additional kinetic energy of that third nucleon in the propagator 
makes that force weaker. That dispersive effect counteracts the attraction provided by the Fujita- 
Miyazawa force, mentioned above [ 1571. To the best of our knowledge that dynamics has not yet 
been applied in rigorous 3N scattering calculations, but appears to be worth the efforts. This would 
be a straightforward extension of what is being done now, just having more channels, and is quite 
feasible on present day computers. 

Fig. 47. The nucleon analyzing power including collinearity conditions. Comparison of dam ( 13 MeV: pd data ( 0) [ 3971; 
19 MeV: pd data (0) [366]; 65 MeV: pd data (0) [9]) to NN force predictions (AV18 (--), Nijm 93 (- - -), Nijm 
I (- - - -) and Nijm II (.... . .) ) . The position of the collinearity point is indicated by an arrow. 
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Fig. 48. The nucleon analyzing power including the space star configuration. Comparison of data (13 MeV: pd data (0) 
[397]; 19 MeV: pd data (0) [366]; 65 MeV: pd data (0) [536]) to NN force predictions (AVlg (- ), Nijm 93 
(- - -), Nijm I (- - - -) and Nijm II ( s . . . . .) ). The position of the space star point is indicated by an arrow. 
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Fig. 49. The nucleon analyzing power including coplanar star configurations. Comparison of data (22.7 MeV: pd data (0) 
[ 1461; 65 MeV: pd data (0) [ 5361) to NN force predictions ( AV18 (--), Nijm 93 (- - -) , Nijm I (- - - -) and Nijm 
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A very first scattering observable to be calculated is the doublet nd scattering length 2u. As already 
mentioned it is correlated to the triton binding energy. Since that observable is evaluated exactly at 
the nd threshold, the boundary conditions are very simple and one can reformulate the equations such 
that it is like solving a bound state problem. We refer to [ 861 for the configuration space and to 
[ 2381 for the momentum space treatments. Examples for various combinations of 2N and 3N forces 
are shown in Table 11. In all cases (except Bonn B, j,, = 3) the 3N forces have been chosen such 
that the correct 3H binding energy results. We see that the scattering length 2a come thereby close to 
the experimental value of 0.65 fm. In agreement with experiences from other groups we see from the 
example of Bonn B, where we increased j*, to three, that partial waves beyond j,,, = 2 are indeed 
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Fig. 50. The contribution of various NN force components to the analyzing power A, along the S-curve for configurations 
including FSI conditions: s-waves (- . - .), j 5 1 (..... .), j 5 2 (- - - -), and j 5 3 (- ). As NN force Bonn B is 
used. The figures on the left hand side show nn FSI configurations and on the right hand side np FSI configurations. 

needed. The calculations based on j,, = 4 were carried through in configuration space [ 861. Finally 
we display very recent results achieved by the pair correlated harmonic basis technique [ 2711 using 
the AV18 NN force together with an Urbana 3NF. In that case the forces are not truncated. 

Let us now regard possible 3NF effects in elastic Nd scattering and the breakup process. The 
calculations require substantial computer resources and we have up to now only results for the TM 
model, which can serve as a first orientation of what might be expected. 

Similarly what has been found in 3N and 4N bound state calculations [ 1811 the scattering results 
depend on which NN force is “married” to the TM 3NF. This is not surprising in view of the 
different short range repulsions for the different NN forces. Thus, since the 2N and 3N forces are 
not consistently derived within one scheme (with the exception of the Ruhrpot [ 388]), one has to 
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Fig. 51. The deuteron vector and tensor analyzing powers in various breakup configurations at ,?$tb = 16 MeV. pd data are 
taken from [ 1011. The two configurations with 81 = & = 33.4’ and 81 = 24.4’, 02 = 40° include collinearity at S = 0, the 
other two configurations are close to collinearity. The theoretical predictions are AV18 ( -), Nijm 93 (- - -), Nijm I 
(- - - -) and Nijm II (......). 

Table 11 
nd doublet scattering lengths for NN and 3N forces: (a) Bochum, (b) [ 861, (c) [ 2711 

2NF 3NF A InkI ‘a 

Bonn B 2 TM 4.55 2 0.548 (a) 
Bonn B 3 Th4 4.55 3 0.638 (n’ 
AV18 2 TM 4.85 2 0.577 (=) 
Nijm78 2 Th4 5.15 2 0.509 (=) 
AV14 4 BR 5.01 4 0.567 (h) 
RX 4 TM 5.49 4 0.657 (h) 
AV18 UR 0.63 (‘I 

accept right now a certain width in the predictions. Also as in the bound state studies one encounters 
a strong dependence on the cut-off parameter of the strong form factors in the 3NF [ 2351. 

We shall display three studies, one where the T-T exchange TM model is taken together with the 
Bonn B NN potential and a second one where the T - p and p - p exchanges are additionally taken 
into account, and a third one where the parameters of the TM model are adjusted in combination 
with different NN forces to give the correct triton binding energy. Since in the first two studies the 
triton will turn out to be overbound, the resulting 3NF effects in 3N scattering are thus presumably 
overestimated. In the third case one expects smaller effects and possible scaling with the triton binding 
energy. That means, certain observables might be predicted with the same values, independent which 
NN force is paired with the properly adjusted 3NE 

In the first study we pair the Bonn B NN potential with the v - T exchange TM 3NF. We restrict 
the calculation to j,, = 2 and have chosen the lab. energies 3, 13, 14.1, 19, 65, and 140 MeV. Adding 
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the TM 3NF generated with LI,, = 5.8m, (m,, = 139.6 MeV) changes the triton binding energy from 
8.14 MeV to 10.32 MeV. That strong overbinding leads presumably to an overestimation of the 
resulting 3NF effects. The elastic differential cross section is essentially unaffected at all energies. On 
the other hand essentially all spin observables in elastic scattering show effects, which however are 
energy dependent. Thus for instance C,, shows large effects only at 3 MeV, the nucleon to nucleon 
spin-transfer coefficient K;’ (n) up to 19 MeV, the nucleon to deuteron transfer K;’ (d) at 3 MeV 
and 65 MeV but little in between. We display a few examples in Fig. 56. Note that the 3NF effects 
lowers the minimum in K$ (n), which theoretically is a bit too high compared to data using the 
most modem forces NijmI, II, 93, and AV18. Only the CD Bonn prediction passes through the data. 
In contrast to the other potentials it has a rather low deuteron D-state probability and also leads to 
the largest triton binding energy. That feature appears to be an example of a theorem that off-shell 
effects can act in the same manner as 3NF effects [ 3901. At 140 MeV our j,,, = 2 calculation is 
certainly not fully converged and is shown to demonstrate that possibly large effects at these higher 
energies might occur. 

In the breakup process we looked into all np and nn FSI, QFS, Star and Collinear configurations 
between 14.1 and 140 MeV. Only at 14.1 MeV relatively significant effects in the cross sections of 
up to about 10% showed up. This is exemplified in Fig. 57 for the nn FSI’s and QFS’s. Shown are 
the FSI peak heights and QFS maxima as a function of the angle between a neutron momentum and 
the beam axis. In both cases the effects are angle dependent. For future experiments aiming at the 
extraction of the nn scattering length (and also the np one for testing purposes), the fact that at 
some specific angle the 3NF effects are zero, here at = 45” for 14.1 MeV, should be of interest. A 
measurement at that angle would certainly lower the theoretical uncertainty of the extracted scattering 
length. On the other hand measurements at larger and smaller angles could verify the systematics of 
that specific 3NF effect in the FSI peak heights. At the higher energies studied, 65 and 140 MeV, the 
corresponding effects are essentially zero for the FSI cross sections. In case of QFS the analyzing 
power behaves similarly as the cross section: interesting effects at 14.1 MeV (where however the 
analyzing power is very small) and essentially vanishing effects at 65 and 140 MeV. This is displayed 
in Fig. 58. The fact that under QFS conditions the 3NF effects under study are essentially absent at 
the higher energies is very interesting, since at least it does not oppose the hope to use the deuteron 
as a neutron target at higher energies. We shall come back to that issue in Section 7.5. For the 
analyzing power under FSI conditions the situation is reversed: small effects at small energies and 
increasingly strong effects at the higher energies, as seen in Fig. 59. However, we would also like 
to express a warning on the outcome of the specific 3NF effects under study. For instance in the 
space star configuration at 13 MeV the discrepancy to the data is increased adding this 3NF. Also 
the description of the analyzing power under collinearity condition at 65 MeV worsens. Both cases 
are displayed in Fig. 60. 

In the second study [ 5251 we added the r - p and p - p exchange TM 3N forces in addition to 
the 7r - 7r exchange. The influence of the q - p exchange was generally found to be smaller than 
for the 7~ - 7r exchange and to act in opposite direction. The effect of the p - p 3NF was found 

Fig. 52. The deuteron analyzing powers A,, A,, and A, in the symmetric collinear (left hand side) and coplanar star (right 
hand side) configurations. Comparison of pd data [ 3941 and theory ( AV18 ( -). Nijm 93 (- - -), Nijm I (- - - -) 
and Nijm II (......)). 
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to be always negligible. The study was carried through at 3 and 14.1 MeV. For C?, and 3 MeV the 
effect for the ?r - 7~ exchange is now reduced to about half its size, the same is true for K;‘(n), see 
Fig. 56. Nevertheless the effect of lowering the minimum is interesting, since it is also generated by 
weakening the 3S1 -3 Q tensor force or the ‘PI NN force component. Thus this minimum in the 3N 

Fig. 53. The NN force contributions to the deuteron analyzing powers of Fig. 52: s-waves (. . . .), j < 1 (- - - -), j 5 2 
(- - -). and j 5 3 (--). 
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Fig. 54. The deuteron analyzing power A, under symmetric constant relative energy geometry (see text). (Y is the angle 
between the outgoing neutron and the beam axis. Comparison of pd data [ 3 191 to theory ( AV 18 (---) , Nijm 93 (- - -) , 

Nijm I (- - - -) andNijm II (.,....)). 
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Fig. 55. The deuteron analyzing power A YY along the S-curve for two angles CY from Fig. 54. The theoretical predictions 
are AV18 (---), Nijm 93 (- - -), Nijm I (- - - -) and Nijm II ( ......). pddata (0) are from [319]. 
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Fig. 56. Examples for TM 3NF effects in elastic nd scattering, m-r exchange (- - -), T-T + r--p exchange (- - - -) and 
r-r + r-p + p-p exchange (. . . . . .), in conjunction with Bonn B ( -). pd data at 19 MeV are from [474]. 

observable I$ (n) provides an example, where certain 2NF and 3NF effects are similar. Therefore not 
taking 3NF effects into account and drawing conclusions about 2NF properties might be misleading. 

The analyzing power A, is an example, where the discrepancy to the data based on two-nucleon 
forces only does not get cured by including that TM 3NF model [522]. This is clearly seen in 
Fig. 61, where the TM 3NF effect even increases the discrepancy. Obviously if the NN forces and 
the underlying 3P phases would be basically correct, then that TM 3NF model would have to be 
outweighted by a strong 3NF of different nature. Of course there is also always the possibility that 
the off-shell features of the NN forces might be different. According to [ 3901 off-shell properties of 
NN forces are mathematically equivalent to 3NF effects and vice versa. We shall come back to that 
A, puzzle in Section ?.3 below. 

In case of the breakup cross section the already relatively small effects found for the V-7~ exchange 
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Fig. 57. TM 3NF effects, 7-r-n exchange (- - -), m-r -I- T-P exchange (- - - -) and n-n- + r-p + p-p exchange (. .), 
in conjunction with Bonn B (- ) for the nn FSI and the nn QFS peak heights as a function of a neutron lab angle. 

alone are further reduced by adding 7~ - p exchanges. Especially the still controversial situation for 
the space star configuration, mentioned in Section 6.1, is not changed by the negligible effect of the 
TM 3NF. See also Fig. 58-59 for the small shifts caused by addition of the 7r - p exchange in the 
analyzing power under FSI and QFS conditions. For more detailed information we refer to [ 5251. 

Let us now come to the third study, the question whether different 3N Hamiltonians give for certain 
3N scattering observables the same prediction when the corresponding triton binding energy is correct. 
It has been claimed in [ 611 that this is true in general at low energies and nothing new can be learned 
from scattering. This claim has been already criticized some time ago [472] by providing counter 
examples in model calculations of the breakup process. We took up that question again using the 
modem AV18 NN force, the Bonn B and Nijmegen78 NN potential, and adjusted to each force the TM 
n - 7r exchange 3NF such that one gets in each case the correct triton binding energy. As parameter 
to be adjusted we took the n-value of the strong form factors in that TM model. The resulting values 
for A are 4.55, 4.85 and 5.15 m,, for the NN forces Bonn B, AV18 and Nijmegen 78, respectively, 
which reflects the different binding energies of -8.10, -7.72 and -7.54 MeV, for the NN forces only. 
In this manner we generated three different Hamiltonians yielding all the same triton binding energy. 
Now we looked into observables for elastic Nd scattering and the breakup process, between 3 and 19 
MeV using either only the different NN forces or the corresponding full Hamiltonians supplemented 
by the adjusted 3NF’s. Whenever the individual NN force predictions differ but coincide for the full 
Hamiltonians we call that phenomena “scaling with the triton binding energy”. We found observables, 
which do scale and others which do not. With increasing energy scaling dies out and already at 10 
MeV it is essentially gone. Thus it is a clear low energy phenomena. 

Let us first regard elastic scattering. As already mentioned the differential cross section shows 
essentially no 3NF effect. The observables which scale at 3 MeV are the vector spin correlation 
coefficients C,, and C,,, and all nucleon to nucleon and nucleon to deuteron vector polarization 
transfer coefficients; on the other hand all analyzing powers and nucleon to deuteron tensor spin 
transfer and tensor spin correlation coefficients (S, T) do not scale. In the latter nonscaling group 
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the predictions with and without 3NF deviate from each other for different choices of the forces. 
Some prominent examples for scaling observables and nonscaling observables are shown in Fig. 62 
and Fig. 63, respectively. 

In the breakup process we also found scaling and non-scaling behavior for the cross section. We 
performed an angular search in the space of all angles of the two nucleon detector positions. Only at 
small energies close to the breakup threshold scaling was present. For instance at 4.5 MeV there is 
a very small phase space region around 81 = 45”, & = 22” and AC& 5 50” where the individual NN 

force predictions deviate by more than 10% and agree within 3% when the corresponding 3NF’s are 
switched on. An example is shown in Fig. 64. There are also domains which are extremely insensitive 
and all NN force predictions agree with each other and the additionally 3NF effects are negligible. 
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in conjunction with Bonn B (--) for the analyzing power AY under nn FSI condition as a function of a neutron lab 
angle. 

This is also exemplified in Fig. 64. At the higher energies studied, 6.5 and 10.5 MeV, the effects of 
the 3NF become smaller and scaling is much less pronounced. 

For the breakup cross section scaling occurs unfortunately only at rather low energies, where 
measurements are presumably very difficult. The domains which are very insensitive to the choice of 
the nuclear forces (2N and 3N forces) occur at all energies and are equally challenging. We shall 
devote the special Section 7.1 to that subject. 

It might be added that several 3N bound state properties are already well established to scale 
with the triton binding energy. These are the charge radii and the D/S ratios of the asymptotic 
normalization constants of 3He and 3H and the 3He binding energy. For a recent review see [ 5271. 
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Fig. 60. TM 3NF effects, r-r exchange (- - -), on top of Bonn B predictions (---) for the space star configuration 
(left part) and the analyzing power A, under collinearity condition (right part). 
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Fig. 61. TM 3NF effects, r-m exchange (- - -), 71-n + T-p exchange (- - - -) and T-P + n-p + p-p exchange ( . . . . .), 
in conjunction with the Bonn B prediction (--) for the analyzing power A, in elastic nd scattering at 3.0 and 14.1 
MeV. The nd data are from [ 328,329] (3 MeV) and [ 2321 ( 14.1 MeV). 

