1 Approaching the Nucleon-Nucleon short-range repulsive core v ia the 4 He $(e, e'pN)$ triple-coincidence reaction.

tions at $Q^2 = 2 \text{ (GeV/c)}^2$ and $x_B > 1$, for a $(e, e'p)$ missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual $A = 2$ system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond $\sim 500 \text{ MeV}/c$. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with $ab\text{-}initio$ calculations of two-nucleon momentum distributions in 4 He.

 $_{71}$ terplay between the long-range attraction that binds nu- $_{105}$ ⁷⁶ pends on the spin orientations and the relative orbital ¹¹⁰ minum cylinder with a 4 cm radius. ⁷⁷ angular momentum of the nucleons.

⁸⁴ pairs as short-range correlated (SRC) pairs [5–7]. In the 85 missing momentum range of $300 - 600$ MeV/c, these \mathbf{S} of the nuclear wave functions, with neutron-proton (np) ⁹¹ interaction, at the probed sub-fermi distances [8–10].

95 to the quest to increase missing momenta. This allows ¹²⁹ recoil nucleon was $40-50^{\circ}$. ⁹⁶ looking for pairs that are even closer to each other, at ¹⁰⁰ surement of the ⁴He(e, e'p), ⁴He(e, e'pp) and ⁴He(e, e'pn) ¹³⁴ (HAND) with matching solid angles were used to detect 101 reactions at $(e, e'p)$ missing-momenta from 400 to 830 135 such correlated recoiling protons or neutrons. The lay- 102 MeV/c. The observed changes in the isospin composition 136 out of the experimental setup is schematically presented ¹⁰³ of the SRC pairs as a function of the missing momentum ¹³⁷ in Fig. 1.

⁷⁰ The existence of stable nuclei is due to a delicate in-¹⁰⁴ are presented, discussed, and compared to calculations.

 τ cleons, and the short-range repulsion that prevents the τ ₁₀₆ Laboratory (JLab) using a 4 μ A electron beam with en-⁷³ collapse of the system. In between, the dominant scalar ¹⁰⁷ ergy of 4.454 GeV incident on a high pressure (13 atm) 74 part of the nucleon-nucleon force almost vanishes and the $_{108}$ 4 He gas target at 20 K. The 20 cm long gas target had ⁷⁵ interaction is dominated by the tensor force, which de-₁₀₉ a density of 0.033 g/cm^3 , and was contained in an alu-The experiment was performed in Hall A of Jefferson

 T_78 Recent high-momentum-transfer triple-coincidence 112 (HRS) [11] were used to identify ⁴He(e, e'p) events. Scat- τ_9 ¹²C(e, e'pN) and ¹²C(p, 2pn) measurements [1–4] have 113 tered electrons were detected in the left HRS (L-HRS) ⁸⁰ shown that nucleons in the nuclear ground state form ¹¹⁴ at a central scattering angle of 20.3° and momentum of \mathfrak{su} pairs with large relative momentum and small center-of- \mathfrak{us} 3.602 GeV/c. This kinematic corresponds to the quasi-⁸² mass (CM) momentum, where large and small is relative 116 free knockout of a single proton with transferred three-83 to the Fermi momentum of the nucleus. We refer to these 117 momentum $|\vec{q}| \approx 1.64\,\,{\rm GeV}/c$, transferred energy $\omega \approx$ ⁸⁶ pairs were found to dominate the high-momentum tails ₁₂₀ the proton mass. Knocked-out protons were detected us-88 pairs nearly 20 times more prevalent than proton-proton $_{122}$ central angles and momenta: $(33.5°, 1.38 \text{ GeV}/c)$, $(29°, 1.20 \text{ GeV}/c)$ ⁸⁹ (pp) pairs, and by inference neutron-neutron (nn) pairs. 1.3 GeV/c), and $(24.5^{\circ}, 1.19 \text{ GeV}/c)$. These kinematical ⁹⁰ This is due to the strong dominance of the NN-tensor $_{124}$ settings correspond to $(e, e'p)$ central missing-momentum ⁹² The association of the small ¹²C(e, e'pp) / ¹²C(e, e'pn) ¹²⁶ 750 MeV/c, respectively, and covering a missing momen-93 ratio, at $(e, e'p)$ missing-momenta of 300 – 600 MeV/c, 127 tum range of 400 – 830 MeV/c, with overlap between ⁹⁴ with dominance of the NN-tensor force, leads naturally ¹²⁸ the three different settings. The angle between \vec{q} and the ¹¹¹ The two Hall A high resolution spectrometers ¹¹⁸ 0.86 GeV, the negative four-momentum transfer squared $_{119} Q^2 = 2 \text{ (GeV/}c)^2$, and $x_B = \frac{Q^2}{2m_p\omega} = 1.2$, where m_p is ¹²¹ ing the right HRS (R-HRS) which was set at 3 different ¹²⁵ ($\vec{p}_{\text{miss}} = \vec{p}_p - \vec{q}$) values of 500 MeV/c, 625 MeV/c, and

