Cross Section He4(e,e'p_backward)X

```
6-fold: (d2\Omega_e) * (d\E'_e) (d2\Omega_p)*(d\p_p)
```

All cuts:

```
1.with T3, no edtm and l1a overflow 120<=l1a<=570
```

(id as cut_gen)

- 2. electron selection: at prl_sum_E/p>0.7 & single track
- 3. r-function >=0 (replace theta and phi cut)
- 4. target endcaps cut L- vertex: |rpl.z|<=0.075 m
- 5. track match with Trigger in BB

 $:\!BB.fh_id\!=\!=\!1\,\|$

- : (BB.Eph_id==1 && BB.tp.allhit_Edep>=1000.-1000*BB.tr.Bbmom_Ana)
- 6. With proton PID: (graphic cut E vs p) && BB.tr.tg_th>-0.3 (polarity cut)
- 7. Add coincidence vertex: abs(rpl.z-BB.tr.tg_y*1.12+0.007)<=0.04 m
- 8. Add coincidence time cut: at +/- 3.5 ns

	Correction due to cut
Single track in LHRS	Reduce data to 99.4% from all track

Only one ¼ of the data

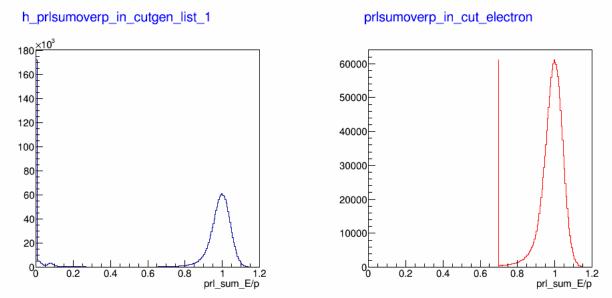


Figure C_1: before/after Electron PID (cut_2: prl_sum_E/p >=0.7) in cut #1

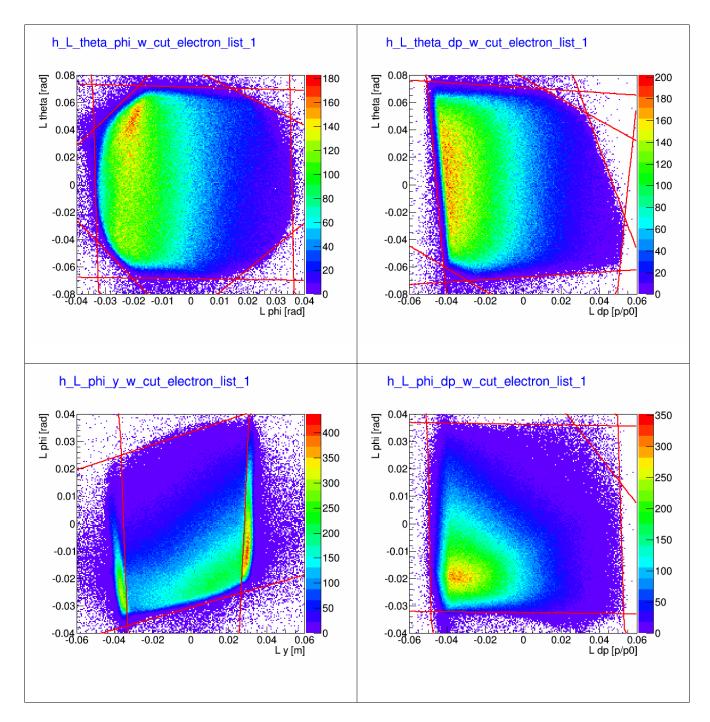


Figure C_2.1: theta, phi, dp, y parameters to obtain r-function. r-function is $\geq = 0$ when the data are within all the polygons