7. Special topics 

7.1. Survey of breakup cross sections 

Up to now we concentrated mainly on the four types of breakup configurations, briefly called FSI, 
QFS, Collinear and Star. But already for some configurations discussed in Section 6.1 (Fig. 44) 
we encountered a surprise. Thus it might well be that outside of these specific configurations one 
can find even more sensitive cases to probe the 3N potential energy. In the context of simple forces 
sensitivity studies have been performed in [ 502,472,56 1, with the result, that certain configurations 
were identified, where different NN forces gave quite different results. We evaluated in steps of 5” 
in the angles 8, and f& and in steps of lo” in the relative azimuthal angle ti12 = & - 4, of two 
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Fig. 63. Examples for Nd spin observables at 3 MeV, which do not scale with the triton binding energy. Description of 
curves as in Fig. 62. The pd data (0) are from [416] and the nd data (0) from [ 328.3291. 

nucleon detectors the breakup cross sections over all phase space. We used Bonn B and the recently 
updated NN forces AV18, Nijm93, NijmI and NijmII. The resulting cross sections were compared 
to each other and those regions in that three-dimensional angular domain were identified, where the 
cross sections did not deviate from each other by more than 3%. Let us call these configurations 
insensitive ones with respect to the choice of the NN force. Then we looked whether there are angular 
configurations under which the cross sections for the various NN forces (at least one of them) deviate 
among themselves by more than 8%. They will be called the sensitive domains. Both are realised. 

We show in Fig. 65 the sensitive domains projected into the 8r-&, &-& and &-qfq2 planes for 
four energies: E = 10.3, 13.0, 19.0 and 65 MeV. We find that at 10.3 and 13 MeV all the sensitive 
configurations are just nn and np FSI peaks or configurations close to them. Thereby the deviations 
do not surpass 10.5%. The lines under which nn and np FSI’s occur are displayed in the respective 
8,-& planes. That result is not surprising since the a,,,, and unp values of the potentials used in that 
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Fig. 64. An example for the breakup cross section at 4.5 MeV which shows scaling (left side) and an example for utmost 
insensitivity to nuclear dynamics (right side). Theoretical predictions are: Bonn B (--) , AV 18 (- - -) , Bonn B + TM 
3NF (A=4.55m,) (- - - -), and AV18 + TM 3NF (n=4.85m,) (......). 

study deviate slightly from each other and this is reflected in a magnified manner in the FSI peak 
heights. Therefore that sensitivity is mostly a consequence of “bad” force properties. They are not 
well enough adjusted in that specific on-shell property. We left out a few cases around 62 = 60”, where 
the deviations are larger than 10.5% but where the arclength is quite short (about l-2 MeV) and 
therefore hardly accessible experimentally. At 19 MeV additional sensitive configurations show up, 
which when plotted against the arclength S have a deep minimum, where the sensitive dependence on 
the choice of the NN force is located. There the deviations among the different force predictions are 
up to 15%. Finally at 65 MeV the sensitive domain is strongly enlarged and more different types of 
cross section patterns appear, which display sensitivity up to 20% (this latter result does not include 
the NijmII interaction). We show two examples in Fig. 66. Note that the shapes of the cross sections 
are quite different and the largest spread is 15% in both cases. 

Regarding Fig. 65 we see that the sensitive domain in the 8,-&+ space is gradually changing 
with energy. 

In the literature [ 25 1 ] breakup configurations have been cited which are claimed to be extremely 
sensitive to the choice of NN forces (oversimplified forces on present day standards). Since in our 
search with a step size of 5” in 8, and t$ and 10” in +t2 we might have overlooked them we looked 
into one case, the symmetric constant relative energy locus at 19 MeV. The constant relative energy 
loci are defined by constant relative energies of the three outgoing nucleon pairs. In the symmetric 
choice one has the additional condition, that the relative energies between the two np pairs are equal. 
Then the cross section as a function of the energy E3 of that outgoing nucleon, which is different 
from the other two, shows a deep minimum. We found that the cross section in this deep minimum 
is indeed sensitive to the choice of the NN force. At 19 MeV that minimum is located at E3 = 1.015 
MeV and the corresponding detector angles are e1 = 41.19”, & = 47.62” and 4i2 = 152.20”. Using 
the modem NN potentials the largest discrepancy was between Bonn B and NijmII and has the value 
14.9%. Replacing Bonn B by CD Bonn, which has a perfect x2 like NijmII, the discrepancy shrinks 
to 9.3%. Thus indeed that specific configuration is sensitive, but it is not too special, since it is 
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surrounded by equally sensitive configurations as seen from Fig. 65. It is located in the sensitive 
domain and with our grid we came anyhow close to it. 

We searched for this minimum also at E lob = 13 MeV and found it located at E3 = 0.808 MeV with 
the corresponding detector angles 8i = 39.04”, 02 = 46.74” and +12 = 148.16”. However, at this energy 
the minimum is not very deep. This is in accordance with what has been found at 14.4 MeV by 
[ 2511. In our calculation at 13 MeV the largest discrepancy of 6% was between Bonn B and Nijm93. 
Since these 6% stay below our ad hoc chosen threshold value of 8% for sensitive configurations it 
is not included in Fig. 65. Again replacing Bonn B by CD Bonn that discrepancy of 6% shrinks to 
3.9%. 

Since at 65 MeV the sensitive domain has significantly broadened an extensive set of experimental 
data there would be very useful to test the theory. The continuation of that study to higher energies 
is planned. 

The extremely insensitive domains, where all the NN force predictions agree among each other 
within < 3% appear to be also of great interest, since there deviations of the data to theory would 
seriously question all the present day NN forces. The corresponding domains are shown in Fig. 67. 
We restricted ourselves to show only cases where the cross sections are larger than 1 mb/(MeV sr*) 
except at 65 MeV, where all the insensitive cross sections stayed below that value. Again the domains 
change gradually with energy. We propose that measurements in those most insensitive domains 
should be performed. 

Since an exact treatment of the pp Coulomb force problem together with realistic NN forces is 
still not yet under control, nd measurements would be preferable. But pd measurements would be 

Fig. 65. Domains projected into the 19t-&, 81-412 and 82-&z planes, in which the different NN force predictions (see 
text) deviate among each other by more than 8%. The four rows are for 10.3, 13.0, 19.0 and 65.0 MeV, respectively. 
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Fig. 66. Two examples out of the sensitive domains at 65.0 MeV. The deviations among the NN force predictions are up to 
15%. We used Bonn B ( -), AV18 (- - -), Nijm93 (- - - -) and Nijm I (......). 
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also welcome, since they might have smaller error bars and would stimulate that finally one group 
would solve that technically very challenging theoretical problem of Coulomb forces in 3N scattering 
in conjunction with realistic forces. 

Looking into breakup data known to us we found at 13 MeV a few cases, which lie in the 
insensitive domain. They are shown in Fig. 39, where we have very good agreement, in Fig. 40, 
where we agree quite well with the pd data, but not with the nd data (they are presently remeasured 
[ 4851) , in Fig. 42, where our theory lies between the nd and pd data, and in Fig. 44, where our theory 
deviates drastically from the nd data. If the cases with strong disagreement would be reconfirmed 
experimentally, one would have caught hot candidates to see 3NF effects in the 3N breakup process. 

In Fig. 68 we show two example of cross sections taken from those insensitive domains. The first 
one is close to a FSI condition for particles 2 and 3. The second case is rather far away from FSI 
conditions. 

7.2. Extraction of the nn scattering length a,,,, from the 3N breakup process 

We already mentioned that values for the nn scattering length extracted in the past from the nn FSI 
peak area in the nd breakup process have to be taken with some caution. The use of the Watson- 
Migdal parametrization introduces additional theoretical uncertainties on top of the experimental errors 
as has been demonstrated in Section 6.1. In the past also simple finite rank NN forces have been 

Fig. 67. Domains projected into the @I--192, @r-+12 and &-c$Q planes, in which the different NN force predictions (see 
text) agree among each other within less than 3% and where the cross sections am larger than 1 mb MeV-’ sr-‘, except 
at 65 MeV, where the cross sections stay below 1 mbMeV-’ srM2. The four rows are for 10.3, 13.0, 19.0 and 65.0 MeV, 
respectively. 
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Fig. 68. ‘lko breakup cross sections from the insensitive domains in Fig. 67, see text. The five potential predictions 
essentially coincide. The left figure refers to a configuration which is close to a 2-3 FSI condition and the relative angle 
between the momenta k2 and ks is 13.1 lo; in the right figure the corresponding angle is 70.03”. The energies El, Es. and 
Es together with the angles 8s and 413 refer to the maxima in the cross sections. 
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used, often only s-wave forces, and the solution of the Faddeev equations have been compared to 
the data [535]. Again this can lead to inaccurate results, since as we already pointed out, higher 
NN force components give a nonnegligible contribution to the FSI peak cross section. Also these 
simplified old forces certainly do not describe the NN data in a sufficiently accurate manner, which 
induces further uncertainties. Furthermore as we pointed out in Section 7.1 the FSI peak areas in 
general belong to the sensitive domains and cross sections evaluated even with the most modem NN 
forces can deviate from each other, which has consequences for the a,,,, values extracted. We shall 
come back to that point below. 

In the past [446] also several kinematical incomplete nd measurements have been performed, 
where only the outgoing proton has been detected in forward direction. The cross section around the 
highest possible proton energies exhibits a peak, which is due to the nn pair interacting most strongly 
if its relative energy tends towards zero. Recently in [483] the most reliable data sets have been 
reanalyzed using various realistic NN forces in fully charge dependent calculations (including T=3/2 
states). Thereby the nn force in the state ‘So was allowed to vary according to different nn scattering 
lengths. 

The reanalysis of published data between 11 and 62.8 MeV led to a range of extracted unn values 
between - 12 to -22 fm. They are clustered around - 15 fm, which is significantly different from 
the central value -19.7 f 1.8 fm [446] achieved by the old analysis. The large spread of that newly 
found interval is quite disturbing and poses questions about the reliability of the data - and possible 
3NF effects, which might be energy dependent. For instance two data sets around 14 MeV are clearly 
incompatible and require a remeasurement [ 4831. As an example we display in Fig. 69 a proton 
spectrum at 11 MeV [ 3061 in comparison to Bonn B predictions with three choices of nn ’ So forces 
supporting unn = -15, -17.67 and -20 fm. The data are normalized by a factor 1.17 in order to 
agree with theory in the energy range 6.55 to 7.91 MeV to the left of the FSI peak. In that energy 
range there is a negligible dependence of the theory on the value of arm. In this case an optimal value 
of a,,,, = -18.54 f 2.22 fm results. See also [ 5261 for possible 3NF effects. A very thorough review 
on that issue can be found in [ 4841. 

Since the np scattering length unp in the state ‘SO is very precisely known from np scattering, it 
seems most natural to firstly extract that number from the nd breakup process before attacking the 
nn problem. Since there are no well documented np FSI peaks from nd breakup known to us we 
analyzed the three pd breakup data displayed in Fig. 39. First of all theory has to be averaged over 
the opening angles of the detectors, which has quite a significant influence on the peak heights, whose 
values are decisive for the extraction of the scattering length. According to [ 3981, [ 203,366] we used 
the angular openings of the detectors (A& = 0.3”, A41 = 1 .O”, A& = 1 .O”, A& = 1.5”), (A8i = 0.5”, 
A+i = 1.5”), (A& = 1 .O”, Ar$i = 2.7”, A& = 0.7”, A& = 2.9”) for the three measurements at 10.5, 
13.0 and 19.0 MeV, respectively, and assumed equal response probabilities over those A8i and A+i 
ranges. Then we allowed for variations in the ‘So np scattering lengths between -20 fm and -26 
fm. The corresponding variations of the potential parameters were installed for us for the Nijmegen 
and CD Bonn potentials by the respective authors [ 322,468]. As an example for the dependence of 
the theoretical cross section (already averaged over the detector opening angles) on the unp value we 
display in Fig. 70 the np FSI peak at 13.0 MeV. Performing a x2 fit based on NijmI( cd), Nijm93 (cd) 
and CD Bonn predictions we found the following results shown in Table 12. We see the results at each 
energy are only very slightly dependent on the choice of the potential, however vary with energy. At 
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Fig. 69. Renormalized proton spectra (see text) of [ 3061 in comparison with Monte-Carlo simulations using the Bonn B 
NN potential corresponding to an,, = - 17.67 fm (- ) and modified versions of Bonn B with a,,” = - 15 fm (- - -) and 
a,,=-20fm, (----). 

Fig. 70. The a,,-dependence of a np FSI peak at 13.0 MeV: (-) anp = -20 fm, (- - -) anp = -22 fm, (- - - -) 
a np = -23.74 fm from CD-Bonn, (. . . . . .) anp = -26 fm. pd data are from [ 3971. 

Table 12 
Optimally adjusted anp values to np FSI peaks in the pd breakup process. 

&b 
WW 

anp f Aa, (fm) 
CD-Bonn Nijm 93 Nijm I 

10.5 -22.98 f 0.28 -23.05 f 0.29 -22.92 f 0.28 
13.0 -23.30 f 0.22 -23.47 f 0.23 -23.32 f 0.22 
19.0 -23.98 i 0.26 -24.44 i 0.27 -24.20 f 0.26 

13 MeV one is closest to the correct value of azy = -23.74 fm. Obvious reasons for the discrepancy 
can be: on the theoretical side unknown Coulomb force and 3NF effects and uncontrolled systematic 
errors on the experimental side. Also the simulation of the experimental conditions (opening angles of 
the detectors, detector geometry, etc.) has to be performed with great care. For instance repeating the 
theoretical analysis using CD Bonn and half (twice) the angular openings given above, the optimal 
a,,,, values change from -23.3 f 0.22 fm to -22.83 f 0.21 fm (-23.8 f 0.24 fm) for E= 13.0 MeV. 
Thus apparently a sophisticated averaging procedure has to be performed reproducing precisely the 
experimental conditions. 

We also evaluated the np FSI peak heights for all production angles and the three potentials, to 
see whether there exists a dependence on the choice of the NN force and whether at some angles 
that possible dependence vanishes. This would be a phenomena like the “magic” angle found for 
3NF effects in Section 6.2. Indeed it turned out that there are very small angular ranges at which the 
predictions of the forces nearly coincide: /3 = 37”, 43” and 51” for E = 10.5, 13.0 and 19.0 MeV, 
respectively. The spreads of FSI peak heights among the different force predictions at angles different 
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from these “magic” ones can be up to 5%. The above np FSI experiments have been performed under 
the angles 37’, 39” and 41” for E = 10.5, 13.0 and 19.0 MeV, respectively. Since the first two are 
very close to the magic angles the dependence on the choice of the force is very small, only in the 
third case there is some dependence, see Table 12. In future experiments one should try always to 
measure at or close to the magic angles. 

The specific 3NF effects generated by the TM 3NF and studied up to now are such that they 
increase the FSI peak height to the left of the magic angles. Now for the first two cases we are on 
or very close to the magic angles and should therefore not expect much effects. For the third case, 
however, we are significantly to the left of the magic angle and based on that 3NF effect should 
expect that the extracted an,, based on NN forces only should be too large. Indeed it turned out to 
be too large. Right now, however, it is premature to draw quantitative conclusions, since possible 
Coulomb force effects have not yet been taken into account. That theoretical hindrance would be 
absent in the analysis of np FSI peaks in the nd breakup process. A measurement is presently being 
performed at TUNL [ 4841. 