 \mathcal{A} distances in which the nuclear force changes from being \mathcal{A} is the $A(e, e'p)$ reaction is expected to be balanced almost predominantly tensor to the essentially unexplored repul-¹³² entirely by a single recoiling nucleon. A large acceptance sive interaction. We report here on a simultaneous mea-¹³³ spectrometer (BigBite) followed by a neutron detector For highly correlated pairs, the missing momentum of

FIG. 1. A vector diagram of the layout of the experiment. The electron kinematics was fixed and three combinations of θ_p P_p were used to cover the full missing momentum range. See text for details. The spectrometers are shown with their magnets (D-dipole, Q-quadropole) and their main detection systems, more details in Ref.[11].

 The BigBite spectrometer [12] consists of a large accep- tance, non-focusing dipole magnet followed by a detector package consisting of two planes of plastic scintillators $_{141}$ (Δ E - E), referred to collectively as the trigger counters, and two wire chambers. The magnet was centered at an ¹⁴³ angle of 97[°], for the 500 and 625 MeV/c measurements, ¹⁴⁴ and 92[°] for the 750 MeV/c measurement. The angular acceptance was about 96 msr and the detected momenta ¹⁴⁶ acceptance ranged from 0.25 GeV/c to 0.90 GeV/c.

 The Hall A neutron detector (HAND) consists of sev- eral elements. A 2.4 cm thick lead shield (to block low- energy photons and most of the charged particles coming from the target), followed by 64 2-cm thick scintillators (to identify and veto charged particles), and 112 plastic scintillator bars arranged in six 10-cm thick layers cov- μ ¹⁵³ ering an area of 1x3 m² (to detect the neutrons). The neutron detector array was placed six meters from the target, just behind BigBite, covering a similar solid an-gle as BigBite.

 The experiment triggered on e-p coincidences between the HRS spectrometers, with BigBite and HAND detectors read out for every trigger. Thus, we could ¹⁶⁰ determine simultaneously the triple/double coincidence $_{216}$ ⁴He($e, e'p$) reaction and neutrons in HAND. The signal ¹⁶¹ ratios: ⁴He(e, e'pp)/⁴He(e, e'p), ⁴He(e, e'pn)/⁴He(e, e'p) ₂₁₇ to background ratio at the three kinematics setups were $_{162}$ as well as the triple/triple coincidence ratio, $_{218}$ 1 : 2 – 2.5. $_{163}$ ⁴He(*e*, *e'pp*)/⁴He(*e*, *e'pn*).

 cut around the coincidence timing peak which had a ²²¹ residual system. Taking into account the binding energy $_{166}$ resolution of $\sigma = 0.6$ ns. The resulting event sam- $_{222}$ of the two protons, the excitation energy and the CM ple contained $1 - 9\%$ random events. The other cuts 223 kinetic energy of the residual two-neutron system is rela-168 on the $(e, e'p)$ data were the nominal HRS phase-space 224 tively low supporting the picture that they are essentially ¹⁶⁹ cuts on momentum ($|\Delta p/p| \le 0.045$), and angles (±60 ²²⁵ spectators in a reaction that breaks a pp-SRC pair. Simi- mrad vertical, ±30 mrad horizontal). To reduce the ²²⁶ lar missing-energy and -mass distributions were obtained ¹⁷¹ random-coincidence background, a cut on the target- $_{227}$ for the ⁴He($e, e'pn$) reaction but with inferior resolution