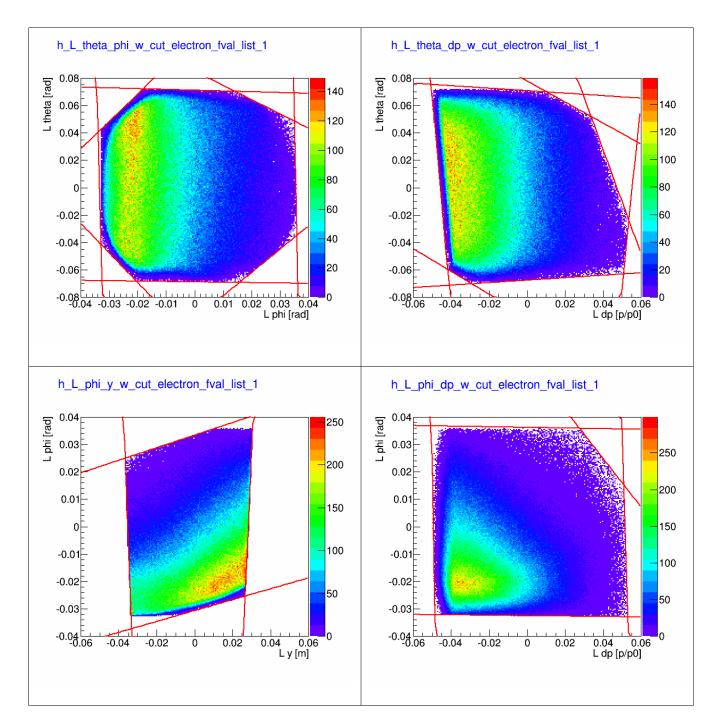


Figure C_2.2: theta,phi,dp,y with rfval>=0

Figurer C_2.3: before/after r-function cut (rfval>=0) in cut #1

Figure C_3: before/after vertex cut (|rpl.z|<=7.5 cm) in cut #1,#2 & #3

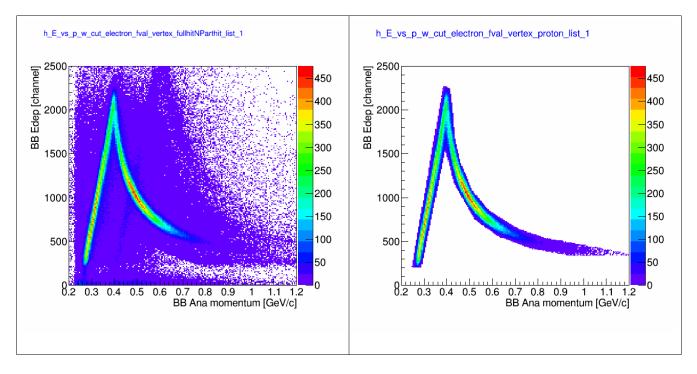


Figure C_4: before/after proton PID in cut #1,#2,#3,#4 & #5 Left: fullhit N parthit Right: with protonPID

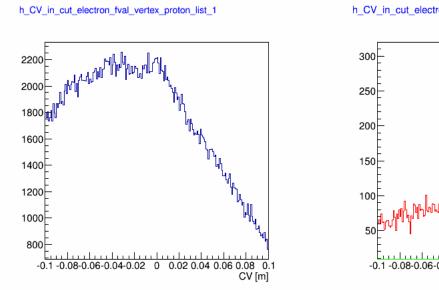
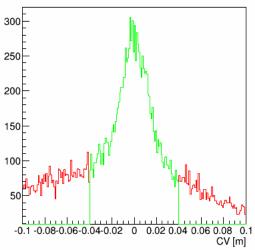



Figure C_5: coincidence vertex Left: CV in cut #1,#2,#3,#4 & #5, Right: CV before/after in cut #1,#2,#3,#4 & #5,#6

h_CV_in_cut_electron_fval_vertex_protonCT

Consider the Raw cross section

N_pass_cut/(dOmega_e*dE_e*dOmega_p*dmomentum_p)

 $N_electron_Target_area_number_density$

where

=

Target_area_number_density = (Target density)*(target Length)*(N_A)/(A_z) N_electron = (Total charge)/(Electron charge)

N_electron_Target_area_number_density = (Target density)*(target Length)*(N_A)/(A_z)*(Total charge)/(Electron charge)

N_A = 6.02e23 atom/mol, A_z = 4 g/mol, 1 barn = 1e24 cm^2 electron charge :1.6e-19 C/electron

Calculation Table

	Parameter	Unit	Kin 12 value
1.	Target density d_loss at 4 uA = 1.2%	g/cm^3	33.834 * 10^-3
2.	Target Length	cm	15
3.	Total Charge	С	2.27381
4.	N_pass_cut from CT (all cut are listed in the first page)	entries	(peak)-(bg) = 42028(+/- 0.49%) -16023 (+/-0.8%) =26005 (+/- 0.8%) entries with original cuts before the propose cut to get access to dOmega_e and dOmega_p
5	Target area number density= (Target density)*(target Length)*(N_A)/(A_z)	Atom/ cm^2 or atom/ba rn	7.638e22 atom/cm^2 7.638e-2 atom/barn
6	N_electron= (Total charge)/ (Electron charge)	electron	1.421e+19
7	N_electron_target_area _number_density	electron *atom/b arn	1.085e+18