The above results prompted us to investigate the model dependence in the analysis of a recently 
measured nn FSI peak at 13.0 MeV [ 1601. The model data spanning a band around a kinematical 
curve corresponding to point geometry have been simulated by theory taking into account the finite 
geometry effects. Theory in that case was a W-matrix approximation [41] to the Paris potential. With 
the help of that model the data were projected onto a kinematical curve situated in the middle of 
the band. According to the authors of [ 1601 those projected data can be analyzed in future studies 
like “experimental data for point geometry”. This has been done in [ 523 ] and we update that study 
now in the following way. We used the Nijm93, NijmI and the CD Bonn potentials, which can be 
varied with respect to the a,,,, values similarly as described above for the np FSI case. The optimal 
adjusted CI,, values turned out to be: -14.40f 0.40 fm for Nijm93, -14.44 f 0.39 fm for NijmI and 
- 14.3 1 kO.30 fm for CD Bonn. In Fig. 71 we show the dependence of the FSI cross section on the nn 
scattering length in the case of the CD Bonn potential. In no case there is a satisfactory description of 
the shape of the data. We notice that there is negligible force dependence of the extracted an,, values, 
though the experiment has been performed at a nn production angle of 25”, which is far away from 
the specific angle of 43” mentioned in [ 5231, only at which the model dependence should vanish. 
This apparent contradiction results from the fact, that in [ 5231 older potentials have been used, which 
are much less phase equivalent and which do not describe NN data as well as the new ones. This is 
another example which shows that is is extremely important to use only NN forces which describe 
properly NN data in order not to introduce artificial sensitivities to the choice of NN forces, which 
are not real ones but just a result of insufficient parameter tuning. 

The optimally adjusted an,, value of about -14.4 fm is far away from the value -18.6 f 0.3 
fm extracted from 7r-absorption on the deuteron [ 159,433]. To clarify the experimental situation a 
renewed nn FSI measurement at this energy is presently being performed at TUNL [484]. 

In view of the small NN force dependence we also updated the study presented in [523] on the 
nn FSI peak heights as a function of the production angles, now for the most modem NN forces. 
We also added the shifts caused by the n-~ exchange TM 3NF (A, = 5.8m,) in conjunction with 
Bonn B. The result is displayed in Fig. 72. We see that there is indeed an angular range close to 43”, 
where all predictions come very close together, but the dependence of the FSI peak heights on the 
new NN force predictions alone is now much weaker than in [ 5231. Nevertheless that angular range 
seems to be the place where FSI peaks should be measured in order to extract Q,, with the least 
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Fig. 71. The a,,,-dependence of a nn FSI peak at 13.0 MeV: (-) arm = -18.0 fm from CD-Bonn, (- - -1 an,, = -16 
fm, (- - - -) an,, = -15 fm, (. . . . . .) a,, = -14 fm, (- . - .) (I”,, = -13 fm. Data are from [ 1601. 
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Fig. 72. The “magic” angle at 10.5 and 13 MeV for np and nn FSI peak heights, respectively, as function of lab. angles of 
nucleon 1. Theoretical predictions are for np FSI at 10.5 MeV: ( -) Bonn B, (- - -) Bonn B + TM 3NF (A = 5.8m,), 
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( . . . - . . . -) AV14. 

possible theoretical uncertainty. It is interesting to note that in the context of very simple forces the 
existence of such an angle has also been found [472]. Unfortunately none of the experiments done 
so far and we are aware of have been performed under such an angle. Of course the cross sections 
at the crossing point of all the curves in Fig. 72 should still vary with unn. This is demonstrated in 
[523]. Thus based on the above results a measurement of a,,,, with an accuracy of f0.5 fm would 
require the experimental error of the cross section to be less than about 5%, which appears to be not 
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unrealistic, 

7.3. The A? puzzle 

We saw the nagging discrepancy between nd and pd data for the low energy analyzing power in 
elastic scattering on one side and the predictions of all modem NN forces, even including 3NF’s 
(of the TM type) on the other side. We also saw the strong sensitivity of A, to the 3P0, ‘P, and 
jP2 -3 F2 NN force components. We also would like to point to the small difference between the pd 
and nd data, shown as an example in Fig. 14. The pd data around 0 = 120” are a bit smaller than 
nd data. A qualitative explanation of that effect based on a slow-down hypothesis of the proton in 
the Coulomb field of the deuteron was tried in [481]. Assuming that the proton will loose some 
energy (of the order of a few hundred keV) before interacting strongly the pd AX-values should be 
smaller around 8 = 120”, since the maximum of A, decreases with decreasing energy. But there is 
also a change of slope below 0 = 45”, whose explanation requires presumably a full treatment of 
the pp Coulomb force problem. Calculations [ 5 1 ] within the framework of finite rank potentials and 
including the Coulomb force show indeed such enhancements and at the same time a lowering of 
the maximum (see Section 8.5). Whether the difference between pd and nd data also requires CSB 
effects in the 3Pj NN forces [ 5171 can only be decided, if the Coulomb force problem is treated 
correctly in conjunction with the best present day NN forces. 

Now the PSA of Nijmegen and Amdt do not fully agree with each other; furthermore each one 
has error bars. In the Nijmegen case they are explicitly given, in Amdt’s case they are recommended 

to be the deviations between the results of the single energy and the multi energy analysis. Also 
the NN phases of the newest potentials can be considered as results of independent P&A’s, since the 
forces have been fitted to the NN data and the x2 per datum is as good as in the Nijmegen PSA. If 
we regard the 3Pj phases in Table 8 we see a spread of about 3%, which has therefore to be taken 
as a typical uncertainty in PSA values of that type. What influence has this uncertainty onto the 3N 
analyzing power A ,,? Let us first regard the np and pp system. We modified the 3Po, 3P1 and 3P2 -3 F2 
phases by 3% in such a direction, that the corresponding NN force predictions increase the maximum 
in the 3N A,. This requirement is that the ‘PO force has to be weakened and the ‘PI and 3P2 -3 F2 
forces strengthened. In this study we used the NijmI potential. The effect on the pp analyzing power 
is hardly visible as shown in Fig. 73 in one example at Elub = 9.85 MeV. The reason is that the pp 
A! results from an interference of a very small nuclear and a dominating Coulomb amplitude. In the 
np case however the nuclear amplitude is much stronger and the effect of the 3% variation is clearly 
visible, see also Fig. 73. In fact the 3% variations in the np system are somewhat too strong, while 
in the pp system, based on A, alone, even larger variations appear to be possible. The outcome for 
the 3N Al is also displayed in Fig. 73. We see a significant increase in the maximum towards the 
experimental data, but it is not sufficient to solve that puzzle. 

We would like to emphasize that only NN forces, which describe the NN system sufficiently well, 
should be used to deal with the 3N analyzing power puzzle [ 5201. 

Finally we would like to mention an explanatory purely phenomenological study [ 5 171, where we 
allowed for a much stronger CIB breaking in the 3P NN force components. The only constraint was 
to describe the np and pp A, data about as well as the so called realistic NN potentials. It turned 
out that there are very many ways to choose the 3P NN phases. We chose one of them, which at the 
same time of course should favor the description of the 3N analyzing power A?,. In this manner a 
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Fig. 73. Analyzing power A, for pp (a), np (b) and nd (c) scattering. Comparison of the Nijml prediction (--) to 
ones with modified ‘Pj forces, which lead to changes in the “Pi phases by 30/ O: ‘PO alone (- - -), ‘PO and “PI (- - - -), 

‘PO, ‘PI and 3Pz -3 F2 (..... .) for (a) and (b). In (c) 3% in “Pi np and 1% in ‘Pj pp channels (- - -), 3% in ‘Pi np 
and pp channels (- - - -). 

significant reduction of the old discrepancy could be achieved [ 5171. Also we think that this study 
can be refined to reach a very low x2. Unfortunately that phenomenological CIB is quite opposite to 
what the meson theoretical study tells [ 3221. 

Right now the puzzle remains. If the 3Pj phases of the Nijmegen PSA will turn out to be final, 
then in view of the experience gained up to now with the adjusted NN forces it seems unlikely that 
the experimental A, can be described with NN forces only. Three-nucleon force effects will thus be 
required, where however the first trial with the TM force totally failed. 

7.4. Eigen phase shifts and mixing parameters for elastic nd scattering above the breakup threshold 

In the past there have been several trials [429,279] to work out a PSA for elastic Nd scattering 
below and above the breakup threshold. With not sufficient theoretical guidance at that time some 
unrealistic simplistic assumptions were made, as we know now, not expecting that all possible 
complexities are indeed realised. In a channel spin representation (the channel spin 2 being the sum 
of spins of two colliding nuclei, here the deuteron and a nucleon) all possible transitions between 
the two Z’s (l/2 and 3/2) and the relative orbital angular momenta (here called A) really occur, the 
only restriction being the conserved total 3N angular momentum and the parity. The resulting 3 x 3 
S-matrix has been already displayed in Section 5. Now above the breakup threshold all quantities 
in (209) -( 214), the eigen phases and the three mixing parameters E, 5 and q can in principle be 
complex and they are. The spin and momentum dependencies of the NN force acting between the 
projectile nucleon and the constituents of the deuteron are transformed in the full 3N dynamics into 
effective forces between the projectile nucleon and the deuteron as a whole. These effective forces 
contain information about the coupling between elastic scattering and the breakup process. We used 
several NN forces and evaluated the phase shift and mixing parameters defined in Section 5. Though 
the 3N scattering observables are quite stable with respect to replacing one NN force by another 
some phase shift and mixing parameters change thereby significantly. This is displayed in Table 13 
for 13 MeV. We notice that the predictions for 7 in the state l/2+ have a spread of up to 20%. 
Also mixing parameters for higher J”-values vary up to 4-5%. Among the eigen phases especially 
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Fig. 74. Examples for eigen phases and mixing parameters for elastic nd scattering above the breakup threshold. Their real 
and imaginary parts are indicated by (0) and (*) ,respectively. 

~34~ for J” = l/2+ and ai, for J” = 3/2- stick out with variations of up to 5%. Apparently the 3N 
observables studied up to now are influenced by many of these S-matrix parameters and the variations 
seen in Table 13 are averaged out. 

As example for the energy variations we display two eigen phase shift and two mixing parameters in 
Fig. 74 based on the Bonn B NN force. We notice imaginary parts which are comparable in magnitude 
to the real parts and which reflect the strong transitions between different Z’s and h’s through the 
loss of flux into the breakup channel. It might be worthwhile to evaluate the scalar coefficients in 
a “Wolfenstein parametrization” of the elastic scattering amplitude, quantifying the different types 
of spin and momentum dependencies. As worked out in [438] there are 12 independent scalar 
combinations built out of the two spin vectors and the momentum vectors in the initial and final state. 
In the NN case there are only five (on shell). 

Regarding Fig. 74 one notices a strong variation of the q312- in the energy around 8- 10 MeV. Does 
that signify some special dynamical event? We looked into the energy dependence of the underlying 
S-matrix elements, which govern the observables and found them to be smooth. Thus that strong 
energy variation of the 73/2- is just an artifact of the specific parametrization and seems to have no 
physical meaning. For more details see [ 239,240]. 

Finally we come back to the 3N analyzing power A,. Using its representation in terms of the eigen 
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Table 13 
Eigen phase shift and mixing parameters for elastic nd scattering at 13 MeV for various recent NN forces. The format is 
(real part, imaginary part). Notice the strong variations in S;,, and 7 for l/2+. 

J” &A CD Bonn AV18 Nijm 93 Nijm I Nijm II 

I+ 
? 

I- 
i 

3+ 
2 

z- 
2 

5+ 
2 

5- 
2 

7+ 
1 

it2 
20 

71 

(-7.69, 57) 

(-70.97,19.31) 

(1.27, .13) 

(-.73, 8.30) 

(36.66, 3.42) 

(23.01, 4.98) 

(-7.65, .56) 

(-75.46,18.39) 

(.94, .09) 

(-.86, 8.11) 

(36.71, 3.27) 

(22.49, 4.67) 

(75.09, .29) (75.24, .28) 

(6.84, 1.57) (6.83, 1.52) 

(-8.17, S7) (-8.15, .56) 

(-1.65, -.22) (-1.68, -.21) 

(2.08, .51) (1.97, .51) 
(4.57, -.ll) (4.55, -.lO) 

(2.45, 1.11) 

(4.99, 8.62) 

(30.58, 2.90) 

(4.16, - 19.33) 
(-15.15, -4.59) 
(-2.31, 4.88) 

(2.49, 1.14) 

(4.66, 8.30) 

(30.78, 2.83) 

(3.80, -20.21) 
(- 14.77, -4.20) 
(-2.14, 4.98) 

( - 1 .oo, .02) 

(6.69, 1.55) 

(-9.32, .59) 

(-4.37, .74) 
(-.63, -.24) 
(-3.14, -.ll) 

( - 1 .oo, .02) 

(6.65, 1.50) 

(-9.32, .58) 

(-4.30, .70) 
(-.63, -.24) 
(-3.11, -.ll) 

(37.51, 2.39) 

(-1.18, .23) 

(2.99, .08) 

( - .70, .09) 

(.29, .45) 
(1.96, -.03) 

(37.31, 2.36) 

(-1.18, .22) 

(3.00, .08) 

(-.68, .08) 

(.33, .43) 
(1.92, -.03) 

(-7.63, .57) 

(61, .04) 

(-.98, .02) 

(-2.73, -.19) 
(-.45, -.08) 
(6.10, .35) 

(-7.64, .56) 

(61, .03) 

(-.98, .Ol) 

(-2.69, -.19) 
(-.44, -.08) 
(6.02, .35) 

(-7.58, .57) 

(-74.21,18.77) 

(1.06, .12) 

(-.47, 8.24) 

(36.86, 3.38) 

(22.89, 4.89) 

(75.42, .29) 

(6.86, 1.55) 

(-8.05, .57) 

(-1.66, -.21) 

(2.02, .52) 
(4.57, -.ll) 

(2.45, 1.10) 

(5.21, 8.55) 

(31.00, 2.90) 

(4.67, -19.11) 
(- 14.94, -4.46) 
(-2.37, 4.72) 

(-1.00, .02) 

(6.68, 1.52) 

(-9.23, .59) 

(-4.32, .71) 
(-.66, -.25) 
(-3.15, -.12) 

(37.38, 2.39) 

(-1.17, .22) 

(3.01, .08) 

(-.69, .09) 

(.33, .44) 
(1.94, -.03) 

(-7.57, .57) 

(61, .04) 

(-.98, .02) 

(-2.73, -.20) 
(-.47, -.08) 
(6.10, .36) 

(-7.67, .57) 

(-73.03,18.76) 

(1.10, .11) 

f-.83, 8.22) 

(36.73, 3.41) 

(22.88, 4.89) 

(75.67, .29) 

(6.84, 1.56) 

(-8.15, .57) 

(-1.67, -.22) 

(2.03, .51) 

(4.57, -.ll) 

(2.47, 1.12) 

(4.82, 8.52) 

(30.87, 2.91) 

(3.95, -19.65) 
(- 15.04, -4.42) 
(-2.24, 4.94) 

(-1.00, .02) 

(6.67, 1.53) 

(-9.30, .58) 

(-4.35, .72) 
(-.62, -.24) 
(-3.13, -.I 1) 

(37.55, 2.41) 

(-1.18, .22) 

(2.99, .08) 

(-.71, .09) 

(.3(X 44) 
( 1.98, -.03) 

(-7.62, .56) 

(.61, .04) 

(-.98, .02) 

(-2.71, -.19) 
(-.45, -.08) 
(6.06, .35) 

(-7.70, .57) 

(-74.99, 18.63) 

( 1.03, .09) 

(-.83, 8.25) 

(36.34, 3.36) 

(22.66, 4.89) 

(75.08, .29) 

(6.82, 1.55) 

(-8.17, .57) 

(-1.65, -.22) 

(2.04, .50) 
(4.53, -.11) 

(2.49, 1.11) 

(4.72, 8.53) 

(30.66, 2.87) 

(3.62, - 19.60) 
(- 14.82, -4.35) 
(-2.14, 4.89) 

(- 1 .oo, .02) 

(6.65, 1.52) 

(-9.32, .58) 

(-4.34, .72) 
(-.63, -.24) 
(-3.12, --.I 1) 

(37.21, 2.38) 

(-1.18, .22) 

(2.99, .08) 

(-.71, .09) 

( .29, 44) 
(1.98, -.03) 

(-7.64, .57) 

(.61, .04) 

(-.98, .02) 

(-2.70, -.19) 
(-44, -.08) 
(6.03, .35) 
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Table 13 -continued 

J” &A CD Bonn AV18 Nijm 93 Nijm I Nijm II 

I- 
2 6;s ( .40, .Ol ) ( .40, .Ol ) ( .40, .Ol ) ( .40, .Ol ) ( .40, .Ol) 

643 (-1.12, .22) (-1.12, .21) (-1.12, .21) (-1.12, .21) (-1.12, .21) 

62, (3.45, .08) (3.45, .08) (3.46, .08) (3.45, .08) (3.45, .08) 
?’ 