 reconstructed vertex from the two HRSs ensured that, for every event, both the electron and the proton emerged ¹⁷⁴ from the same place in the ⁴He target. A cut on the two-dimensional distribution of the y-scaling variable [13] $20.3^{0_{176}}$ versus ω and a missing mass cut were applied to re- move the contribution from $\Delta(1232)$ excitation [14] (see appendix). With all these cuts applied, a data set of $_{179}$ ⁴He(e, e'p) events was generated, each with a measured missing momentum.

 The recoiling protons were identified in BigBite us- ΔE ing the measured energy loss in the ΔE - E scintilla- tor detectors, the measured time-of-flight (TOF), and the momentum reconstructed using the trajectory in the magnetic field. The momentum resolution of BigBite, determined from elastic electron-proton scattering, was $\Delta p/p = 1.5\%$. The overall proton detection efficiency, ¹⁸⁸ as measured with e-p elastic scattering, was $73 \pm 1\%$, primarily due to the gaps between scintillators and the tracking inefficiency of the wire chambers.

 The pattern of hits in sequential layers of HAND was used to identify neutrons [15]. The momentum of the neutrons was determined using the measured TOF be- tween the target and HAND. A time resolution of 1.5 ns allowed determination of the neutron momentum with an 196 accuracy that varied from 2.5% (at 400 MeV/c) to 5% (at 830 MeV/c). The neutron detection efficiency was 40±1.4% for 400−830 MeV/c neutrons. This determina-199 tion is based on the efficiency measured up to $450 \text{ MeV}/c$ $_{200}$ using the $d(e, e'pn)$ reaction, and extrapolation using a simulation that reproduces well the measured efficiency at lower momenta [16].

 Figure 2 shows the distribution of the cosine of the angle between the missing momentum and the recoiling $_{205}$ neutrons (γ). We also show the angular correlation for the random background as defined by a time window off the coincidence peak. The back-to-back peak of the real triple coincidence events is demonstrated clearly. The curve is a result of a simulation of the scattering of a moving pair having a center-of-mass (CM) momentum $_{211}$ width of 100 MeV/c as discussed below. Similar back-to- back correlations were observed for the recoiling protons detected in BigBite. The timing peak shown in the insert of Fig. 2 is due to real triple coincidences and the flat background is due to random coincidences between the

164 The ⁴He(e, e'p) events were selected by placing a $\pm 3\sigma$ 220 ⁴He(e, e'pp) reaction corresponding to a two-neutron Figure 3 shows the missing mass and energy for the

FIG. 2. The distribution of the cosine of the opening angle γ between the \vec{p}_{miss} and \vec{p}_{recoil} for the $p_{\text{miss}} = 625$ and 750 MeV/c kinematics combined. The histogram (dashed dotted, red online) shows the distribution of random events. The solid curve is a simulation of scattering off a moving pair with a CM momentum having a width of 100 MeV/ c . The insert is the TOF spectrum for neutrons detected in HAND in coincidence with the ⁴He(e, e'p) reaction in the highest missingmomentum kinematics. The random background is shown as a dashed line.

FIG. 3. The background subtracted missing-mass distribution for 4 He(e, e'pp) events. The insert represents the background subtracted missing energy for the 4 He(e, e'pp) events. Note that subtracting the binding energy of the two protons leaves the two neutrons residual system with a low excitation energy.

²²⁸ due to the lower momentum resolution for neutrons.

²²⁹ Software cuts were applied to both BigBite and HAND 230 that limited their acceptances to be $\pm 14^\circ$ in the ver-

 Gaussian distribution as in [17]. We assumed an isotropic 3-dimensional motion of the pair and varied the width of the Gaussian motion equally in each direction until the best agreement with the data was obtained. The nine measured distributions (three components in each of the $_{244}$ three kinematic settings for np pairs) yield, within the uncertainties, the same width with a weighted average of ²⁴⁶ 100 \pm 20 MeV/c. This is in good agreement with the CM momentum distribution calculated in Ref. [10]. Figure 2 compares the simulated and the measured distributions of the opening angle between the knocked-out and re- $\overline{20}$, 94^{250} coiling nucleons. The fraction of events detected within the finite acceptance was used to correct the measured yield. The uncertainty in this correction was typically 15%, which dominates the systematic uncertainties of the $_{254}$ ⁴He(*e*, *e'pN*) yield.