** using the background from the the fit and then scale the background distribution

CTpathcorr_w_ePID_fval_vertex_pPID_CV_kin_12

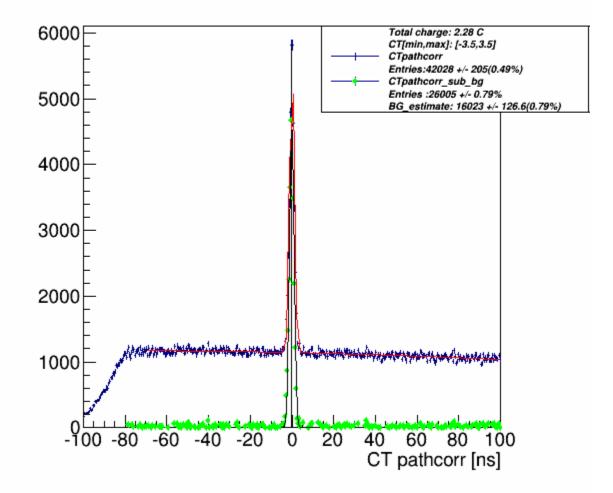


Figure B_1 : CT pathcorr with all cuts: e-pid,fval>=0,|vertex|<=7.5 cm, p-pid, coincidence vertex cut

CTpathcorr_w_ePID_fval_vertex_pPID_CV_kin_12

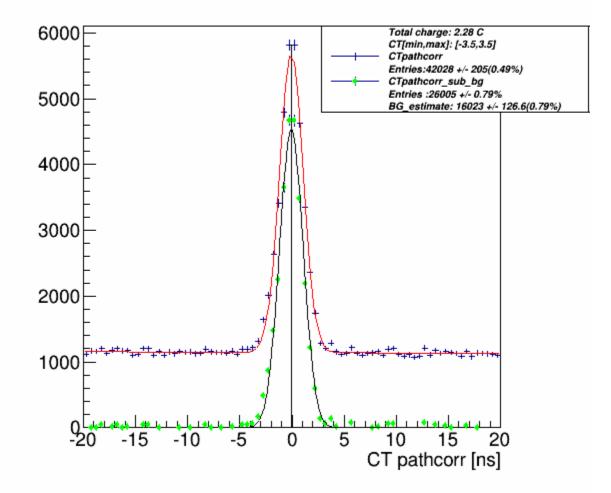


Figure B_2 :(Zoom) CT pathcorr with all cuts: e-pid,fval>=0,|vertex|<=7.5 cm, p-pid, coincidence vertex cut

But the previous cut did not give a well define dOmega_e or dOmega_p. So I do need to make additional cut in that respected.

Now to get the cross section I need to get the result with all the cuts and all data.

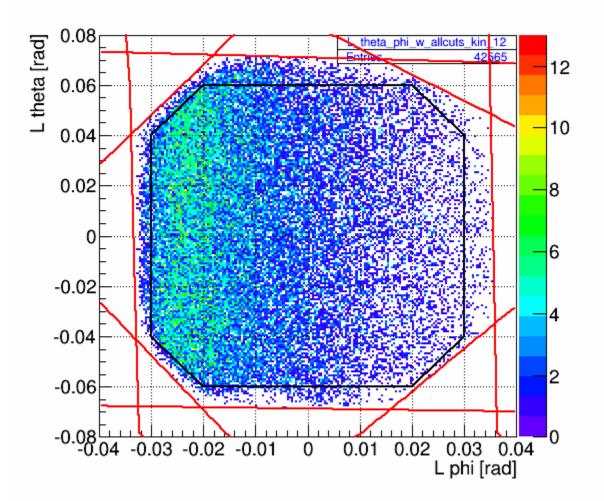


Figure A_1.1: d_theta*d_phi of electron to get dOmega_e with all the cuts all red-line cuts come from the r-function. This clearly shown that the area get smaller with the other cuts in BigBite. The new Cut that I impose are in **black-line**.