71 (-9.42, -1.40) (-9.26, -1.33) (-9.35, -1.38) (-9.37, -1.38) (-9.31, -1.36) 

c.14, -.24) c.13, -.23) (.15, -.24) c.14, -.24) c.14, -.24) 
(-2.24, .06) (-2.19, .05) (-2.21, .05) (-2.22, .05) (-2.21, .05) 

phase shift and mixing parameters, one can search for those of them, which rule that observable in the 
most sensitive manner. The clear result is that these are the eigen phase shifts S$ i, 4;: , and 8!$ ,. 
The next question then appears, is there a close connection between specific NN’force ‘components 
and these three eigen phases. Thus we varied all NN force components individually by 10% in 
strength and looked for those eigen phase shifts and mixing parameters which were affected most 
strongly. It turned out in a very clear cut manner that just the 3P NN force components are mostly 
responsible for the three eigen phases, which again determine A,. Thus we rediscovered again what 
one has known before without using the language of eigen phases and mixing parameters, namely 
that the 3P forces govern A,, at low energies. This opens now a door to possibly solve the A,-puzzle. 
If a Nd PSA would succeed to extract these three eigen phases their values would put constraints on 
the underlying 3P NN forces. The NN forces presently existing certainly generate incorrect values 
for those eigen phases, the reason being either on- or off-shell defects or action of 3NF’s of a new 

tY Pee 

7.5. High energy limit 

At high projectile energies the deuteron binding energy can be neglected and one might expect 
that the deuteron can be considered to be a nucleon target with the other nucleon just a spectator. 
Thus a simple scattering process (first order in t) should finally emerge. But on the other hand the 
second nucleon, though very weakly bound, is rather close by and this might necessarily lead to 
some rescattering effects. We investigated that question already in Section 6.1 for the QFS breakup 
configuration and found that first order rescattering was present even at 220 MeV. This is presumably 
due to the fact that the de Broglie wave length A = h/q0 at this energy is still 2.9 fm, larger than the 
typical distance of np in the deuteron. Now we repeat that study for all breakup configurations. Thus 
we solve Eq. ( 154) exactly and compare its solution to the first order term, tP, the sum of the first 
order and second order term in t, etc. We used AV18 as the working vehicle and studied 65 and 140 
MeV. As in the sensitivity study of Section 7.1 we went through all the phase space in steps of 5” or 
10” for E = 65 MeV and 140 MeV, respectively, in the angles 13,) 02 and in steps of 10” in @i2 and 
compared the breakup cross sections evaluated in first order, up to second, third and fourth order in 
t to the exact results. As a measure we used 

(228) 
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Fig. 75. The locations (open circles) for strong rescattering (second group, see text) in the 81-02 planes for fixed 412’s. 
The events of the first group reaching the exact result within 5% after the fourth order in t are shown as solid circles. The 

remaining events lie in between. This refers to 65 MeV. 

where C( S) (G is the fivefold differential breakup cross section evaluated up to the ith order in the 
t-matrix t, CT( Qfulr is the cross section to all orders in t and S the arclength on the kinematically 
allowed locus in the El-E2 plane. 

At 65 MeV we decomposed all the events into three groups, a first one where after the fourth order 
in t one reaches the exact result within 5%, a second one, where after the fourth order rescattering 
one is still away from the exact result by more than 100% and the remaining cases, which are in 
between, but require more than the fourth order in t. Since the events of the second group are located 
either at or near C#Q~ = 0” or 412 = 180” we show their location in 8, -82 planes for various fixed 
values of c$~~. As we see from Fig. 75 the domains of strong rescattering (second group) are mostly 
at c#J,* = 0” and die out near C/J i2 = 30” and then again another region occurs for +I* = 180” and close 
to it. Representative cross sections out of these domains are displayed in Fig. 76. The structures seen 
are all caused by FSI’s (also nearby ones). We see strong divergencies. As one example out of the 
third group Fig. 76 shows also a space star configuration, where after fourth order in t one is still off 
by 20% from the exact result. 

It is also interesting to note that in first order in t the smallest A-value among all the configurations 
considered was 0.13 and the largest one 10.5, up to second, third, fourth orders the corresponding 
numbers were 0.09 and 3.8, 0.02 and 5.54 and finally 0.018 and 5.09, respectively. This shows both, 
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Fig. 76. Three representative cross sections out of the second group in Fig. 75 for 412 = 0” and 180”. The cross sections 
evaluated up to the first, second, third and fourth order in t (not using Pade) are given as (- . - .), (. ’ . . .), (- - - -), and 
(- - -), respectively, the fully converged result as (- ) . The cross section for 412 = 1 20° is a space star configuration 
out of the third group, where rescattering is less strong, but even after the fourth order one is still 20% off the exact result. 

convergence and severe divergence. 
Now at 140 MeV the corresponding numbers are 0.094 and 8.32, 0.012 and 1.54, 0.008 and 0.84 

and finally 0.0016 and 0.51, respectively. Thus even the worst case in relation to the number of 
rescatterings appears to converge. 

At 140 MeV we have chosen again 3 groups of events, one with A < 5% and one with A > 20% 
after the fourth order in t, and the rest. The angular regions spanned by the events of the second 
group are now much smaller and occur only for ~~5~2 = 0” and 180”. This is displayed in Fig. 77 
together with the regions for the events of the first group. Finally Fig. 78 shows two cross sections 
out of the two separated regions for the second group. Again the structures are linked to FSI’s or 
nearby FSI’s. 
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Fig. 78. Two representative cross sections out of the second group in Fig. 77. Description of the curves as in Fig. 76. 

Now from a practical point of view, calculating the first order rescattering process (second order 
in t) is as difficult as calculating a process of an arbitrary order in t. It requires the full integral 
kernel with all its singularities. The only advantage is, that working only to second or third order 
saves computer time in comparison to evaluate processes as high as the 10” order, say. 

Using the extreme impulse approximation in the breakup cross section formula (Eq. (99) ), the 
first term in Eq. (221), and strict QFS condition (note that the D-wave part of the deuteron state 
does not contribute, since it vanishes for zero argument) - one easily finds 

d5a I* 
WWq QFS 

= $n+?l’$ 
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(229) 

Besides known factors we see the momentum space deuteron wave function at zero argument and 
the spin averaged NN off-shell differential cross section. Depending on the isospin quantum numbers 
Y we have np, pp, or nn scattering. 

For practical purposes it might be more convenient to formulate Eq. (229) in the lab. system. It 
results from Eq. (106) 

d5a IA 
d&d$dS QFS = ’ 

I tqowmvN - VI) 

279q$(O)m"k~k~~ 

X %o 
kit=3 - k3. (bob - kd)* + k:(2k2 - R,. (klab - k3))* 

with 

(230) 

p=+2-W, q,,=$ktab 

and the QFS condition kl = 0. 

(231) 

The NN t-matrix is off-shell. For higher energies, above 100 MeV say, the l d term causing the 
t-matrix being off-shell will loose importance, as will be demonstrated. 

We compared the breakup cross section under np and nn QFS conditions for the full solution of the 
Faddeev equations to the expression (230)) which is valid only in the extreme impulse approximation 
and to the full impulse approximation, which includes the remaining two terms in Eq. (221) . Shown is 
also the expression (230)) where the off-shell NN t-matrix is replaced by the on-shell one (neglection 
of the two Ed corrections). This is displayed in Fig. 79 for the energies 65, 140 and 220 MeV. All the 
calculations are just based on jNlx = 3, which is certainly not sufficient at the two highest energies, 
but we expect no principal change with an increase of jmX. 

We see a very strong deviation between the IA and the full calculation at 65 MeV, but even at 220 
MeV there remains a gap of M 20%. This is of course consistent to what we already discussed in 
Section 6.1. There we found that the rescattering terms of first order in t are not negligible even at 
the highest energy of 220 MeV. 

It is interesting to note that there are energy dependent angular domains, different for np and nn 
QFS, with angle independent factors between the full calculation and the IA. As an example at 140 
MeV the angular regions are between 34” and 53” (43” and 75”) where the factors are 1.2 ( 1 .l ) for 
nn (np) QFS, respectively. This is just a numerical result and we have not yet any deeper insight. 
It appears very interesting to check that angular independent factor experimentally by comparing the 
3N breakup cross section under np QFS conditions with the corresponding angular distribution for 
np scattering. A positive result would allow to measure the deuteron quantity 

dr r2 90(r) (232) 
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A positive check of the 3N reaction theory in the np QFS might also lend credit to believe in the 
reaction theory for the nn QFS, which would then allow to extract the nn differential cross section 
from nd quasi free scattering. 

Let us now regard spin observables in the nd breakup process. Let us first consider the question 
whether two-nucleon spin observables can be extracted. If at all one has to work under QFS conditions. 
We assume the extreme IA to be valid, whence 

(233) 

Can that be used to extract for instance the NN analyzing power? Inserting (233) into (132) one 
arrives immediately at 

A, = 4?pv2~3, &v,v - ~1) (234) 

where Ay is the on-shell NN analyzing power (except for the Ed correction) for the scattering of 
nucleons from the initial to the final quantum numbers as indicated. Thus as for the cross section np, 
pp, and nn analyzing powers can be gained. 

The same applies to the nucleon spin transfer K$ as is easily verified, 

(235) 

NN spin correlation coefficients work exactly the same way if in the 3N breakup process the 
spin directions of the two nucleons are detected in the final state in coincidence. Then this outgoing 
polarization 

boils down to 

pkl = C3PV2V39 &Iv4 - Vl) 

(236) 

(237) 

Note we used the notation N from Eq. (146) for the breakup amplitude, as described in Section 2.4. 
In case when the nucleon and the deuteron are polarized in the initial state linear combinations of 

NN correlation coefficients arise. This is simply seen from 

ck.1 - 
Tt-( h,P,N+ ) 

Tr( NM) 
(238) 

For N be chosen as given in Eq. (233) the trace in the numerator of Eq. (238) is up to a factor, 
which cancels against the one in the denominator 

Fig. 79. nn and np QFS breakup cross sections at 65, 140 and 220 MeV as a function of the neutron lab. angle. Comparison 
of the full Faddeev calculation ( -), U, = rP (- - - -) &I = (1 + P)rP (- - -), among each other and to expression 
(229) without the Ed correction in the NN t-matrix (. . . . .). 
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Xtnr~m,,m~m~--m~ (flk)m~m$ (Pl>md,m~t~zms,m~m~-ml 

Now we can define 

r(r) = 
I.& - c 8md-ml,p Carni-ml,& C (fj~l,Pw,ml) C (iil~P’9~l) (pl1md.m~ 

md.ml m:, 

ThUS 

Tr( NukP,N+) m C C tm~m~,m~p(~k)m~m~r~~~t~~m,,m;~~ 

m2m3 mMNpm;p’ 

Since Z$, can be decomposed into Pauli matrices 

(239) 

(240) 

(241) 

m 

one finds 

ck.1 = c aim C,N,N(Pv2v3 9 !qO’h’ - Vl) 

(242) 

(243) 
m 

This again appears to be an interesting case to verify experimentally that reaction theory. 
We exemplify these predictions in Fig. 80. There we display A, and KY for np and nn QFS’s and 

compare the full calculation to the impulse approximation (evaluated off-shell) and the corresponding 
NN spin observable. While at 65 MeV impulse approximation and thus also the direct NN observable 
deviates strongly from the full 3N scattering result, at 140 and 220 MeV the situation is much 
more favorable. For some observables impulse approximation (evaluated off-shell), the on-shell NN 
observable and the full calculation (which includes all rescattering processes) agree very well in a 
certain range of the lab. angle of nucleon 1. On the other hand for np A, at 140 MeV off-shell effects 
remain noticeable and this is also true for nn K;’ at 140 and even 220 MeV. Thus a careful analysis 
is required. Again only a j,, = 3 calculation is shown, but we expect taking larger jmX no basic 
change in these results. Quasielastic scattering of nucleons on the deuteron can therefore be used 
with proper care to extract NN spin observables under QFS conditions at the two highest energies 
considered. Therefore we propose for instance to measure in this manner nn spin observables after it 
has been verified experimentally that corresponding np observables can be extracted correctly from 
the 3N breakup process under QFS conditions. 

QFS configurations are especially suited for this aim due to the fact that as we pointed in Section 6.2 
the 3NP effects are practically negligible for these configurations at high energies. We shall come 
back to that point in Section 7.8. 

In the literature several data sets under QFS conditions exist, which were interpreted as NN data. 
As examples we mention [ 303,477,495,313], whose pd QFS data were used in Arndt’s PSA for np 
data. 

In [ 313 ] for instance spin transfer coefficients were extracted at 140 MeV in an angular range, 
which starts at 20”. At least for K,” shown in Fig. 80 this would require substantial corrections 
which can also be true for the other spin transfer coefficients discussed in [ 3131. If that would be 
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the case they should not be included in a np data set. In [495] np K;’ has directly been extracted 
from quasielastic pd scattering at 212 MeV. The angles chosen were between 19.5” and 40”, which 
according to Fig. 80 lie outside the safe region and where substantial rescattering corrections are 
needed. 

We would recommend to rely only on data which lie in an angular range, where the four curves 
in Fig. 80 fully overlap. Another example which appears to be very doubtful is the np analyzing 
power extracted under QFS conditions at 140 MeV in [ 3031. As already mentioned off-shell effects 
are not negligible and moreover at the angles chosen rescattering corrections are substantial. A pd 
experiment [477] carried through at 217 MeV under pp and pn quasielastic conditions is more 
favorable as Fig. 80 shows. In that study A, was measured in the free pp system and compared to the 
quasielastic pp data. The agreement is quite good, which motivated the authors to have confidence 
also in the pn quasielastic data. Except for the smallest angles the remaining ones are in the safe 
angular range and thus acceptable according to our present study. A more detailed investigation is 
planned. 

In order to verify this reaction theory more completely also the other extreme configurations with 
strong rescattering in FSI’s or configurations near FSI’s should be measured. 

Does elastic neutron-deuteron scattering also simplify at high energies? This will be studied in the 
next section. 