The measured $\frac{{}^{4}\text{He}(e,e'pN)}{{{}^{4}\text{He}(e,e'n)}}$ ²⁵⁵ The measured $\frac{He(e,e\ pN)}{4He(e,e'p)}$ ratios are given by the number of events in the background-subtracted triple- coincidence TOF peak (as shown in the insert in Fig. 2) corrected for the finite acceptance and detection effi- ciency of the recoiling nucleons, divided by the number of ²⁶⁰ random-subracted double coincidence ⁴He(*e*, *e'p*) events. ²⁶¹ These ratios, as a function of p_{miss} in the ⁴He(*e*, *e'p*) re- action, are displayed as full symbols in the two upper panels of Fig. 4. Because the electron can scatter from either proton of a pp pair (but only from the single pro-²⁶⁵ ton of an np pair), we divided the ⁴He(e, e'pp) yield by two. Also displayed in Fig. 4, as empty symbols with $_{267}$ dashed bars, similar ratios for 12 C obtained from previ- ous electron scattering [1, 2] and proton scattering [4] $_{269}$ measurements. In comparing the ¹²C and ⁴He data no- tice that there is a difference in the naive counting ratio ²⁷¹ of $\frac{NZ}{Z(Z-1)}$ between the two cases. The horizontal bars show the overlapping momentum acceptance ranges of the various kinematic settings. The vertical bars are the uncertainties, which are predominantly statistical.

275 Because we obtained the ⁴He(e, e'pp) and ⁴He(e, e'pn) ²⁷⁶ data simultaneously and with the same solid angles and momentum acceptances, we could also directly determine ²⁷⁸ the ratio of ⁴He(*e*, *e'pp*) to ⁴He(*e*, *e'pn*). In this ratio, ²⁷⁹ many of the systematic factors needed to compare the ²⁸⁰ triple-coincidence yields cancel out, and we need to cor-²⁸¹ rect only for the detector efficiencies. This ratio as a ²⁸² function of the missing momentum is displayed in the ²⁸³ lower panel of Fig. 4 together with the previously mea-²⁸⁴ sured ratio for ¹²C [2].

231 tical direction, $\pm 4^{\circ}$ in the horizontal direction, and 286 lated the attenuations of the leading and recoiling nucle- $232\,300-900\,\text{MeV}/c$ in momentum. We used a simulation 287 ons as well as the probability for single-charge-exchange ²³³ based on the measurements to correct the yield of the ²⁸⁸ (SCX) using the Glauber approximation [18]. To a ²³⁴ 4 He $(e, e'pN)$ events for the finite acceptances of the re- 289 good approximation the correction to the ratios due to ²³⁵ coiling protons and neutrons in Bigbite and HAND. Fol-²⁹⁰ the leading-proton attenuation is small. The attenu-²³⁶ lowing Ref. [1], the simulations assume that an electron ²⁹¹ ation of the recoiling nucleon decreases the measured ²³⁷ scatters off a moving SRC pair with a CM momentum ²⁹² triple/double coincidence ratios. Because the measured 238 relative to the $A-2$ spectator system described by a 293 ⁴He(e, e'pn) rate is about an order of magnitude larger ²⁸⁵ To correct for final-state interactions (FSI), we calcu-