Note: d^2 Omega_e = sin(theta_0)*d_theta*d_phi

Add 1D for theta and phi*

h_L_theta_phi_w_allcuts_list_12

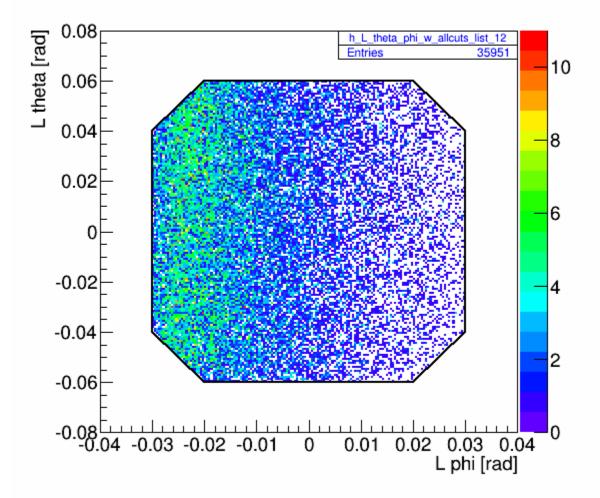


Figure A_1.2: d_theta*d_phi of electron to get dOmega_e

where

dtheta*dphi = box-4*conner =(theta: 2*0.06)*(phi:2*0.03) - 4*1/2*(theta:0.06-0.04)*(phi:0.03-0.02) =7.2e-3 - 0.4e-3 rad^2 =6.8e-3 rad^2

so dOmega_electron

= sin(20.3)*dtheta*dphi =2.359e-3 srad.

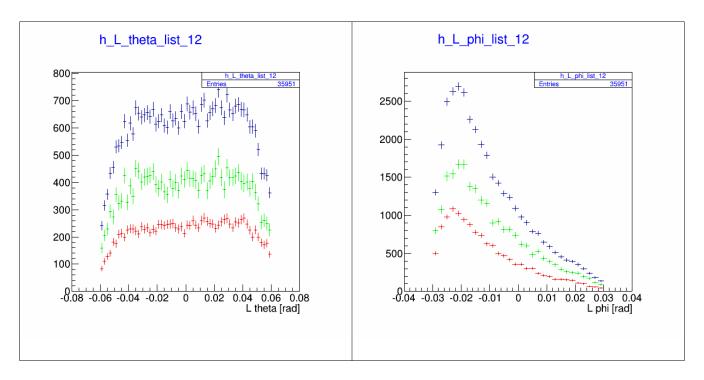


Figure A_1.3: L theta, L phi distribution with the cut in theta vs phi

h_electron_Energy_range_list_12

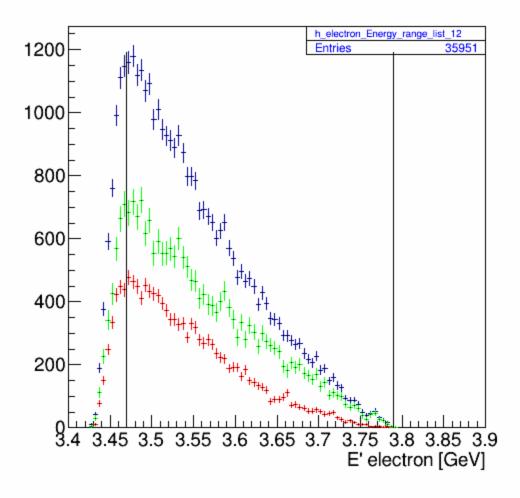


Figure A_2. dE'_e with the cut in d_theta*d_phi in previous page Option cuts:

The cut on the left should cut out the acceptance dependent.: 3.47 GeV The cut on the right side is kept as much as possible to get the high momentum tail: 3.79 GeV

dE'_e = 0.32 GeV

h_p_mwdc_w_allcuts_list_12

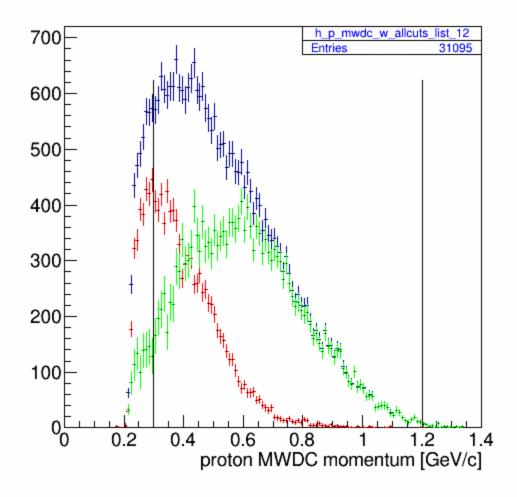


Figure A_3: d_momentum_p after d_theta*d_phi and dE'_e.

