

Outline [General SRC]

- What is Nucleon-Nucleon Short Range Correlation(NN-SRC)?
- Why is NN-SRC interesting?
- What has been done?
- Our Unique Experiment Setting.
- What we have from Spring 2011 running period?
- Analysis Progress

- Experiment/Analysis Approaches
 - Inclusive X(e,e')
 - Double coincident X(e,e'p)
 - Triple coincident X(e,e'pN)
 - (new approach) Double coincident on the recoil partner X(e,e'N_recoil) (backward nucleon)

2

WHAT IS NUCLEON-NUCLEON SHORT RANGE CORRELATION(NN-SRC)?

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

What is Nucleon-Nucleon Short Range Correlation (NN-SRC)?

 the phenomena are when the wave functions of the two nucleons are strongly overlapping

< 1 fm

Jefferson Lab Thomas Jefferson National Accelerator Facility

WHY IS NN-SRC INTERESTING?

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

NN-SRC is interesting because

• The nuclear shell model can only predict 60% of the spectral function. Long range correlation can only provide a 20% contribution. The short range correlation is believed to contribute the remaining 20%.

efferson National Accelerator Facility

NN-SRC is interesting because

 The measurement of nucleon momentum distributions for various nuclei yields a similar high momentum tail. Along with the shell model, the existence of **NN-SRC** pairs within the nuclei is believed to explain this phenomenon.

NN-SRC is interesting because

 The study of the NN-SRCs within the nucleus also provides more insight into cold, dense nuclear matter such as that found in neutron stars.

-ermi Strong SR np interaction

< 1 fm

WHAT HAS BEEN DONE?

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Inclusive Measurement

CLAS A(e,e') data $x = \frac{Q^2}{1.5} > 1.5$ $Q^2 > 1.4 [GeV/c]^2$ The observed scaling means that the electrons probe the highmomentum nucleons in the 2N-SRC phase, and the scaling factors determine the pernucleon probability of the 2N-SRC phase in nuclei with A>3 relative to 3 He

efferson Lab

erson National Accelerator Facility

Result (e,e') and (e,e'p) and (e,e'pN) from E01-015

- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon shortrange correlations
 - 18% np pairs
 - 1% pp pairs
 - 1% nn pairs (from isospin symmetry)
- Less than 1% multi-nucleon correlations

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

OUR UNIQUE EXPERIMENT

Customized (e,e'pN) Measurement

A pair with "large" relative delectron nomentum between the nucleons and small center of mass momentum Relative to the Fermi-sea level ~250 MeV/c

High Q² to minimize MEC (1/Q²) and FSI
 x>1 to suppress isobar

contributions

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Scattered electron

Navaphon Muangma (Tai) "Hall A Meeting" June 2012 15

Jefferson Lab

omas Jefferson National Accelerator Facility

E07-006: ⁴He(e,e'pN)pn SRC

- ⁴He Target
 - Dense Nuclear Matter
 - Mean Feild & Exact
 Calculations
- P_m from 400 800 MeV
 3 Kinematic setting:
 500,650 & 750 MeV/c
- This reduce to two kinematic for (e,e'N_recoil) , BigBite is at 97 degree and 92 degree.

Navaphon Muangma (Tai) "Hall A Meeting"s **LMe 201**2

WHAT WE HAVE FROM OUR EXPERIMENT RUN-PERIOD?

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Production data

Production period	March 15 - April 13, 2011 May 11-12, 2011
Beam	4.46 GeV
Current	4 uA
Target	He4 20 cm loop
HRS, Left Arm (fixed):	20.3 deg, 3.6 GeV/c

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Production data

Kinematic Setting	Right HRS	BigBite	Cumulative Charge
Kin 1 : (p_miss = 500 MeV/c)	33.5 deg, 1.38 GeV/c	Angle: 97 deg Current: 518 A	1.6 C With 0.7 C has no major problems
Kin 2 : (p_miss = 650 MeV/c)	29.0 deg, 1.31 GeV/c	Angle: 97 deg Current: 518 A	1.67 C
Kin 3: (p_miss = 750 MeV/c	24.5 deg, 1.196 GeV/c	Angle: 92 deg Current: 518 A	2.98 C

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

ANALYSIS PROGRESS...