FIG. 4. Lower panel: The measured ratios 4 He(e, e'pp)/ 4 He(e, e'pp) are shown as solid symbols as a function of the 4 He(e, e'p) missing momentum. Each point is the result of a different spectrometers setting. The bands represent the data corrected for FSI to obtain the pair ratios, see text for details. Also shown are calculations using the momentum distribution of [10] for pairs with no CM momentum (dashed blue line) and with weighted-average CM momentum assuming arbitrary angles between it and the relative momentum in the pair (solid black line). The middle panel shows the measured ${}^{4}He(e,e'pp)/{}^{4}He(e,e'p)$ and extracted $\#pp/\#p$ ratios. The upper panel shows the measured ${}^{4}He(e, e'pn)/{}^{4}He(e, e'p)$ and extracted $\#pn/\#p$ ratios The unphysical region above 100% obtained due to statistical fluctuations is marked by white strips. Ratios for ^{12}C are shown as empty symbols with dashed bars. The empty star is the BNL result [4] for ${}^{12}C(p, 2pn)/{}^{12}C(p, 2p)$. See text for a comment on the 12 C/ ⁴He naive counting ratios.

²⁹⁴ than the ⁴He(*e*, *e'pp*) rate, ⁴He(*e*, *e'pn*) reactions fol- 318 duced by the tensor force are strongly suppressed in the ²⁹⁵ lowed by a single-charge exchange (and hence detected as $\frac{1}{2}$ state of the pp pairs, which are mostly in a ${}^{1}S_0$ state [8– ⁴He(e, e'pp)) increase the ⁴He(e, e'pp)/⁴He(e, e'pn) and ₃₂₀ 10, 20]. As the relative momenta increase, the tensor ²⁹⁷ the ⁴He(*e*, *e'pp*)/⁴He(*e*, *e'p*) measured ratios.

298 The Glauber corrections ($T_{\rm L} = 0.75$ and $T_{\rm R} = 0.66$ – $_{299}$ 0.73), where $T_{\rm L}$ and $T_{\rm R}$ the leading and recoil transparen- cies, were calculated by the Ghent group [18]. We as- $_{301}$ sumed the uncertainties to be $\pm 20\%$ of these values. The ³⁰² probability for SCX (P_{SCX}) was assumed to be $1.5 \pm 1.5\%$ 303 based on the SCX total cross section of 1.1 ± 0.2 mb [19]. The pair fraction extracted from the measured ra- tios with the FSI calculated corrections are shown in Fig. 4 as bands (see appendix for details). The statis- tical and systematic uncertainties of the measurements and the calculated corrections were treated as indepen- dent and combined by simulation to create the width of the one standard deviation bands shown in Fig. 4.

311 The two-nucleon momentum distributions were cal- 335 distribution. ³¹² culated for the ground states of ⁴He using variational ³³⁶ sured ⁴He(*e*, *e'p*)/⁴He(*e*, *e'p*) ratio reflects a small con-313 Monte-Carlo wave functions derived from a realistic 337 tribution from pp-SRC pairs, most probably domi-³¹⁴ Hamiltonian with two- and three-nucleon potentials [10]. ³³⁸ nated by the repulsive short-range force. The large 315 The number of pp-SRC pairs is much smaller than $np-$ 339 4 He(e, e'pn)/ 4 He(e, e'p) ratio clearly shows np-SRC ³¹⁶ SRC pairs for values of the relative nucleon momentum ³⁴⁰ dominance. The observed reduction in the fraction of 317 $K_{rel} \approx 400 \text{ MeV}/c$. This is because the correlations in- 341 measured 2N-SRC contribution to the total $(e, e'p)$ re-

 force is less dominant, the role played by the short-range repulsive force increases and with it the ratio of pp/np pairs. The solid (black) curve in Fig. 4 was obtained using the weighted average of the calculations with arbi-³²⁵ trary angles between \vec{K}_{rel} and \vec{K}_{CM} , the CM momentum or the pair. The dashed curve (blue) is the calculations 327 with $K_{CM} = 0$ which is very little different from the av- erage and agrees quantitatively with the Perugia group calculations [20]. To compare the calculations to the data in Fig. 4 we assumed that the virtual photon hits the 331 leading proton and $p_{\text{miss}} = K_{rel}$ (PWIA).

 To summarize, measurements reported here facil- itate the isospin decomposition of the $2N$ -SRC in the high-momentum tail of the nucleon momentum The small, relatively constant mea-

 moval strength as a function of the missing momentum can be due to increasing FSI and/or the onset of 3N-³⁸³ tering off the proton (neutron) [21]. SRC [5]. A definitive conclusion on the relative contribu- tion of these effects requires a more detailed theoretical ³⁴⁶ study.