7.6. The nucleon-deuteron optical potential and its high energy limit 

Since one can calculate nucleon-deuteron scattering exactly, including the breakup process, the 
question of introducing the auxiliary concept of an optical potential into that scheme is perhaps 
artificial. Also there is obviously too little nuclear medium, only two nucleons, which could serve to 
build up a mean field for the projectile nucleon. Nevertheless this is a system whose optical model 
properties can be determined precisely, with its inherently nonlocal nature and complicated spin and 
momentum dependencies. To that aim we would like to write down the defining equations and their 
high energy limit. 

As shown in Sections 2.1 and 2.2, the operator for elastic scattering U obeys the Faddeev type 
equation 

U = PC,-’ + PtG,,U (244) 

This is not yet the equation searched for, since the kernel also includes intermediate breakup states. 
We separate tGo as 

tGO = V 
1 

E+k-Ho-V 
-vGB+w;, 

where Gd is the deuteron and G, the continuum contribution in the spectral decomposition of the 
two-body Hamiltonian. Then it is a simple exercise to see that Eq. (244) is equivalent to 

Fig. 80. A, and K;’ under nn and np QFS conditions at 65, 140 and 220 MeV as a function of the neutron lab. angle. 
Comparison of the full Faddeev calculation (- ), UO = tP (- - -), UO = (1 + P)tP (- - - -) among each other and to 
the NN on-shell quantities (. . . - . .). 
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U=V+VGdU 

V = PV + PVG,V (246) 

We replaced PG{’ by PV, which is the same if applied onto the initial (on-shell) channel state 4. 
In the first of the two Eqs. (246), however, V is applied onto arbitrary off-shell states. Thus by that 
replacement we modified the operator U off-shell, but not on-shell. 

Now the first equation of (246) is just appropriate to describe elastic nd scattering. Applied to the 
initial channel state 4 z 1~~) Iq,J and acting by (q[ ((~~1 from the left we get 

(247) 

This is an equation describing potential scattering and the optical potential can be read off to be 

v(q, 6) = (!d(~dl%'d)ki) t 248) 

How do we get V? The second equation in (246) is not suitable for a numerical treatment and we 
rewrite it into a more convenient form. Define 

&GO z VGc (249) 

and 

VGcV z T, (250) 

then 

T, = tcGoPV + tcGoPTc (251) 

which is the equation to be solved. Knowing T, one can read off V from the second equation in 
(246) as 

v=pv+pT, (252) 

Finally the breakup operator UO given as 

U,=(l+P)T (253) 

can be put into the identical form 

u, = $(l+P)u (254) 

using the identity 

i(P - l)P = 1 (255) 

Evaluating U, via that second form in Eq. (254) one has obviously to solve first U projected from 
the left onto the deuteron state and then Eq. (247) is used again, now projected from the left onto 
free states. This last step is just a quadrature. This scheme is an alternative to solve nd scattering to 



U? Gliickle et al/Physics Reports 274 (1996) 107-285 245 

what has been described and used up to now. Let us go into more details. Comparing the definitions 
of t in Eq. (245) and t, in Eq. (249) one finds 

t, = t - VGdG,’ (256) 

Thus t, has no deuteron pole, what is anyhow evident from its very definition (249). Eq. (256) also 
shows that t, is not symmetric in contrast to t and obeys the Lippman-Schwinger equation 

t, = V - VI&)(&l + t,GoV (257) 

The solution of Eq. (251) is as difficult as the solution of the Faddeev Eq. ( 154), even if it has 
no deuteron pole. The difficulty arises because of the driving term. On top of that Eq. (251) has 
to be solved quite often according to the different q ’ values needed in (247). In our present way 
of solving the Faddeev equations, the central Eq. (154) has to be solved only once for the initial 
momentum qo. For future parallel computers this might be, however, no obstacle. 

The optical potential V(q, q’) of Eq. (248) can be decomposed into the various scalars formed out 
of the deuteron and nucleon spin vectors and the nucleon momenta q and q’. Each of those scalars 
will be multiplied by a scalar function in q and q’. This appears to be a worthwhile exercise including 
its transformation into configuration space in order to see the complexity of the optical potential, even 
for such a simple target as the deuteron. Instead of pursuing that further we would like to regard only 
the high energy limit of that optical potential. 

Assuming the first term, PV, in (252) and the lowest order one for T, to be the leading ones at 
high energies the optical potential will be 

v(!?‘, 4) = (q’)(qdIpv + ~~c~~o%‘d)kl) (258) 

Using the Schrijdinger equation of the deuteron this can be easily rewritten into 

v(q’,q) = (q’&Pd]P(E- HO>l~d)lq) + (!fl((Pdlf%PI~d)lq) 

+&h2 - &(6bd~PI~d)k) + &q2 - ~~)(6~(~dIptcpGO~~d)~~) (259) 

The first term has often been regarded in the past [ 88,231 in the treatment of elastic nd scattering. 
It is called the nucleon-exchange term. Because of the cyclic and anticyclic permutations contained 
in P the deuteron in the ket vector is composed either of nucleons 1,3 or 1,2 whereas the deuteron 
in the bra vector contains nucleons 2,3. Those processes are often depicted as 

(260) 

The second term on the right hand side of Eq. (259), when explicitly written out is 

kibdIptcpbd)kh = 1 bihdlk2 + tc.3bd)kfh 

+l(bl(SPdIt=,21(Pd)14)3 + 1(4’l(~dltc,31~d)14)2 (261) 
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We added indices to the bra and ket vectors to show which pair forms the deuteron and which 
nucleon is the free one. Thus for instance the free nucleon 1 goes with the deuteron formed out 
of particles 2 and 3, etc. The first term on the right hand side has obvious physical meaning: 
nucleon 1 interacts with the two constituents of the deuteron via the NN t-matrix t, (in t, the 
deuteron contribution is taken out in the states 3S1 - 3D1). The last two terms can be rewritten as 

-1kikdk2 pl31~d)kh -1 (6bdh3 P12bdh) ,, using the antisymmetry of the deuteron state in 
the particle numbers 2 and 3. Thus Eq. (261) can be given the form 

(!i1(pdlp tc plqd)lq) = 1(!fbdk2 (1 - PI31 + &,3 (1 - P12)I~d)h (262) 

which nicely shows the effect of antisymmetrization between projectile nucleon and target nucleon. 
Now t,,2 and tc,3 act of course in antisymmetric states leading to tc,2 ( 1 - Pi3) = 2t,,, and similarly 
for tc,3. Finally because of the antisymmetry of \qd) we end up with 

(!ibdlp b pI~d)k?) = 4 l(!??(~dltc,2~~dh)1 (263) 

It remains to be seen at which energy the optical potential as given in Eq. (259) is a valid and 
quantitative limiting form. 

Finally let us regard the channel-spin representation introduced in Section 5 for the optical potential, 
V,,, r,,* x(q’, q). Like in Eq. (208) it follows from 

x(~‘q’(1’1)1(A’~)z’JM]V(pq(Ll)l(A~)zJM) (264) 

Numerical studies of that whole issue appear to be very interesting, since it would be the only case 
where all the properties of the optical potential could be determined starting from first principles. 

7.7, Connection between total nd and nn and np cross sections in the high energy limit 

An interesting issue at high energies has been pointed out long time ago [403]. The total cross 
section for nd scattering at high energies should be equal to the sum of the total cross sections 
for nn and np scattering. This has been verified at that time to the extent that the nn forces were 
assumed to be known. Let us see under which conditions that result can be derived. Assuming Born 
approximation in Eq. (247) it follows for q = q. 

(265) 

Taking into account Eq. (259) one finds, using the optical theorem on the left hand side 

2i1m(q,l((PdIUI~d)lq0) = -2i&fqO~utot 

= (!&h’d/p ttc - t:>+d)h) = 2 (2(&k - (I+>2 + 2(+[tc - t:1&)3) f2W 

Again the indices indicate the choice of two-nucleon subsystems and t, (tj) refers as before to 
the 23 subsystem. According to Eq. (256) t, is equal to t minus a term which contains the deuteron 
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states (acting to both sides) for the subsystem 23. Thus that second term does not contribute for 
large qo’s, since deuterons are formed of different pairs. It is an easy exercise to verify that. Thus 
we are left to regard the right hand side of (266) with t, replaced by t. This also follows directly 
from Eq. (57). Inserting complete basis states in momentum, spin and isospin spaces and using the 
recoupling between different sets of Jacobi momenta one arrives after some algebra at 

x (q. + $www3lf - t+)qO + ~qm&wj)(-~40 - w+w& lqd) (267) 

For q. significantly larger than the dominant momenta in the deuteron state 141 has to be close to 
liqol in order to keep the argument of qd sufficiently small. Then the initial and final momenta for 
the t-matrix are large. Since the t-matrix for small variations around large values of the momenta is 
fairly constant it can be taken outside the integral evaluated at q = -iqo and we get 

s 4(pdl - iqo - mww)(--~qO - qm&+hd) 

The deuteron state is 

(pvwwl44 = 
(-) 1/2-q 

Jz k-v, 

xC~r(p>CI;,(p^)C(Ell,~,m,-t~)C(~fl,m,,ml,md-~) 
ko.2 P 

Now we neglect the small d-wave admixture leading to 

Thus 

(268) 

(269) 

(270) 

(271) 

The energy argument of t is ( l/m) ( iqo)2 neglecting again Ed. Thus we have on-shell NN t-matrices. 
The second term in (266) with I c$)2 replaced by 14) 1 d 3 ea s automatically to the necessary antisym- 
metrization and we get 
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where I )n s (1 - P2s)l ). S ince t is symmetric we can also antisymmetrize the bra vector. Then 
using the unitarity relation for t we get 

2(2(4lt - t+142 + 2w - t+ld43) - ~CCc(ffl,md-m,m,)2(-2~i)tqo3m 
ml Yl 

cc 
s 

d/3 Ia(~qomNmd - mlviv - pl ~~~~qoj%w’@‘d I2 (274) 
mm3 w3 

The total cross section for NN scattering initiated by fixed spin and isospin magnetic quantum 
numbers is 

f$$(rn21123 up3) = (27~-)~(im)~i c id@’ l(pP’mimi ~~~~ltlpm2m3vzv~),12 (275) 
nl;m; v;v; 

(Note the factor l/2 is due to the identity of the particles). 
Thus neglecting the D-wave admixture of the deuteron Eq. (266) leads to 

md - mlm1)2 e (mNmd - ml VN - VI) (276) 

Except for that this is an exact result within that nonrelativistic scheme. We are not aware of a proof 
given in the literature before. 

Finally we average over the initial nucleon and deuteron spin magnetic quantum numbers to arrive 
at the usual definition of the total Nd cross section. After a simple algebra and introducing also the 
usual spin averaged NN cross section we get 

For inStaIW3 choosing VN = -i we have nd scattering and then the right hand side contains 
Is’,’ -I- a;;. 

We checked the validity of that relation evaluating exactly the total nd, np and nn cross sections. 
We restricted the NN force to act up to j,, = 3 and used Bonn B as representative NN potential. To 
our surprise we see in Fig. 81 that already around 30 MeV that relation is fulfilled within about 5%. 
Thus there have to occur cancellations in rescattering terms, which were not considered in our most 
simplifying steps leading to Eq. (277). This calls for a deeper theoretical consideration. 

Can that result be used to determine the total nn cross section? Since that nn cross section is much 
smaller then the np cross section the 5% deviation leads to a rather inaccurate estimate for a: at 
least for the energies considered in Fig. 81. This might change at higher energies, where however a 
relativistic framework is required in order to arrive at quantitatively meaningful results. 
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Fig. 8 1. Comparison of the total cross section for nd scattering (--) to the ones for nn scattering (- - -) , np scattering 
(- - - -) and their sum (. . . . .). As NN potential Bonn B with j,, = 3 was used. 

7.8. 3NF efects at higher energies 

We saw that the TM 3NF effects at low energies were not favorable for observables, where a 
discrepancy to data existed using NN forces only. The 3NF effects increased the discrepancy like for 
A, in QFS and FSI configurations. The only observable which improved was the nd doublet scattering 
length, which, however, is correlated to the triton binding energy. Observables scaling with the triton 
binding energy might also improve, unfortunately the ones we mentioned previously have not yet 
been measured. 

Since 3NF effects in scattering are an essentially virgin land, it might be justified to point out also 
the TM 3NF effects at higher energies of 65 and 140 MeV as examples. Our results might change 
however in future since, because of limited computer resources, we could include the 3NF only up 
to two-body angular momenta j,, = 2. Also the two-nucleon force was kept up to j,, = 2 in the 
presented cases. With stronger computer resources coming up these investigations have to be pushed 
to a higher number of partial waves. Nevertheless we would like to exhibit some results which show 
very dramatic effects and optimistically one might expect that they will survive the future improved 
studies at least to some degree. 

We investigated all our standard elastic scattering observables and many breakup configurations 
including spin observables. We also considered in addition all nonzero spin correlation coefficients, 
where in the initial state nucleon and deuteron are polarized. The study was based on the Bonn B NN 
force and the TM 3NF restricted to rr - 7r exchange. For the cut-off parameter we choose two cases, 
A, = 4.55m,, which together with Bonn B leads to the correct 3H binding energy, and A, = 5.8m,, 
the “recommended value” which, however, leads to overbinding. In Fig. 82 we show elastic scattering 
observables at 65 and 140 MeV for which we found especially big 3NF effects. 

In the breakup process we restricted ourselves in a first survey to the standard four configurations, 
QFS, FSI, Coll, and Star. It turns out that the nn and np FSI peak heights are totally unaffected 
by such 3NF effects. This is also true for np and nn QFS cross sections. Some small effects were 
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Fig. 82. TM 3NF effects with cut off parameters A = 5.8m, (- - -) and A = 4.55mr (- - - -) at 65 and 140 MeV for 
various spin observables in elastic nd scattering. The underlying NN force is Bonn B ( ----I. 

observed in case of Co11 and Star configurations. Let us regard now spin observables. For QFS 
conditions they are very little affected, while the other configurations show for some spin observables 
very dramatic effects. Examples are displayed in Fig. 83. Though the calculations have definitely not 
yet reached the final degree of convergence these observables might be interesting candidates to start 
an experimental search for 3NF effects. 

8. Other rigorous techniques and open questions 

8. I. Con&uration space treatment 

Like for the 3N bound state [ 3 12,441 also for 3N scattering the Grenoble group pioneered [ 167, 
3381 the configuration space treatment of the Faddeev equations. In configuration space the integral 
formulation is only good for extracting the proper asymptotic behavior [ 169,338,172] in the elastic 
and the breakup channels, but not for the actual calculations. One has to use the differential form, 
which is often called the Faddeev-Noyes equation [ 3521. For identical particles it reads 

(H,+V-E)@=-W$ 

where the total state P is built out of the three Faddeev components 

P=(l+P)ti 

(278) 

(279) 
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The partial wave decomposition is analogous to the one in momentum space and we refer the reader 
to [ 34,222,151,368,369]. In the standard Jacobi coordinates introduced in Section 2.4 Eq. (278) 
is a second order partial differential equation in the two vectors r and R. In fact because of the 
permutation operator on the right hand side, skew arguments show up in that fi and the equation, 
partial wave decomposed, picks up an integral on the right hand side. Thus one gets a coupled set of 
integro-partial differential equations in the two variables r and R. From a numerical point of view it 
can be advantageous to use polar coordinates p and 0 instead of r and R. 

