Single Spin Asymmetries (SSA) in ³He(e,e') from a vertically polarized ³He target.

Nucleon structure studies using two photon exchange

Todd Averett College of William and Mary Williamsburg, VA

On behalf of the Jefferson Lab Hall A and polarized ³He collaborations

Program Goal: Measure the "vertical" target single spin asymmetry A_y in:

- quasi-elastic ³He(e,e')
- deep-inelastic ³He(e,e')

Born scattering and beyond

Irritating correction to favorite Dominant contribution to EM ٠ diagram. electron scattering. Suppressed by α relative to • Favorite diagram. ٠ Born diagram l(k)l(k)l(k')l(k') q_2 q_1 N(p)N(p')**N**(p') N(p)Born scattering

Jefferson Lab G_E^P/G_M^P -- Perdrisat

A. Afanasev et al., Phys.Rev.D72:013008, 2005

4/13/11

Todd Averett-William & Mary

Born scattering and beyond

Target Single Spin Asymmetry (SSA)

- Unpolarized e⁻ beam incident on ³He target polarized normal to the electron scattering plane.
- However, $A_y=0$ at Born level,
 - \rightarrow sensitive to physics at order α^2 ; two-photon exchange.
- Kinematic variable: $Q^2 = -q^2$ (Four-momentum)² of virtual photon)
 - low Q^2 = long wavelength photon; low resolution, nucleon physics
 - high Q^2 = short wavelength photon; high resolution, quark physics

Todd Averett-William & Mary

Topic 1: Elastic eN Scattering

Y.-C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson and M. Vanderhaeghen, PRL 93 (2004) 122301

• For the elastic reaction $e(k) + N(p) \rightarrow e(k') + N(p')$,

$$\begin{split} T_{\lambda_h,\lambda'_N\lambda_N} &= \frac{e^2}{Q^2} \,\bar{u}(k',\lambda_h) \gamma_\mu u(k,\lambda_h) \\ &\times \bar{u}(p',\lambda'_N) \left(\tilde{G}_M \,\gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{\gamma \cdot K P^\mu}{M^2} \right) u(p,\lambda_N) \end{split}$$

The λ_i are the lepton and hadron helicities, P, K are kinematic factors.

Complex functions containing nucleon structure information:

$$\begin{split} \tilde{G}_M(\nu, Q^2) &= G_M^{(\text{Born})}(Q^2) + \delta \tilde{G}_M(\nu, Q^2) \\ \tilde{F}_2(\nu, Q^2) &= F_2^{(\text{Born})}(Q^2) + \delta \tilde{F}_2(\nu, Q^2) \\ \tilde{F}_3(\nu, Q^2) &= 0 \text{ for Born scattering} \end{split}$$

• $\delta ilde{G}_M$, $\delta ilde{F}_2$, $ilde{F}_3$ come from $1\gamma\otimes 2\gamma$ -interference (up to $\mathcal{O}(e^4)$)

2-photon SSA physics

= 0

Absorptive part=Imaginary contribution

A. DeRujula et al., Nuc. Phys. B35 (1971) 365

For *inclusive* scattering N(e,e'),
$$A_y^{Born}$$

N. Christ-T.D.-Lee, Phys. Rev. 143 (1966) 1310

Time reversal invariance, parity conservation, and the hermiticity of the electromagnetic current operator

When we allow 2-photon exchange, the leading contribution is from $1\gamma + 2\gamma$ interference

- Calculable at large Q² using moments of GPD's; Next Slide
- Measurement of A_y at large Q^2 provides new constraint on GPD's

Prediction by Carlson et al. at Q²=1.0 GeV²

Normal analyzing power - neutron

4/14/11

Experimental Design

- Use two symmetric spectrometers for singles electron detection. Jefferson Lab Hall A HRS spectrometers.
- Vertically polarized ³He target.
- Measurements at Q²=0.1, 0.5 and 1.0 GeV²
 - Test GPD calculation
 - Study Q^2 dependence
 - Parton to hadron transition

Hall A polarized ³He target

W&M, UVa, JLab

- Effective polarized neutron target
- Spin Exchange Optical Pumping (SEOP) technology
- New Innovations:
- 5:1 ratio of K:Rb for high efficiency optical pumping and spin exchange.

Laser lia

Target chambe

- Spectrally narrowed diode lasers
- With 15uA beam, <P_{targ}>~65%
- Luminosity L ~ 10^{36} /cm²/s

4/13/11

Recent Target Performance

World record performance

Preliminary ³He results at Q²=0.5 and 1.0 GeV²

³He(e,e') A_v^{3He}

Prediction below is for $Q^2 = 1 \text{ GeV}^2$ Carlson et al.--Neutron

Normal analyzing power - neutron

Data above is for helium-3, no correction to extract neutron results.

Analysis by Bo Zhao—College of W&M

Topic 2: What about A_y for n(e,e') in DIS?

