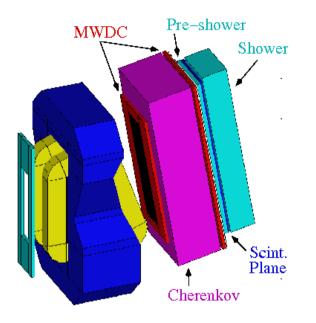
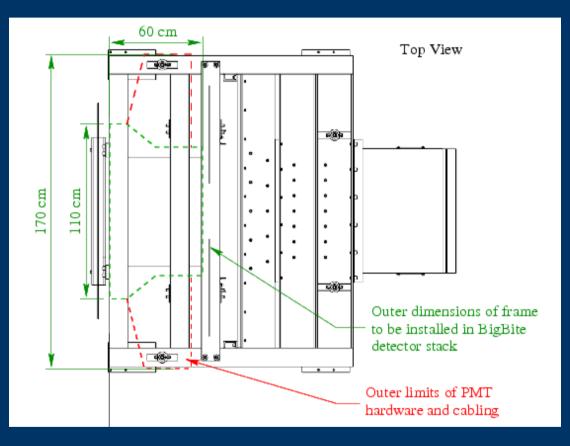
#### Estimated Background Rates for d<sup>n</sup>

- MC simulation by Degtyarenko et al. (tested in Halls A and C)
- Online cuts include:
  - ➡ BB magnet sweeps particles with p < 200 MeV/c</p>
  - → GEN BB trigger: shower+pre-shower+scint
    - provide ~10:1 online hadron rejection (or better)
  - → ~550—600 MeV threshold on shower
  - 4—5 p.e. threshold on Cherenkov
     heavily suppress random background
     negl. pion contamination (~100 Hz knock-ons)
- Total estimated trigger rate (GEN trig + Cherenkov): 2—5 kHz

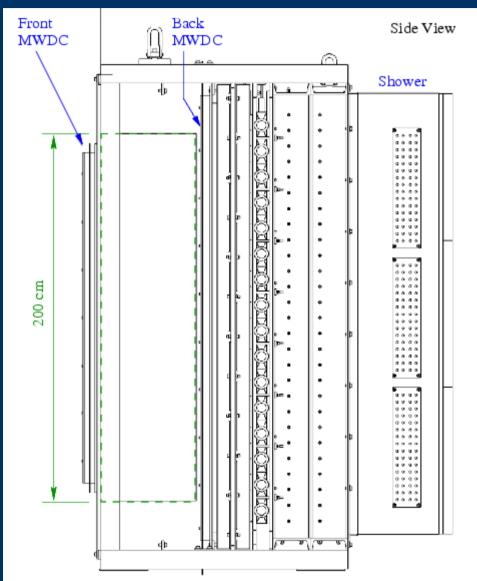

| Online<br>triggers | e-<br>e+ | 2-5 kHz<br><1 kHz | π-<br>π+<br>p<br>n | 90 kHz<br>90 kHz<br>50 kHz<br>50 kHz | Removed via online cuts |
|--------------------|----------|-------------------|--------------------|--------------------------------------|-------------------------|
|                    |          |                   |                    |                                      | )                       |

#### Cherenkov Design Parameters

- Dimensions: 200cm x 60cm x 60cm
  - Iocated in gap between first and second wire chamber with minimal modifications to BigBite frame
- Radiator gas:  $C_4 F_{10}$  (or Freon12)
  - → n = 1.0015 (1.0011)
  - →  $\pi$  threshold: 2.51 GeV/c (2.98 GeV/c)
  - ~25 (16) photo-electrons / 40 cm electron track
     Quartz PMT (5" Photonis XP4508)
     mirror reflectivity: ~90%, 10% loss at PMT-gas interface (2 mirror reflections)
  - >99% efficient with 4-5 p.e. threshold
     Negl. pion contamination minimum π/e rejection ratio 1000:1 online