For scattering processes the reduced Faddeev component 6 (r, R) 3 rR@( r, R) , assuming s-waves 
for simplicity, behaves asymptotically as [ 169,185] 

$(r, R) - (Pd(r)(sinqoR + e’qoRf) + o 

for r fixed and R --f co. This describes the elastic channel and f is the elastic scattering amplitude. 
The correction term gets contributions from the breakup process [ 169,185]. For r and R getting 
large at a constant ratio 

r 
-_= 
R d- kjcote, o<e+ 

tj(r,R) + eimp 
( mpp> 1 /* 

(281) 

(282) 

where A(B) is part of the full breakup amplitude. The total breakup amplitude is built coher- 
ently [ 1691 out of the contributions from the three Faddeev components, see Eq. (279). It is the 
long ranged source term on the right hand side of (278) decreasing only like 0( l/p’/*), which is 
responsible that the leading term in (282) by itself represents # only at unexpected large p-values, 
a few hundreds to thousands of fm [ 176,179]. Adding however correction terms, like 

ei&Ep B(e) c(e) 
(hG)‘J2 A(e) + &iiEp + (&i&)2 +*** (283) 

helps significantly to match to that form at much smaller p-values, 100 fm or even below [ 179,185]. 
As we have mentioned in Section 5, a first application [ 1561 using s-wave NN forces and keeping 

the two relative orbital angular momenta zero, carried through at 14.1 MeV and 42 MeV worked 
out very well and the agreement with our momentum space treatment was very good. Both the 
elastic amplitude f and the breakup amplitude A(8) were in perfect agreement. It is therefore quite 
predictable that this method will also work using NN forces in all their complexities and solving 
typically 60 coupled equations for each conserved total angular momentum and parity. But this is 
still to be worked out. 

An interesting technical step forward in the formulation of scattering (as well as bound states) 
has been done in [ 292,309]. The orientation of the plane spanned by the three nucleons has been 
described by three Euler angles and the motion inside the plane by r and R together with the angle 

Fig. 83. Various spin observables in various breakup configurations at 65 and 140 MeV. TM 3NF effects are shown (see 
Fig. 82 for description of curves) on top of the underlying Bonn B prediction. 0 denotes Oyb in case of FSI, r3e in case 
of space star and 0;“’ in case of collinear configuration. 
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between the two Jacobi vectors r and R. In this manner one arrives at a coupled set of integro-partial 
differential equations in three variables, once the projection on the Wigner D-functions has been done. 
Also the appropriate boundary conditions for the 3N scattering processes have been given [ 2921. 
This formulation might be especially useful for treating the Coulomb force problem, since partial 
wave decomposition might be slowly converging. 

8.2. The method of continued fractions 

The method of continued fractions has been applied very successfully to fully realistic 3N bound 
state calculations (including 3NF’s) 15271 and also to 3N scattering calculations in the context of 
pd capture [ 2451 and elastic nd scattering [ 244,248]. It appears to be very flexible and applicable 
to many problems, see [ 230,23 1,422,424]. 

Here it is briefly sketched. The Faddeev equation in integral form 

+=$o+GtQV (284) 

is rewritten by splitting the kernel into two parts. One introduces 

(5 = G - GWh) (~ol~l~o) ((/loI 

Inserted into (284) yields 

One defines 

$=GV?‘i++o+G;VP& 

and can thus rewrite (286) as 

Since from the very definition (285) 

GVPi/$) = 0 

one gets 

The kernel is separable, thus one can proceed and easily finds 

and 

(283 

(287) 

(288) 

(289) 

(290) 

(291) 

(292) 
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This is the first step of a recursive procedure. The amplitude $ is expressed in terms of a new 
amplitude t,6 defined in (287) and the quantity (~J~lvPl$), which is the elastic scattering amplitude, 
is expressed in terms of (&\vPI$). 

Now one defines 

q/N E + (293) 
(b(O) 3 &) (294) 
($0’ = G (295) 

and 

p z )j (296) 
$(I) G @‘~+‘o’ 

(297) 

G”’ c e = G(o) _ 4 (1) 
(298) 

Then again Eqs. (284), (288), (290), (292) and (293) read 

ti (0) = #o, + G’o’~+‘o’ 
(299) 

@,‘I’ = #I, + ,$‘)jQJ@‘) 
(300) 

G”‘~@ = 0 
(301) 

+ 
(0) = p + $(I) (@"'Iw~(09 

(~‘O’IW(@O)) - (cp0’pPI~(‘)) 

(c#d0’pPI~‘0’) = (rp’Iw~cp)* 
(~(oqvpI~(o)) - (pqwltp) 

(302) 

(303) 

This transition from Eq. (299) to (302) and (303) can be repeated starting now from Eq. (300) 
for $(I) with the obvious result 

@1’) = #)(I) + @2’ (#‘O’ IWP) 
(P’pq@‘)) - (@0’pqIw)) 

((b’“‘(wIrc,(‘)) = 
(f#P’IwpJ”)2 

(qfqWI$(‘)) - (@O’pT)~(2)) 

(304) 

(305) 

Thereby 

4(2) = G(‘)V@(‘) (306) 

G(2) = G(l) _ 4,(2) 

and 

(307) 

@‘VJD+(I) = 0 (308) 

have been used. 
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Apparently the general step is 

(@O’(WJ$“‘) = 
(f#qwlc#J”)2 

(#d”)(vPI~Ci)) - (q$(o)(~J$(i+l)) 

(309) 

(310) 

Thus t/3 - $(O) and ($ol~I#) - (~‘“‘I~J~(o)) are expressed in the form of a continued fraction 
expansion. The idea is that the higher order kernels get smaller and smaller and therefore for i 

sufficiently large (typically 10-20)) i = n 

(Cl(n) M (#p (311) 

(@0’]VP($(n)) x (@“‘]I+‘“‘) (312) 

Working backwards one ends up with the solution of the original Faddeev Eq. (284). Technically 
the equations are treated in a hybrid manner using momentum space for the relative motion of the 
third particle with respect to the pair and configuration space for the relative motion within the pair. 

8.3. The pair correlated hyperspherical harmonic basis method 

Expansions of three-body states into hyperspherical harmonics have a long tradition [ 108,109,448, 
449,42,118,314,537,31,445]. In nuclear physics they met only with very modest success, because the 
strong short range repulsion of the NN forces induces strong variations into the wave function in its 
dependence on the hyperspherical angle, which for three particles is just the polar angle in the r-R 
plane. In order to describe these strong variations in that angular dependence for fixed hyperradius p 
hyperspherical harmonics of very high order are needed (see [ 325,326] and references therein). 

The system of three charged particles interacting by Coulomb forces only poses a similar problem 
with respect to cusp effects, when two particle positions coincide. That problem was brilliantly 
solved [ 325,326] by extracting the analytically known form of the cusp effects from the wave 
function and expanding only the remainder part into hyperspherical harmonics. The convergence is 
then relatively fast and the accuracy achieved for the electronic motion in atoms is extremely good. 

The Pisa group [ 268,270] took up similar ideas. First, they decomposed the short range part of the 
3N scattering state into three parts like a Faddeev decomposition and partial wave decomposed each 
part in the usual manner. The resulting amplitudes depending only on r and R were then factored 
into a two-body correlation part, essentially determined by the two-nucleon system alone, and a 
remainder. Only the remainder was expanded into hyperspherical harmonics, which for three particles 
are just Jacobi polynomials. The unknown radial functions depending on the hyperradius p and the 
K-matrix elements of the outer part of the wave function are determined by means of the Kohn- 
variational principle. This technique has been used up to now for 3N scattering below the breakup 
threshold [ 2701. As already mentioned in Section 5 handling a fully realistic case, for example the 
AV14 NN potential, their results in form of eigen phase shifts and mixing parameters turned out to 
be in perfect agreement [238] with our momentum space results. In this method one can also easily 
include the pp Coulomb force and 3N forces as well, but up to now it has been applied only below 
the deuteron breakup threshold [ 269-2711. The step above the breakup threshold will require a safe 
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handling of the asymptotic breakup behavior, which, having the experience of the configuration space 
treatment of the Faddeev equations, mentioned before, appears feasible. 

8.4. Finite rank expansions 

Faddeev equations were originally solved mostly using NN forces of finite rank, often just rank 1 
separable forces. Finite rank forces reduce the Faddeev equations to a set of coupled one-dimensional 
equations for the motion of the third particle with respect to the remaining pair and this for all 
arrangements. These finite rank forces were mostly chosen ad hoc with little or no physical background 
behind. Therefore the interpretation of the results remained somewhat open (see Section 1 for 
references). 

Therefore the idea came up to approximate two-nucleon t-matrices, based on realistic NN forces, by 
a series of separable terms, like the unitary pole expansion (UPE) method [ 2211, the Adhikari-Sloan 
expansion [ 41, a generalized separable expansion by Oryu [ 362-3641, which is an extension of the 
Kowalski-Noyes method [ 296,35 1 ] and the Gamow Separable Approximation [ 36,134]. Another 
systematic procedure is the Ernst-Shakin-Thaler (EST) method [ 1251, for which we sketch briefly 
the idea. For a separable force V, = (g) A(gl the two-nucleon LSE for the scattering state can be solved 
algebraically with the result 

I+‘+‘) = Ik) + 
AG~‘(s)lg)(glk) 

1 - A(glGh+‘(s) Is> 
(313) 

where Gp’(s) is the free Green operator at the energy s. We compare that result to the LSE for the 
scattering state generated by the general potential V 

I@+‘) = Ik) + Gr’( s) VI@‘+‘) (314) 

One requires I&+)) = I$(+)), thus 

Gg’(s)Vl$‘+‘) 0: Gr’(s)lg) (315) 

If we choose (315) to be an equality, then 

Id = VW’+‘) (316) 

and 

A = ($(+) (v]&$!(+))-i (317) 

This can be generalized to n different energies. Then 

V, =CVl~~)(Icril”l~j)(~jlv (318) 
ij 

where ]JIi) stands for I@+‘(s)) or ]I&) in the case of scattering or bound states, respectively, and 
the matrix M is defined by the relation 

sim = ~(@il”I~j)(~jlvlh) = ~(*ilvlllrj)(tijlMll/Im) (319) 
_i i 



258 W Gliickle et al./Physics Reports 274 (1996) 107-285 

Then by construction 

(320) 

which means that the half-shell t-matrices are identical at the n chosen energies. Of course this is 
also applicable to coupled channel cases [ 2141. Applications to present realistic NN forces, like the 
Paris or Bonn potentials were pushed forward by the Graz-Osaka collaboration [ 21%218,387,283]. 

Relatively high ranks (up to 8) are needed to achieve a good representation of the half-shell and 
full off-shell NN t-matrices for some given realistic NN force. Such finite rank forces were also 
used in the accuracy study [ 1021 mentioned in Section 5. But that study had also another aim. 
It was shown by comparing to the exact results that these high rank approximations gave a good 
representation of the Paris potential. 

A more recent development in representing given realistic NN forces by expressions of finite rank 
has been pushed forward in [ 2851. Thereby the Adhikari-Sloan expansion and the EST method are 
combined and the original potential is decomposed into a short and long range part, which then are 
separately expanded. 

A test case determining nd model phase shifts of elastic scattering [ 1531 was perfectly successful, 
another application to the 3N bound state [ 2851 worked equally well. Thus it appears that this new 
type of finite rank expansion can just be considered as a sort of quadrature, a discretization of the 
continuum problem, and this technique may turn out to be very economical. 

8.5. The Coulomb problem in pd scattering 

There is a vast literature on that subject reviewed in [ 18,19,82], which has by far not been realised 
in terms of real numbers. It is a very tough problem and we cite important first steps: [ 15,307,17, 
48,49,85 1, [ 201. In configuration space one faces complicated boundary conditions in the asymptotic 
breakup configurations [ 339,292,130] and in momentum space nontrivial singularities [ 209,286]. 

It can be questioned whether a partial wave expansion is very economical and the treatment [292] 
mentioned in Section 8.1 keeping r, R and the angle between r and R as variables might be safer. 

With the first strides performed successfully in solving a scattering problem in configuration 
space [ 1561 the additional inclusion of the pp Coulomb force appears feasible. 

At the energy of the pd threshold a full-fledged realistic 3N calculation with Coulomb forces and 
even including a 3NF has been already performed in configuration space [ 861. The two Phillips lines 
[ 861 between the doublet scattering length and the 3N binding energies for the nd and the pd systems 
are displayed in Fig. 84. While the nd line goes through the experimental point, the 2upd datum falls 
well off the theoretical curve. Very likely the reason is the strong curvature in the effective range 
function below 300 keV which inables the extrapolation to zero energy from incident experimental 
energies above 400 keV. Renewed efforts to measure below 400 keV would be very worthwhile. 

The pair correlated hyperspherical harmonic basis method, which works in configuration space, 
has been already applied to pd scattering below the deuteron breakup threshold [ 269-2711. This 
appears to be very promising. First results based on realistic NN forces and even 3N forces have 
been achieved. This is the first time that the Coulomb force problem was exactly solved with realistic 
nuclear forces. The Coulomb force effects turn out to be large below the deuteron breakup threshold. 
The comparison with pd data revealed good agreement for the differential cross section and the 
tensor analyzing power T,, however, for the tensor analyzing powers T21 and T22 as well as for A, 
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Fig. 84. The doublet scattering lengths *a against 3N binding energies for the nd and pd systems (Phillips lines) [ 861. The 
various symbols refer to different 2N and 3N forces. 
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Fig. 85. pd (0) [ 4161 and nd (0) [ 43 1 ] differential cross section data at 3 MeV in comparison to theory [ 2711 based on 
AV 18 and an Urbana 3NF, (- ) with Coulomb, (- - - -) without Coulomb. 

significant discrepancies are visible. In Fig. 85 their results for the differential cross section based 
on AV18 together with an Urbana 3NF and with and without Coulomb interaction are shown in 
comparison to data. As can be seen Coulomb force effects appear mainly at forward angles and to 
a smaller extend at backward angles, too. The agreement with the data is essentially perfect. Very 
precise pd data [444] at low energies appeared recently; their theoretical analysis poses a challenge. 

In momentum space a scheme starting with a screened pp Coulomb force and taking the limit 
of vanishing screening has been investigated theoretically to quite some extent [ 16,18,19]. The 
asymptotic Coulomb distortion in the elastic channel is generated by the Coulomb force between the 
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proton and the center of mass of the deuteron, which is taken care of by adding and subtracting 
that force. The 3-body transition amplitudes in the limit of no screening acquire violent oscillating 
phase factors which are known (analytically in the case of exponential screening) and which can be 
removed exactly (renormalization) leading to amplitudes independent of the screening radius. 

A first semirealistic calculation in that scheme using a rank 1 approximation to the Paris potential 
appeared for elastic pd scattering below the breakup threshold [ 5 11. The results are interesting and 
provide a first idea about the magnitudes of Coulomb force effects in conjunction with more or 
less realistic NN forces. Thus for instance the pd observable A, has indeed a lower maximum in 
comparison to the nd case and there is a shoulder in the left side of the maximum, absent for the nd 
case. Also the tensor analyzing powers show significant Coulomb force effects. 

Another more recent study in that scheme [ 395,20,21] is in the pd breakup process. Unfortunately 
the NN force is only a rank one separable Yamaguchi force, but even then the calculations were 
nevertheless already very involved and the analytical nature of that strong force of great help. The 
effects for the breakup cross sections were sometimes quite large (up to 20%), but questions remain, 
whether this will remain true in conjunction with realistic forces and the accompanying higher partial 
waves. 

A direct attack on the pp Coulomb force problem in momentum space in conjunction with realistic 
forces, not using finite rank expansions, like we have succeeded to do without Coulomb forces, has 
not yet been performed to the best of our knowledge. 

The solution of that long pending problem especially in the pd breakup process will be a very 
important step to remove the related Coulomb force effect uncertainties and to make 3N pd scattering 
to a wonderful quantitative tool for testing nuclear interactions. 