• The formalism remains the same: A_y=0 for 1-photon exchange

• For DIS, one assumes that the scattering is dominated by two photon exchange with a single quark.

- This was measured in Hall A during the transversity experiment, using the BigBite Spectrometer in singles mode.
- Joe Katich-W&M Ph.D. thesis

n(e,e') prediction for DIS

• In a simple quark model, $A_y=0$ for twophoton exchange due to helicity conservation at the quark level.

• Afanasev, Strikman, Weiss (Phys.Rev.D77:014028,2008) predict Ay~10⁻⁴ using a model based on the quark transversity distribution and non-zero quark masses.

•<u>The SSA should change by two orders of</u> <u>magnitude from DIS to QE kinematics.</u>

• Allows one to study the "transition" from hadron-like to parton-like behavior.

Transversity kinematics

Measure ³He(e,e') SSA using BB and LHRS in singles mode.

E=5.89 GeV

	LHRS	BB			
		1	2	3	4
θ (deg)	16.00	29.60	29.60	29.50	28.80
θ (rad)	0.28	0.52	0.52	0.51	0.50
E (GeV)	5.89	5.89	5.89	5.89	5.89
E' (GeV)	2.35	1.12	1.36	1.65	2.05
ν (GeV)	3.54	4.78	4.53	4.25	3.84
Q^2 (GeV ²)	1.07	1.71	2.09	2.51	2.99
W^2 (GeV ²)	6.45	8.13	7.30	6.33	5.09
Х	0.16	0.19	0.25	0.32	0.42

Big Bite Detector

Preliminary Results

Preliminary Results Neutron

HERMES Proton

Summary

- Vertical target single spin asymmetry is a new tool that provides access to nucleon models over a wide range of kinematics.
- Preliminary data presented for A_y in the quasi-elastic and deep-inelastic regions.
- QE data show a clear and significant non-zero asymmetry as predicted by GPD model. No change at Q²=0.5 GeV². Expect 0.1 GeV² result soon.
- DIS data show an asymmetry that is non-zero and two orders of magnitude larger (and opposite sign) than predicted by Afanasev et al. Large backgrounds at low momentum. Analysis will continue.
- Goal: publish both this year.

Backup Slides

Summary of Systematic Error

BigBite Momentum Bin 1						
Source	Uncertainty	Relative / Absolute	δA^{source}_{sys}			
A_{π^-}	0.0015	absolute	5.85×10^{-5}			
A_{e^+}	0.0019	absolute	3.9×10^{-3}			
C_{π^-}	100%	relative to C_{π^-}	1.97×10^{-3}			
C_{e^+}	20%	relative to C_{e^+}	2.08×10^{-2}			
P_T	5%	relative to P_T	3.56×10^{-3}			
η_{N_2}	0.03	absolute	3.1×10^{-3}			
$^{3}\text{He} \rightarrow n$	0.03	absolute	$7.6 imes 10^{-3}$			
$\rho_{^{3}He}$	2.1%	relative to δA_y^{stat}	3.8×10^{-4}			
A_{lumi}	1.0×10^{-4}	absolute	1.0×10^{-4}			
A_{LT}	1.5×10^{-4}	absolute	1.5×10^{-4}			
Tracking	1.5%	relative to δA_y^{stat}	2.70×10^{-4}			
Rad. Corr.	0.93%	relative to δA_y^{stat}	1.67×10^{-4}			
		Added in Quadrature:	$\delta A_{sys} = 2.3 imes 10^{-2}$			

Preliminary Results

23

Preliminary Results

Transverse SSA

Should be exactly zero

Luminosity Asymmetry

Todd Averett-William & Mary

Backgrounds

- π^{-/+} in BB e^{-/+} spectrum. Cherenkov in BB not yet working for PID at 30 deg.
- Pair produced e^+/e^- pairs from π° decay.
 - Measure using positive polarity
 - 50% contamination in lowest momentum bin
 - Correct this for $\pi^{\scriptscriptstyle +}$ contamination....
 - Largest systematic uncertainty
 - LHRS data has no pions

Particle Identification

Energy Deposited in the Preshower Calorimeter

Two main sources of contamination

 π

Despite high threshold on PS+SH, plenty of pions will still be recorded

Fit the shape of each peak and integrate each above some threshold

$$\pi^0 \rightarrow \gamma \gamma \rightarrow e^+ e^-$$

A bit more subtle...'bad' electrons will look just like 'good' electrons:

- good track

- same energy / momentum

Need 'positron' runs to estimate the contamination level

 π^{-}

 $\pi^0 \rightarrow \gamma \gamma \rightarrow e^+ e^-$

 $\pi^0 \rightarrow \gamma \gamma \rightarrow e^+ e^-$

momentum bin (GeV/c)	% contamination
1.00-1.22	56%
1.22-1.50	26%
1.50-1.80	13%
1.80-2.50	5%

*Both π^- and e⁺ contamination are less than 1% in the HRS

Radiative Corrections