### BigBite with the Gas Cherenkov

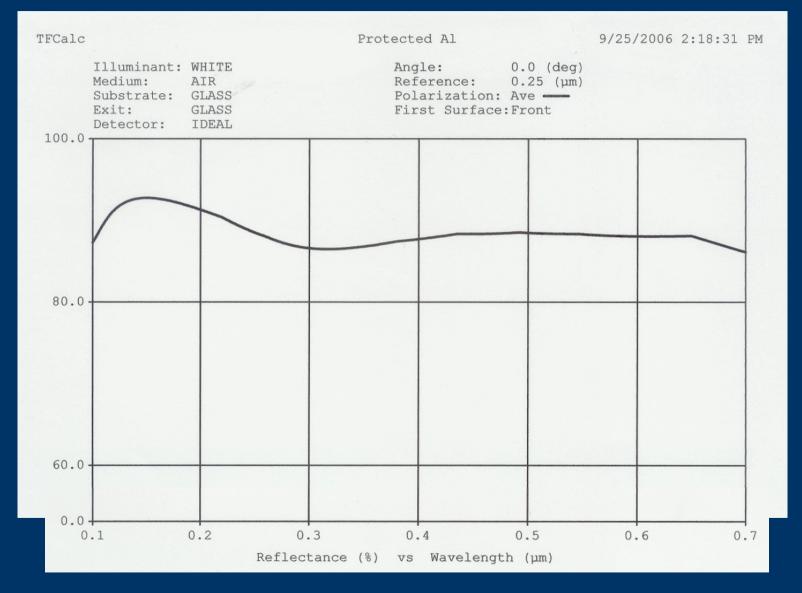





- non-focusing, large acceptance, open geometry
- Δp/p = 1 1.5% (@ 1.2 T) σ(W) = 50 MeV
- angular resolution 1.5 mr, extended target resolution 6 mm
- large solid angle: 64 msr
- detector package
  - 2 MWDCs, segmented trigger, Pb-glass shower
  - ➡ Gas Cherenkov (new)

### **Cherenkov Frame**

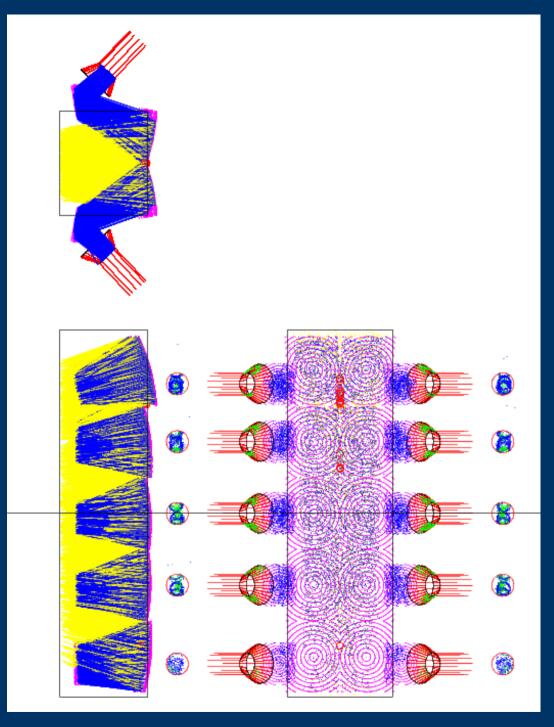



Engineer at Temple (Ed K.) is currently working on real CAD drawings – will work with Al Gavalya, etc to integrate Cherenkov into BigBite frame



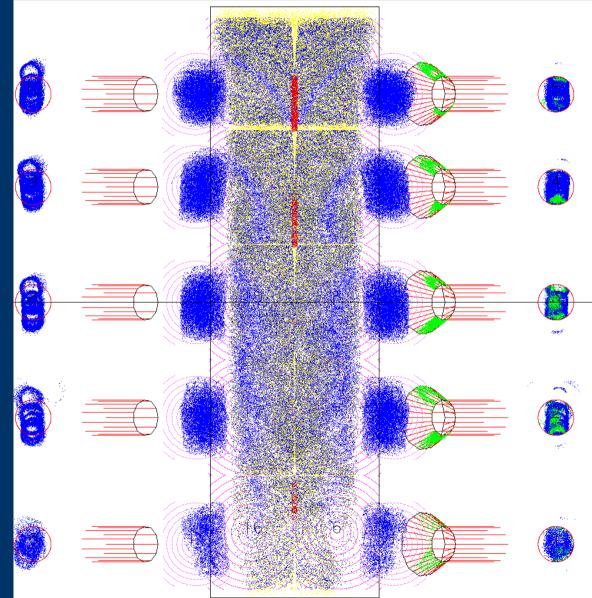
### **Cherenkov Mirrors**

- Mirror blank vendor has been located
  - Eagle Glass Specialties, Inc.
    - ~\$200/blank for spherical mirrors
- In touch with several AI coating vendors
  - Alpine Research, Esco Prod., Denton Vac.
  - no company will guarantee reflectivity below 200nm (they can't measure it)
  - three companies sending samples for our evaluation (1 here, 1 in transit, 1 pending)
    - setting up testbed in EEL building now
    - basic test involves monitoring the response of a Photonis Quartz PMT to real Cherenkov spectrum with/without mirror