8.6. Relativistic 3N equations 

There are various approaches towards a relativistic description. One is relativistic quantum mechan- 
ics for N interacting particles, which is defined by having established a representation of the Poincare 
algebra. In other words the ten generators of the Poincare group have to be found as expressed in 
terms of the degrees of freedom of the N particles. There is a famous construction by Bakamjian and 
Thomas [32], achieving that, but it does not have the property of cluster separability for more than 
two particles. If subclusters of the N particle system are separated in space from each other, the gen- 
erators should correspondingly reduce to the sum of the generators belonging to the isolated clusters 
[ 1391. A cure of that defect has been also found C451-4533, [ 93,389], but the actual realization is 
a heavy task. That scheme can be formulated in the instant, light front and point forms, which have 
been proposed by Dirac [ 1111. An excellent display of the concepts and the techniques are given 
in [ 2661. To the best of our knowledge that scheme has not yet been applied to 3N scattering, but it 
has been used in a 3N bound state model calculation [ 1741. 

Another very natural approach is via field theory. An obvious scheme are the 3N Bethe-Salpeter 
equations [ 1491. Even in the ladder approximation (with respect to the exchanged mesons) they are 
quite heavily stuffed with singularities in the two energy variables, which come now on top of the 
usual two three-momenta. As far as we know no solution has been achieved so far for 3N scattering. 
For the 3N bound state first trials [ 4141 employing finite rank potentials are underway. That approach 
with the Bethe-Salpeter equation has the clear advantage of manifest covariance. 
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Related to that approach are quasipotential equations. Among them are the spectator or Gross 
equations [200], which represent an approximation to field theory and might be superior to the 
bookkeeping of the Bethe-Salpeter equation insofar that certain cancellations between crossed and 
uncrossed box graphs (with “on-shell” propagations taken out) are taken into account. However 
whether those cancellations do occur depend on the type of meson-nucleon coupling [ 2011. In the 
spectator approach for three particles in all intermediate states two particles always are set on the mass- 
shell by hand, which reduces the four-dimensional integrations to three-dimensional ones. Though this 
formulation keeps manifestly covariance it necessarily introduces spurious singularities [ 2021 coming 
from meson propagators. Their effect in the two-nucleon system appears to be minor [ 2041. Presently 
this scheme is applied to the 3N bound state problem [ 4611. We are not aware of applications to 3N 
scattering. 

Blankenbecler-Sugar equations for three particles [55,249,419] suffer definitely from the formal 
defect of violating cluster separability. The quantitative importance or negligence thereof appears to 
be hardly touched upon. The cited references refer to the 3N bound state, where that defect will play 
a minor role. 

An approximate realization of the Poincare algebra for N particles has been proposed by Foldy 
[ 140,141]. The generators of the Poincare group are expanded around the Galilean limit (c + 00) in 
a 1 /c2 expansion. When inserted into the algebra, conditions on the correction terms to the interaction 
in the Hamiltonian and on the interaction in the boost operator (we refer here to the instant form) 
arise, and this in each order in l/c*. Special solutions can be found expressed in terms of the 
interaction in the Galilean invariant input Hamiltonian. They lead to two-body interactions, which 
depend on the total two-body momentum, to 3NF’s depending on the total 3N momentum, etc. Quite 
a few applications thereof to the 3N bound state have appeared [ 208,52,250,288,75]. As far as we 
know there are not yet applications to 3N scattering. 

Finally we would like to mention another approximate scheme for the Hamiltonian by Okubo [ 3601. 
Starting from a field theoretical Hamiltonian it is block diagonalized by a unitary transformation into 
two parts. One part acts only on states with N nucleons and the other on all remaining states. Thus 
the coupling between the states of N nucleons and the states with mesons for instance is eliminated. 
One ends up with an effective Hamiltonian in the space of N nucleons which contains then meson- 
mediated nuclear interactions. This cannot be carried through exactly but only in a perturbative 
expansion in the strong coupling constant g. In [ 1701 that idea was taken up again and applied to all 
the ten generators of the Poincare group. It was shown that one and the same unitary operator block 
diagonalizes all ten generators. Thus the commutation relations among the effective generators are the 
same as for the original ones and therefore the effective generators in the space of N nucleons would 
fulfill the Poincare algebra if the perturbation expansion could be carried through to infinite order. 
In practice it is truncated and because of the nonlinear nature of the Poincare algebra errors creep 
in which are pushed to higher orders by increasing the order in g in which the effective generators 
are calculated. This scheme can at least be very useful in getting experience about generators for N 
interacting particles and moreover they are then linked to field theory. Applications to the 3N bound 
state exist in model calculations [ 3463471. 3N scattering calculations have not yet been undertaken, 
as far as we know. 

The demand for a relativistic framework will get more and more urgent in the near future, because 
of the new accelerators like COSY, CEBAF, MAMI, etc. and more theoretical efforts will be required 
than invested up to now. 
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9. Applications 

Whenever there is a reaction with three final nucleons final state interactions among them are likely 
to occur and can have a strong influence on the observables. Without knowing them, conclusions 
about the processes generating the final nucleons, in which one is mainly interested, are plagued 
by uncomfortable uncertainties, We shall sketch a few of these applications: inclusive and exclusive 
electron scattering on 3He and 3H, photodisintegration of 3He and 3H or pd capture, pion absorption 
on 3He and 3H and nonmesonic decays of the hypertriton. 

9.1. Inclusive and exclusive electron scattering on 3ffe and 3H 

Inelastic electron scattering on 3N bound states has various aims [ 494,361] : to learn about prop- 
erties of 3He and 3H like momentum distributions, two-nucleon correlation functions, large and small 
parts of the 3N wave function, to learn about the hadronic current operator, especially two-body and 
possibly even three-body currents, and last not least about the electromagnetic nucleon form factors 
in the nuclear medium. Will the latter ones be different or rather close to the free ones? Also the 
neutron form factors have to be extracted from a nucleus like the deuteron or 3He ( 3H) [ 2741. These 
are all questions to which we would like to have quantitative answers and therefore the control of 
the final state interactions is mandatory, First steps were laid quite some time ago (for a compilation 
of references see [ 1931) using simple separable forces. More recently the Utrecht group [ 335-3371 
employed spin-dependent s-wave MT forces, which was a step forward. The Euclidean response 
method [ 741 suitable for inclusive scattering is able to determine exactly the Laplace transformed 
responses including nuclear interactions in the initial 3N bound state and the final 3N scattering state 
equally well. Our contributions [ 182,246,247,193-1951 were in the same spirit as the one of the 
Utrecht group, but using now fully realistic forces. This will now be sketched briefly. 

The nuclear matrix element for inelastic electron scattering has the form: 

(321) 

where ]P,,ound) and ]Pj-‘) are the 3N bound and scattering states, respectively. The asymptotic 
quantum number f stands either for the momenta of a nucleon and a deuteron or for the momenta 
of three nucleons. In a nonrelativistic framework, which we use, the hadronic current operator j,(Q) 
depends on the three-momentum transfer Q carried by the virtual photon. Now I$-)) is Faddeev 
decomposed as 

I$-‘) = (1 + P>@ (322) 

and the Faddeev amplitude 9 obeys the Faddeev equation 

$ = J10 + G$-‘t’-‘m (323) 

The driving term &, is different for two- and three- body fragmentations. All that inserted into NP 
yields 

N, = (tjlol(l + f’>~,~Q>l%mun~) + WWoU + Wp(Q>l%oun~) (324) 

For pd breakup for instance & is just the product of a deuteron state and a momentum eigenstate 
of the free motion of the proton against the deuteron. Thus the first term is the symmetrized plane 
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wave impulse approximation, carrying no final state interaction. The second term, ZVF”, incorporates 
all the final state interactions. By simple algebraic manipulations [ 182,193,194] it can be identically 
rewritten into 

where ]U,) obeys the Faddeev-type integral equation 

(325) 

(326) 

The kernel in Eq. (326) is exactly the same as for 3N scattering in Eq. (154), only the driving 
term is different and contains now the current operator applied to the target state. Iterating Eq. (326) 
and inserting it into Eq. (325) displays the physics of the multiple rescattering processes in a very 
nice and transparent manner. The forms are very similar also for the full three-nucleon breakup case 
(see [ 182,193,194]). 

In this manner we analyzed [246,247,193-1951 already several data taken at NIKHEF [265,253], 
Bates [ 117,401] and Saclay [ 3271. In every case analyzed up to now, final state interactions turned 
out to be very important. Applications to processes with polarized electrons and targets are underway. 

9.2. Photodisintegration and pd capture in the 3N system 

Again the first steps [ 38,40,164,165] were laid using simple separable forces and the importance of 
final state interactions were clearly visible. These reactions can be treated in much the same manner 
as outlined above in Section 9.1 just replacing the off-shell virtual photon by a real photon and 
applications are already underway [ 1941. In [ 2451 and [ 142-1441 first calculations have already 
been performed, one group [245] using the method of continued fractions in the treatment of 3N 
scattering as described in Section 8.2 and the other [ 142-1441 using finite rank approximations 
to realistic NN forces. Thermal nd radiative capture including the full nuclear dynamics has been 
treated in [ 1531. Also spin observables in the pd capture process are being studied [ 2571. In photon 
disintegration it is also expected to see processes where three nucleons are involved [415] in an 
irreducible manner. 

9.3. Pion absorption on 3He and 3H 

Several series of experiments [ 30,25,29,450,499,501,348,500,418,22,196] have been performed in 
order to study the absorption mechanism of pions at rest and in flight on the light nuclei 3He and 
3H. Some of them are kinematically complete, measuring all the independent degrees of freedom for 
the final nucleons. Due to kinematical reasons there is little absorption on one nucleon. Mostly it 
occurs on two nucleons, but there seems to be also indication of three nucleons being involved [ 30, 
25,450,348,500,418,66,243,22]. To clarify that more reliably the effects of final state interactions 
have to be under control. Obviously the nuclear matrix element will have the same structure like for 
inelastic electron scattering with an appropriate “current operator” describing the absorption processes. 
Therefore making certain assumptions on that operator the matrix element can be calculated taking 
all the final state interactions into account as described above. Applications are underway [ 2621. 
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9.4. Nonmesonic decay of the hypertriton 

The hypertriton has been investigated by variational techniques and using models for the Nn 
interaction and even including A-2 conversion [ 228,58,225,226,428,227,106,105,163,166,356,6,7]. 
Very recently the Faddeev equations have been solved [ 3443453 with the interactions among nucleons 
and hyperons (A or .Z ) of meson exchange nature [ 402,404,468]. The Jiilich interaction [ 4021 did 
not bind the hypertriton [ 3441 but the Nijmegen one [ 4681 did [ 3451, even at the correct binding 
energy without any further adjustments. This might be fortuitous, though, since still little experimental 
information is available on Nn data [ 123,8,437,120,260]. Thereby the A-2 conversion played a very 
decisive role. To learn more about the hypertriton its decays should be studied. Especially interesting 
ones are the nonmesonic decays [94], where a n emits a pion, turns into a nucleon and the pion is 
reabsorbed. There are of course more processes possible. The three final nucleons undergo final state 
interactions, whose exact treatment is important in order not to blur the view on the pionic exchange 
current, which has both weak and strong vertices. The process goes by ?ro and 7r+ exchanges. A first, 
somewhat schematic study neglecting all final state interactions appeared in [ 461. Using the scheme 
displayed above the angular and energy distributions of the three final nucleons can be calculated 
taking all the final state interactions exactly into account. Data are very much needed. 

10. Conclusions and outlook 

Three-nucleon scattering has been always a vivid field of research both experimentally and theo- 
retically in order to test nuclear forces in a first nontrivial context and to cultivate reaction theory. 
Nowadays the 3N scattering problem can be solved for any type of NN force far more accurately 
than the errors in present day data require and also the correct technical handling of 3NF’s is on a 
good way, The most advanced calculations have been performed recently in the Faddeev formalism 
for energies below and above the nd breakup threshold; below the breakup threshold the variational 
pair correlated hyperspherical harmonic basis method is equally advanced and can even include the 
pp Coulomb forces in conjunction with realistic interactions. Above the breakup threshold that old 
Coulomb problem is still pending. Also recently several NN force parametrizations appeared, which 
describe NN data up to about 350 MeV to unprecedented accuracy and thus remove on-shell de- 
ficiencies, which plagued the interpretation of theoretical predictions in the past. Discrepancies to 
data could be due to those defects but also due to wrong off-shell properties or closely linked 3NF 
effects. Now with that set of newest force parametrizations on-shell deficiencies have shrinked to a 
minimum and differences in predictions, if present at all, are due to their different off-shell properties, 
like different radial shapes and/or nonlocalities. Equipped with these newest forces and the technical 
tools for solving the 3N equations precisely, very many data can now be compared to that theory. In 
general the agreement between theoretical and experimental 3N scattering observables is very good 
and in most cases there is no difference among the different force predictions. This refers to the 
NN force picture only and this tells that based on these forces there is very little room left for 3NF 
effects. A closer inspection, however, reveals, as discussed in detail in Section 6, that a few interesting 
discrepancies stick out and quite a few gaps in the data set exist, which should be filled in order to 
make the picture more complete and convincing. 
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The differential cross section in elastic Nd scattering above x 100 MeV deviates from theory. 
Whether we see the onset of relativistic effects has to be clarified. 

For spin observables in elastic Nd scattering one strong discrepancy sticks out, the low energy 
nucleon analyzing power A, and the deuteron vector analyzing power iTi ,, which is very similar in 
shape. It is well established that the ‘Pi (j = 0, 1,2) NN force components govern strongly these 
two observables. The modem NN forces adjusted to the present day NN PSA values in these states 
are not able to describe A, and iT’, 1. At higher energies, above M 30 MeV, where data are available, 
the agreement with theory is essentially perfect. 

Data for tensor analyzing powers are only available up to now in the pd system and comparison 
to theory suffers in principle from unknown Coulomb force effects, which are clearly visible below 
10 MeV at forward angles. At higher energies one would desire to have high precision data, like the 
ones at 22.7. MeV, where the agreement with theory (without Coulomb) is perfect. 

Measurements of spin-transfer coefficients in elastic pd scattering are not too numerous and exist 
only at low energies. Data at higher energies would be very useful, however they should be quite 
accurate in order to test theory stringently. 

Spin correlation coefficients, where both, nucleon and deuteron, in the initial state are polarized 
are hardly measured and data of high quality at low and also high energies would be equally useful 
to probe the 3N Hamiltonian. 

In the 3N breakup process we can expect that the total cross section should be very well predicted 
by theory, since the total nd cross section as well as the elastic differential cross section agree very 
well with theory. Unfortunately the experimental total breakup data are old and presumably inaccurate 
and an experimental effort to provide new and accurate data would be very useful to form a consistent 
and well established picture. 

Kinematically complete breakup data are numerous, but a well established data basis confirmed 
by independent measurements can not be claimed to exist. Overall we find cases of spectacular 
agreement between data and theory, but also cases of strong disagreement. Right now we can not 
point to breakup configurations with a well established agreement or disagreement like for observables 
in elastic Nd scattering. Breakup cross sections, however, where we face a serious discrepancy should 
be remeasured. At 13.0 MeV some of the old nd measurements, which strongly deviate from theory, 
are presently remeasured at TUNL and preliminary analysis already reveals that the data change. 
Some pd data at 22.7 MeV show also too strong deviations to theory to be caused by pp Coulomb 
force effects which are not taken into account in our theoretical treatment. A very interesting case is 
a nameless configuration shown in Fig. 44, where data from a nd measurement are a factor 2 below 
theory. 