 The missing-momentum dependence of ³⁴⁸ the ${}^{4}He(e,e'pn)/{}^{4}He(e,e'p)$ ratio, and the ⁴He(e, e'pp)/⁴He(e, e'pn) ratio, which agree well with the calculated ratio of pp-SRC / np-SRC pairs in the ground state, reflect the transition from tensor force dominance to the repulsive force domain as the nucleons momenta increase. Comprehensive calculations, which 387 p_{rec} are the energy and momentum of the knocked-out take into account the full reaction mechanism in a relativistic treatment, as well as additional data with better statistics will allow a more detailed determination of the role played by the elusive repulsive short-range nucleon-nucleon interaction.

 We would like to acknowledge the contribution of the 389 360 Hall A collaboration and technical staff. We thanks C, 390 where T_p , T_{rec} , and T_B are the kinetic energy of the $_{361}$ Colle, W. Cosyn and J. Ryckebusch for the Glauber Cal- $_{391}$ knocked-out proton, recoil partner and remaining $A - 2$ culations. We want to also thank R.B. Wiringa, R. Schi-³⁹² system, respectively. avilla, S. Steven, and J. Carlson for some of the calcu- lations presented in Ref [10] that were provided specif- ically for this paper. Useful discussions with J. Alster, C. Ciofi degli Atti, W. Cosyn, A. Gal, L. Frankfurt, J. Ryckebusch, M. Strikman, and M. Sargsian, are grate- fully acknowledged. This work was supported by the Is- rael Science Foundation, the U.S. National Science Foun- dation, the U.S. Department of Energy grants DE-AC02- 06CH11357, DE-FG02-94ER40818, and U.S. DOE Con- tract No. DE-AC05 84150, Modification No. M175, un- der which the Southeastern Universities Research Asso- ciation, Inc. operates the Thomas Jefferson National Ac-celerator Facility.

³⁷⁶ Appendix

 To extract the SRC pair ratios $\#pp/\#np$, $\#pp/\#p$, and $\#np/\#p$ from the measured cross sections ratios $(R = \frac{{}^{4}\text{He}(e,e'pp)}{{}^{4}\text{He}(e,e'pn)}$ $\frac{{}^{4}\text{He}(e,e^{\prime}pp)}{{}^{4}\text{He}(e,e^{\prime}pn)}, R1 = \frac{{}^{4}\text{He}(e,e^{\prime}pn)}{{}^{4}\text{He}(e,e^{\prime}p)}$ $\frac{{}^{4}\text{He}(e,e'pn)}{{}^{4}\text{He}(e,e'p)}, R2 = \frac{{}^{4}\text{He}(e,e'pp)}{{}^{4}\text{He}(e,e'p)}$ $(R = \frac{\text{He}(e, e^- pp)}{^4 \text{He}(e, e'pn)}, R1 = \frac{\text{He}(e, e^- pn)}{^4 \text{He}(e, e'p)}, R2 = \frac{\text{He}(e, e^- pp)}{^4 \text{He}(e, e'p)}$ we assumed factorization and used the equations A.1-A.3 listed below:

$$
\frac{\#pp}{\#np} = \frac{T_L \cdot R - P_{\text{SCX}} \cdot \frac{\sigma_{en}}{\sigma_{ep}}}{2 \cdot T_L - 2 \cdot P_{\text{SCX}} \cdot \frac{\sigma_{en}}{\sigma_{ep}} \cdot R}
$$
(A.1)

$$
\frac{\#pp}{\#p} = \frac{R_1 \cdot \frac{\sigma_{en}}{\sigma_{ep}} \cdot \frac{P_{SCX}}{T_L} \cdot T_R - R_2 \cdot T_R}{2 \cdot (\frac{\sigma_{en}}{\sigma_{ep}} \cdot \frac{P_{SCX}}{T_L} \cdot T_R)^2 - 2 \cdot T_R^2}
$$
(A.2)

$$
\frac{\#np}{\#p} = \frac{R_2 - 2 \cdot \frac{\#pp}{\#p} \cdot T_R}{\frac{\sigma_{en}}{\sigma_{ep}} \cdot \frac{P_{SCX}}{T_L} \cdot T_R} \tag{A}
$$

where σ_{ep} (σ_{en}) is the cross section for electron scat-

The expression for missing mass is:

$$
M_{miss} = \sqrt{(\omega + M_A - E_f - E_{\text{rec}})^2 - (\vec{q} - \vec{p}_f - \vec{p}_{\text{rec}})^2}
$$
(A.4)