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

RR-10

Detector	What has been done?	Ongoing	What Not?	Problems/Co ncerns
Beam Line	- BPM - BCM			

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Detector	What has been done?	Ongoing	What Not?	Problems/Co ncerns
Left HRS : as electron spectrometer	 Vetex, theta,phi optics matrix Vdc t0 S2 scintilator Time Cherenkov Lead Glass 	- Momentum optics matrix	-	½ of Kinematics 1 has overflow of the Cerenkov., Only use the Lead Glass detector as Particle Identification (PID)

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Detector	What has been done?	Ongoing	What Not?	Problems/Co ncerns
Right HRS : as proton spectrometer	 Vdc t0 S2 & S1 scintillator s relative time 	 optics matrix S2 time by itself 	other detectors that not applicable for proton PID are not calibrated	

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Detector	What has been done?	Ongoing	What Not?	Problems/Co ncerns	
BigBite	 MWDC t0 calibration E & dE TDC & ADC calibration 	Optics	N/A		
Neutron	Extraction Code	e aiming for the r	maximum identii	fy neutron	
vaphon Muangma	(Tai) e 2012	III: .	Jefferso	n Lab	

LEFT HRS OPTIC CALIBRATION

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Vertex Calibration

- Vertex calibration with 13 carbon foils with 25 mm separation (300 mm total length)
- Achieve the resolution of 2.5 to 3.9 mm
- Show the possibility of using high density optic foils.

Jefferson Lab

omas Jefferson National Accelerator Facility

29

Vertex Reconstruction for 20 cm He4 target

Before Calibration

New Calibration

Vertex Reconstruction for 20 cm He4 target

Before Calibration (cut window)

New Calibration (cut window)

Vertex Reconstruction for 20 cm He4 target

New Calibration (cut window)

Thomas Jefferson National Accelerator Facility

"Hall A Meeting" June 2012

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Jefferson Lab Thomas Jefferson National Accelerator Facility

S2 Timing Calibration

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Pion Rejecter Calibration

Before Calibration

Energy Deposit in Pb Glass Detector

homas Jefferson National Accelerator Facility

"Hall A Meeting" June 2012

RIGH HRS OPTIC CALIBRATION

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Right Beta distribution

Beta calculation from beta = (pathlength)/(time*c)

between S1 and S2 Scintilators

< 1 fm

BIGBITE CALIBRATION

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

BigBite Calibration

 Calibration of the dE vs E energy deposit

Jefferson Lab

homas Jefferson National Accelerator Facility

41

Trigger planes Energy deposit with coincidence timing with **Energy deposit with taging** electron

homas Jefferson National Accelerator Facility

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

electron

BigBite Momentum from Analytical Model

With tagging electron

With coincidence timing with electron

homas Jefferson National Accelerator Facility

"Hall A Meeting" June 2012

< 1 fm

NEUTRON CALIBRATION

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Pedestals Alignment

Threshold determination

HAND calibration

* Pedestals alignment

* Time walk correction

* TDC alignment

* Threshold determination

Neutron detection efficiency We have d(e,e'pn) coincidence data at two kinematic settings : * Pmiss between 0.22 - 0.38 GeV/c * Pmiss between 0.38 – 0.52 GeV/c 35 Pmiss: 0.22 – 0.38 GeV/c % 30 Detection efficiency 25 Sum of the following 20 Plane 1 Plane 2 Plane 3 15 Plane 4 Plane 5 Plane 6 10 5 n 200 300 400 700 800 900 1000 500 600 Pmiss 0.38 – 0.52 GeV/c: Neutron Momentum [MeV/c] In progress 47 Navaphon Muangma (Tai) Jefferson Lab "Hall A Meeting" June 2012

omas Jefferson National Accelerator Facility

PRELIMINARY RESULTS

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Two Aimed Results

- 1. The triple coincident result:
 - Ratio (e,e'pp)/(e,e'p)
 - Ratio (e,e'pn)/(e,e'p)
 - Ratio (e,e'pp)/(e,e'pn)

- 2. the double coincident with backward (recoiled) nucleon.
 - Absolute cross-section (e,e'N_recoiled)
 - Ratio
 (e,e'p_recoiled)/(e,e'n_recoil
 ed)

49

Preliminary Triple Coincident

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

< 1 fm

Acknowledgements

51

Jefferson Lab

Jefferson National Accelerator Facility

• Spokespersons:

- Shalev Gilad (MIT)
- Douglas Higinbotham (JLab)
- Eli Piasetzky (Tel Aviv)
- Vincent Sulkosky (MIT)
- John Watson (Kent State)
- Postdocs:
 - Aidan Kelleher (MIT)
 - Charles Hanretty (Uva)
 - Ran Shneor (Tel Aviv)
- Graduate Students:
 - David Anez (Saint Mary's)
 - Or Chen (Tel Aviv)
 - Igor Korover (Tel Aviv)
 - Navaphon (Tai) Muangma (MIT)
 - Larry Selvy (Kent State)
 - Zhihong Ye (Uva)

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Electron PID using Lead Glass Detector

After calibration we have the clear separation of the electron from pion. At our kinematic setting for the Left HRS, we rarely have the contamination from the pion, i.e., 97% electron production rate.

Navaphon Muangma (Tai) "Hall A Meeting" June 2012

Current Status

- Electron
 PID
 - Separating electron from pion
- Two possible requirements for Election PID:
 - Create Signal above background in Cherenkov detector (NOT USE)
 - Deposit large amount of energy in (twolayer) lead glass where (Aprox.) E/p = 1.