If one really wants to test the potential energy in a 3N system seriously - and this appears to be 
basic for nuclear physics - one should perform a full 47r investigation, probing the breakup process 
with respect to all angular and energy correlations of the three outgoing nucleons. This would provide 
the most comprehensive test of the 3N Hamiltonian and the outcome would constrain very much the 
degree to which 3NF’s can be present in relation to the present day NN forces. In order to stimulate 
such an experimental investigation we performed a theoretical 47r study covering all phase space and 
searched for breakup configurations, where the most modem NN force predictions agree among each 
other with less than 3%, say, and those where they disagree by more than 8%, say. Both cases, the 
insensitive ones and the sensitive ones, would be of high interest to be measured. In the first case 
discrepancies to theory would quite seriously question present day NN forces or call for 3NF effects, 
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in the second case data could possibly differentiate between NN forces. 
Spin observables in the breakup process deserve more attention in the future. While vector analyzing 

powers measured up to now agree quite well with our predictions, some tensor analyzing powers 
disagree strongly. This should definitely be remeasured. If those data would be confirmed this would 
pose a serious problem to theory. 

Our first experience with 3NF’s, specifically the Tucson-Melbourne T - 7r, rr - p and p - p 

exchange forces, in 3N scattering was not encouraging. The effects are in general small and in case 
of the outstanding discrepancy in A, they go into the wrong direction. Certainly a truly consistent 
theory for 2N and 3N forces is required, in order to approach that issue properly. Possible ways to go 
might be along recent work on chiral symmetry [ 2871 and the systematic approach [ 3881 advocated 
since many years. 

We find that 3NF effects have possibly a good chance to be detectable at rather low energies where 
phenomena like the scaling of certain 3N observables with the triton binding energy and no scaling 
of certain other observables has been predicted. Precise data for all kind of spin observables would be 
needed, for instance spin correlation and spin transfer coefficients, in order to pin down 3NF effects. 
At high energies, above 100 MeV, our calculations including 3NF effects are not yet matured enough 
(too few partial waves), but on the present level we predict interesting and strong 3NF effects for 
the analyzing power under FSI conditions and for spin correlation coefficients. 

In any case that regime of about 150 MeV is interesting also in other aspects. Under QFS conditions 
one might expect that the deuteron can be considered as a nucleon target. For the cross section this 
is not correct and rescattering corrections are present on the level of about 20%. But for spin 
observables in certain angular ranges that picture is true and NN spin observables can be extracted 
from the 3N scattering process. That prediction could be checked experimentally in the pp case and 
then np and even nn observables could be gained. On the other hand there are also plenty of breakup 
configurations, other than QFS, where rescattering processes are dominant, which should also be 
measured to verify the reaction theory. 

With respect to reaction theory the concept of the optical potential can rigorously be studied in the 
3N system. Though the “medium” is rather dilute, just one additional nucleon, one can calculate all 
the properties of the optical potential exactly, like its nonlocality, the effects of antisymmetrization, 
its spin dependencies, its leading form at high energies, etc. We only displayed some formalism and 
left the numerical investigation to the future. 

With increasing energy, 150 MeV and higher, relativity can certainly be no longer neglected and its 
correct treatment poses a real challenge. We mentioned some possible first starting points discussed 
in the literature. 

Relativity will also be unavoidable in the applications, where the 3N continuum appears mostly 
in the final state, like in inelastic electron scattering or pion absorption on 3He ( 3H) or in the 
nonmesonic decay of the hypertriton. We were rather brief about these exciting subjects, since they 
all deserve a broad presentation by themselves. It is only if the final state interaction is well under 
control that one has a reliable view on the interesting processes like photon or pion absorption, on 
the form factors involved and the meson exchange currents. 

We think [ 187-1891 that the 3N continuum due to the enormous computational possibilities 
now available, will be an excellent laboratory in the future to make decisive steps forward in the 
understanding of nuclear dynamics. 
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Appendix A. Cross sections 

Here we supplement the derivation of the cross sections for elastic nd scattering and the breakup 
process carried through in Section 2.4 in time independent scattering theory by using time dependent 
theory. We follow closely the steps laid out in [ 1721. We define an initial wave packet for the relative 
motion of nucleon 1 with respect to the deuteron composed of nucleons 2 and 3. 

#o(f) = JdqlW’“‘fo(q) (A-1) 

with E4 = (3/4m)q 2. The momentum distribution fo(q) will finally be peaked infinitely sharply at 
q = qo, but because of the normalization condition for tio( t) it does not approach a S-function. Using 
a Gaussian wave packet as an example one can choose as in [ 1721 

fo(4) = ~3’2(2~)3’2fs(4) (A-2) 

where fa( q) is a sequence of functions, which approach 6( q - qo) if b tends towards zero. 
The complete initial channel state is 

(A.3) 

where ]4pd) is the deuteron wave function. It obeys the time dependent Schrijdinger equation with the 
Hamiltonian H d z Ho + V23. The proof for the existence of the Mijller wave operator 

fg+, = lim eiHfe-iHdl (A-4) r---m 

is essentially identical to the one presented for potential scattering in [ 1721, the only difference 
being that the norm \lVll is replaced by I( (Vi3 + Vi,) Iqd) I), which of course exists for short range 
interactions. Then rewriting the representation of the Miiller wave operator in the usual manner the 
scattering state can be put into the form 

(A.3 
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where the stationary scattering state has been defined as 

(A.@ 

The antisymmetrization is easily achieved by applying ( 1 + P), assuming as always that the deuteron 
state is already antisymmetrized. Thus 

IY(+))a = Sdg( I!++)), + pP;+))* + IY~+))3)e-‘(Ev+~~)‘fo(q) (A-7) 

where in lY~+)>i the particle i is the initial projectile. 
Let A,(t) be the probability amplitude to find the state 

IQ t)) - IPd) lqr) &J-i%+Q)’ c If#lq,)e-%+@ 

in the IP(+))(l: 

(A.81 

(A.9) 

with the stationary antisymmetrized state 

IY;+)(o))~ 3 l?P;+qp f 2 IT;+qi 
i=l 

(A.10) 

It obeys the Lippmann-Schwinger equation 

lpi+)),, = Iry;) + G (v, + v,) Ify4(+‘), (A.ll) 

since (Pi+))2 3 fulfill the homogeneous equation corresponding to (A, 11) and /Pi+)), of course 
brings in the driving term in (A. 11) . (See Section 2.2). Thus 

Aq/W = fo(qf’f) + !+q s M7, Iv, dqeW,-W’ E + v, I?$+), 
q - Eq, + 2 

a .fo(q) (A.12) 

Now we can follow literally [ 1721, take the limit b ---f 0 and easily find 

1 
EZ b3(2w)3t* dt 41 

<IA WI2 =21m(4q#WqoP(qf - qoo> +2~W$,, - E,,)~~~q,I~14qJIz 

(A.13) 

where we switched to the notation introduced in Section 2 

Then the number of scattered particles into the volume element dq, is 

(A.15) 
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The initial current (jl carries the same factor b3(2~)3/2 in the limit b -+ 0 as follows from (A.3) 
and one has 

(A.16) 

We end up with the differential cross section 

g = ($>’ CW41kh$-Wnr)12 

which agrees with Pq. (86). 

(A.17) 

In case of the breakup cross section one asks for the overlap of (F(+)(t)), with 

IFi,q,(t)) - Ipr)lqf) e-iEpfvf’ = It&) e++‘f’ 

where EPf4, - (l/m)pf2 + (3/4m)qf. Thus 

(A.18) 

(A.19) 

Since 1 Pi +))a obeys the homogeneous Lippmann-Schwinger equation 

Ip;+)), = G,,( V, + v, + v,) [pi+‘), 

one finds 

(A.20) 

A,,,,(t) = lii 
s 

dqei(EPrv--Eq-‘~d)’ 
(~O,fIV + v, + v31q+9 

E + E _ E 
Pf4f + iE 

a fo(4) 
4 d 

(A.21) 

The analogous steps then lead to 

1 
E 83(272)3/* dt 

%%,&)I2 = 2’r~s(Eg, + Ed - E,,q,)I(~o,rlU,I~q~)l* (A.22) 

for b + 0 and we switched again to the notation for the breakup amplitude introduced in Section 2.2. 
Thus the number of scattered particles per unit time into the volume elements dpr and dq, are 

dN = l(~o.,l~ol~qo)12 J 4q 4,2T& Eq,, + Ed - Ep, q, > (A.23) 

Performing the integral for given qf and directions d$f and d& the breakup cross section results 

dN 1 m2(27r)4 
da= (3/2m)lqol/(2,+ = j jqol pfqf qf pf qfl(~o.fI”d&o)12 

*d dAda 

which agrees with Eq. (99). 
The optical theorem follows easily from noting that for t + 00 

(A.24) 

d 

z { Jd4, IA,,(O12 + /dpfdqf IAw,&)l*} = 0 (A-25) 
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Inserting (A.13) and (A.22) and taking the elastic and breakup cross sections from (A.17) and 
(A.24) one gets directly 

(A.26) 

Appendix B. Breakup kinematics 

We start from Eq. (103) of Section 2.4 describing an ellipse in the k,-kx plane. It can be put into 
the normal form by a rotation of the kl-k2 plane by 7r/4: 

kl = -& (k; + k;) , k2 = 5 (-k; + k;) (B-1) 

It results in 

[ 

2 

(2 - ~0~8,~) k; - $cos6$ -cos82)2_c;se 
12 1 

+(2+cos4;) [ k;- e(cos8, +cos&) 
1 2 

fi 2 + cos e*2 1 
klab2 (~0~0~ -cos~,)~ 

=- 
2 ( 2 - cos 812 

+ (cos& + cose2j2 
2 + cos 812 ) 

+2mEd 

The ellipse shrinks to a point if the right hand side is zero, which leads to the condition 

cos2 81 + cos2 82 - cos 6, cos e2 cos ei2 + 5(4- c0se,2) =o (B-3) 

tB.2) 

Here cos e12 3 k, . I2 = cos 8, cos e2 + sin 8i sin e2 cos( 4i - #Jo). 
The curve defined by Eq. (B.3) is very close in form to a circle for 4, -42 = 7r/2 and to an ellipse 

otherwise. Values for 8, and 0, lying inside that curve are mathematically forbidden. Otherwise one 
has an ellipse, which can lie totally or partially outside the first quadrant of the kl-k2 plane. The 
conditions for crossing the ki-axis (k2 = 0) are read off from Eq. ( 103) to be 

k2 - k, klab cos 8, - I me d=o (B-4) 

which leads to 

tkl)l.z = 
Pbcos 8, f dklab2 COST 8, + 4med 

2 (B-5) 

Consequently, the two crossing points of the ellipse with the ki-axis coincide for 8i equal 8(-) and 
0(+) given by 

e(-) = cos-* J 4mledl _ 
klab2 

< e(+) = -cos-l J 4mledl - 
klab2 u3.6) 

For 0(--j < 8, < @+j the ellipse lies above the ki-axis. The corresponding applies for the k2-axis. 
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The resulting picture for the location of all possible ellipses depending on 8,, & and c$,* is 
displayed in Fig. 1. 

Appendix C. Geometrical quantities related to permutation operators 

xF{i : j} {$ ; J/} C(Z* A f ,o 0 0) C($ A’ f’ ,o 0 0) 

C(k1,f',OOO)C(kZ;f,OO0) 

The quantity 6 of Eq. ( 197) can be written as 

G& (pqx) = c &(x) c c p’I+Ai q’z+Az &y*IA2 

k 1,+12=r h1iA2=A 

with 

(C-1) 

(C-2) 

x~~E‘~C(~,A,f,OOO)C(Ifk,OOO)C(Z~A~ft,OOO)C(Af'k,OO0) 
ff’ 

(C.3) 

Appendix D. List of international few-body conferences 

- Nuclear Forces and the Few Nuclear Problem (Pergamon Press, London, 1959). 
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- Few-Body Problems, Light Nuclei, and Nuclear Interactions, Brela, 1967, eds. G. Paid, I. Slaus 
(Gordon and Breach, New York, 1968). 

- Three-Particle Scattering in Quantum Mechanics, College Station, Texas 1968, eds. J. Gillespie, 
J. Nuttal (Benjamin, New York, 1968). 

- Three-Body Problems in Nuclear and Particle Physics, Birmingham 1969, eds. J.S.C. McKee, 
P.M. Rolph (North-Holland, Amsterdam, 1970) 

- The Nuclear Three-Body Problem and Related Topics, Budapest 1971, Acta Phys. Acad. Sci. Hung. 
33 (1973) 102. 

- Few-Particle Problems in the Nuclear Interaction, Los Angeles 1972, eds. I. Slaus, S.A. 
Moszkowski, R.P. Haddock, W.T.H. van Oers (North-Holland, Amsterdam, 1972). 

- The Nuclear Many-Body Problem, Rome 1972, eds. F. Calogero, C. Ciofi (Atti Editrice Composi- 
tori, Bologna, 1973). 

- Few-Body Problems in Nuclear and Particle Physics, Lava1 1974, eds. R.J. Slobodrian, B. Cujec, 
K. Ramavataram (Les Presses de l’universite, Laval, 1975). 

- Few-Body Dynamics, Dehli 1975176, eds. A.N. Mitra, I. Slaus, V.S. Bhasin, V.K. Gupta (North- 
Holland, Amsterdam, 1976). 

- Few-Body Nuclear Physics, Trieste 1978, eds. G. Pisent, V Vanzani, L. Fonda (IAEA, Vienna, 
1978). 

- Few-Body Systems and Nuclear Forces I, II, Graz 1978, eds. H. Zingl, M. Haftel, H. Zankel, 
Lecture Notes Phys., Vols. 82, 87 (Springer, Berlin, Heidelberg, New York, 1978). 

- The Few-Body Problem, Eugene 1980, eds. ES. Levin (North-Holland, Amsterdam, 1981) . 
- Few-Body Problems in Physics, Karlsruhe, Germany, 1983, eds. B. Zeitnitz, Vol I: Nucl. Phys. A416 

( 1984), Vol II - Contributed Papers (Elsevier Science Publishers B.V., Amsterdam, 1984). 
- The Three-Body Forces in the Three-Nucleon System, Washington DC, 1986, eds. B.L. Berman 

and B.F. Gibson, Lecture Notes in Physics 260 (1986). 
- Few-Body Methods: Principles and Applications, Nanning, PRC, 1985, eds. T.K. Lim, CC. Bao, 

D.P. Hou, S. Huber (World Scientific, Singapore, 1986). 
- Theoretical and Experimental Investigations of Hadronic Few-Body Systems, Rome, 1986, eds. 

CC. degli Atti, 0. Benhar, E. Pace, G. Salme, Few-Body Sytems, Suppl. 1 (1986). 
- Few-Body Systems in Particle and Nuclear Physics, Tokyo & Sendai, Japan, 1986, eds. T. Sasakawa, 

K. Nisimura, S. Oryu, S. Ishikawa, Nucl. Phys. A 463 (1987). 
- Few-Body Problems in Particle, Nuclear, Atomic and Molecular Physics, Fontevraud, 1987, eds. 

J.L. Ballot, M. Fabre de la Ripelle, Few-Body Systems, Suppl. 1 ( 1987). 
- Few-Body Problems in Physics, Vancouver, 1989, eds. H.W. Fearing, Nucl. Phys. A 508 (1990). 
- Few-Body Problems in Physics, Adelaide, 1992, eds. I.R. Afnan, R.T. Cahill, Nucl. Phys. A 543 

( 1992). 
- Few-Body Problems in Physics, Marciana Marina, Isola d’Elba, Italy, 1991, eds. C.C. degli Atti, 

E. Pace, G. Salme, S. Simula, Few-Body Systems, Suppl. 6 (1992). 
- Few-Body Problems in Physics ‘93, Amsterdam, 1993, eds. B.L.G. Bakker, R. van Dantzig, Few- 

Body Systems, Suppl. 7 ( 1994). 
- Few-Body Problems in Physics, Williamsburg, USA, 1994, eds. F. Gross, AIP Conference Pro- 

ceedings 334 (AIP Press, New York, 1995). 
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