 M_A is the mass of ⁴He and the mass of the deuteron 386 when applying the $\Delta(1232)$ cut. E_f and p_f (E_{rec} and ³⁸⁸ proton (recoil nucleon). The missing energy is given by:

$$
E_{miss} = \omega - T_p - T_{rec} - T_B \tag{A.5}
$$

∗ ³⁹³ deceased

- 394 [1] R. Shneor et al., Phys. Rev. Lett. **99**, 072501 (2007).
- ³⁹⁵ [2] R. Subedi et al., Science 320, 1426 (2008).
- 396 [3] A. Tang et al., Phys. Rev. Lett. **90**, 042301 (2003).
- 397 [4] E. Piasetzky et al., Phys. Rev. Lett. $97, 162504$ (2006).
- ³⁹⁸ [5] L.L. Frankfurt and M.I. Strikman, Phys. Rep. 76, 215 $(1981).$
- [6] L.L. Frankfurt and M.I. Strikman, Phys. Rep. 160, 235 ⁴⁰¹ (1988).
- ⁴⁰² [7] J. Arrington, D. Higinbotham, G. Rosner, and M. ⁴⁰³ Sargsian, Prog. Part. Nucl. Phys. 67, 898 (2012).
- ⁴⁰⁴ [8] R. Schiavilla, R. B. Wiringa, S. C. Pieper, J. Carlson, ⁴⁰⁵ Phys. Rev. Lett. 98, 132501 (2007).
- 406 [9] R. B. Wiringa et al., Phys. Rev. C78, 021001 (2008).
- ⁴⁰⁷ [10] R. B. Wiringa, R. Schiavilla, S. Steven, C. Pieper, and ⁴⁰⁸ J. Carlson, http://arxiv.org/abs/arXiv:1309.3794
- ⁴⁰⁹ [11] J. Alcorn et al., Nucl. Instrum. Meth. In Physics Research ⁴¹⁰ A 522 (2004) 294.
- 411 [12] M. Mihovilovič et al., Nucl. Instrum. Meth. A 686, 20 412 (2012) .
- ⁴¹³ [13] D.B. Day et al., Phys. Rev. Lett. 59, 427 (1987).
- ⁴¹⁴ [14] P. Monaghan, Ph.D. Thesis, MIT (2008).
- ⁴¹⁵ [15] R. Subedi, Ph.D. Thesis, Kent State University (2007).
- ⁴¹⁶ [16] R. A. Cecil, B. D. Anderson and R. Madey, Nucl. Instr. ⁴¹⁷ and Meth 161, 439 (1979).
- ⁴¹⁸ [17] C. Ciofi degli and S. Simula, Phys. Rev. C53, 1689 ⁴¹⁹ (1996).
- ⁴²⁰ [18] J. Ryckebusch et al., Nucl. Phys. A728, 226 (2003); W. ⁴²¹ Cosyn et al., Phys. Rev. C77, 034602 (2008), and W. ⁴²² Cosyn and J. Ryckebusch, private communication.
- ⁴²³ [19] J. L. Friedes, H. Palevsky, R. L. Stearns , and R. J. Sut-⁴²⁴ ter, Phys. Rev. Lett. 15, 38 (1965).
- 425 [20] M. Alvioli *et al.*, Phys. Rev. $C85$, $021001(R)$ (2012), and ⁴²⁶ C. Ciofi degli Atti, H. Morita, private communication.
- $(A.3)$ ⁴²⁷ [21] S. Rock *et al.*, Phys. Rev. Lett. **49**, 11391142 (1982).