## Reflectivity

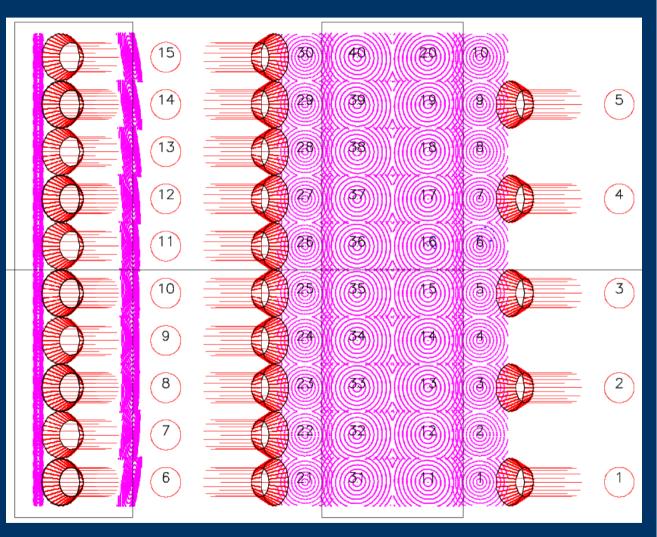


# Cherenkov Optics


Optics were tricky due to the large momentum acceptance of BigBite
we will be going with a 'two bounce' design
"pseudo"-Winston cones used to

improve acceptance




## **Cherenkov Optics**

- No cones on left side
- Highest 'ring' associated with low-momentum particles (larger bend angle)
- Lower rings are from high momentum particles (smaller bend angle)
- (The structure in the hit distribution is an artifact of the rendering it is not real)



## **Cherenkov Optics: 20 Mirrors?**

- Size limit of common coating chambers (18" diam.) may actually make 20 mirror design more cost effective in the short term and more flexible in the long term!
- We would fill 10 PMT "slots" with planned hardware
  - 2 mirrors would focus on each PMT
  - could add more
     PMTs if available



"Super Size"

"Original"

# **Cherenkov Costs**

| Component                                    |      | Cost/unit | Sub-total                 |
|----------------------------------------------|------|-----------|---------------------------|
| Cerenkov frame/mounting hw/fittings          |      |           | \$30k                     |
| Currently avail. funding from Temple U.      |      |           | <b>\$20k</b> (-\$10k)     |
| Primary Mirrors (spherical)                  | 10+2 | \$2000    | \$24k                     |
| Secondary Mirrors (flat)                     | 10+2 | \$1000    | \$42k \$12k               |
| Pseudo-Winston Cones <sup>†</sup>            | 10+2 | \$500     | (\$10k) <sup>1</sup> \$6k |
| PMT (XP4508B) w/ base (Quartz) <sup>‡</sup>  | 10+2 | \$2500    | \$30k                     |
| $\mu$ -metal shield (existing stock)         |      |           | Purchased (JLab)          |
| Quartz optical windows*:                     |      | \$500     | \$6k                      |
| $C_4F_{10}$ gas: (cost/fill <sup>§</sup> )   |      | \$2600    |                           |
| Daily consumption (atm. press. fluctuations) |      | \$26/day  |                           |

<sup>†</sup>May be omitted for purposes of E06-014 at the cost of a significant loss in efficiency for the lowest energy bins.

<sup>‡</sup>Quartz-face PMTs result in almost a factor of two more detected photons versus a UV-glass PMT.

\*Not required if the PMTs can be installed inside the tank (preferred option).

 $^{\$}$ A fill is estimated to be 1800 liters priced at US\$145/kg (1 kg liquid = 100 liters gas at STP).

<sup>1</sup> NOTE: Mirror prices are dominated by worst-case coating cost (CERN @ \$1000/mirror). If one of the local vendors proves OK the cost/mirror will drop by a factor of 4 or 5!