The cut on the left should cut out the acceptance dependent.: 0.3 GeV/c The cut on the right side is kept as much as possible to get the high momentum tail: 1.2 GeV/c h_BB_theta_phi_w_allcuts_list_12

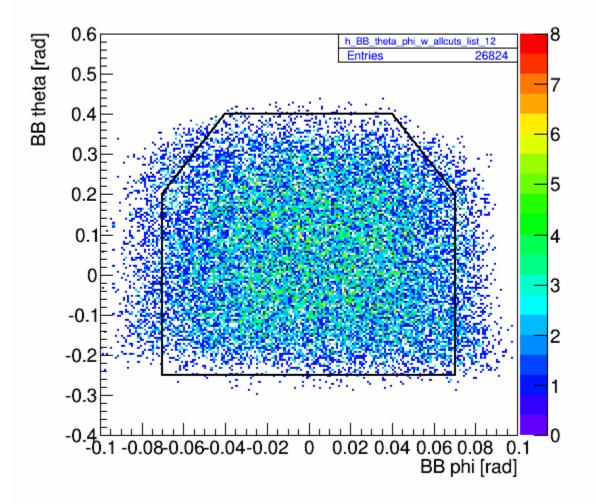


Figure A_4.1: dtheta_p*dphi_p making additional cut to get dOmega_p

the cut on negative theta: make sure not cut the high momentum from theta

h_BB_theta_phi_w_allcuts_aftercut_list_12

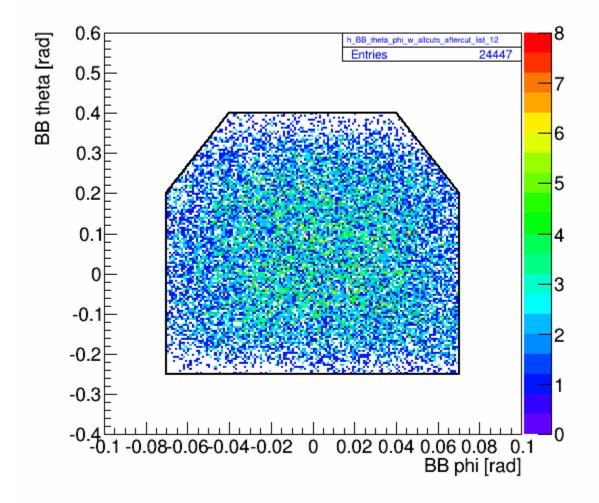
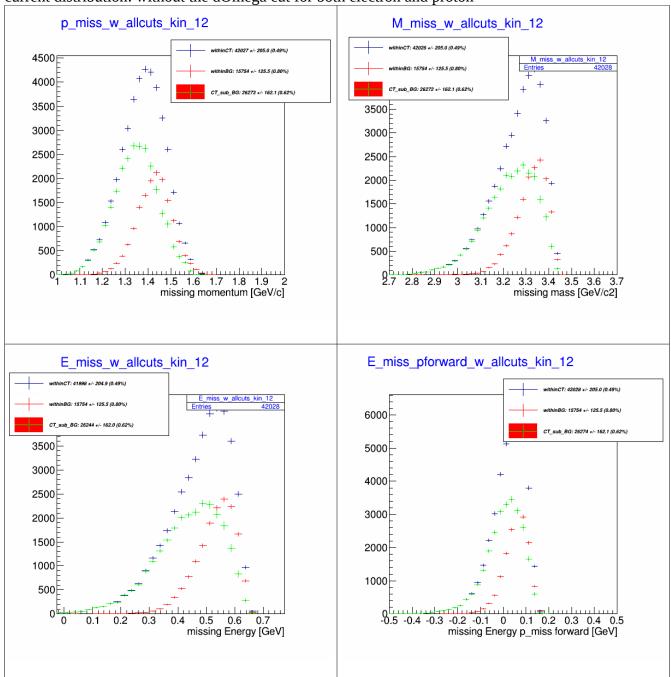



Figure A_4.2: dtheta_p*dphi_p after cut.

With the additional cut the number of entries does change.

8	sin(L_angle) cos(L_angle)		Sin(20.3) = 0.3469 Cos(20.3) = 0.9379
9.	d_E'_electron	GeV	3.47 to 3.79 GeV
10.	sin(BB_angle) cos(BB_angle)		Sin(97) = 0.9925 cos(97) = 0.1219
11.	d_momentum_proton	GeV/c	from 0.3 to 1.2 GeV/c

12	dOmega_electron =sin(L_angle)*d_theta *d_phi	srad	Within the propose cut: dtheta*dphi = box-4*conner (theta: 2*0.06)*(phi:2*0.03) -4*1/2*(theta:0.06-0.04)*(phi:0.03-0.02) =7.2e-3 - 0.4e-3 rad^2 =6.8e-3 rad^2 dOmega_electron = sin(20.3)*dtheta*dphi =2.359e-3 srad.
13	dOmega_proton =sin(BB_angle)*d_th eta*d_phi	srad	Within the propose cut: dtheta*dphi = box-2*conner =(0.4 + 0.2)*(2*0.08) - 2*1/2*(0.4-0.2)*(0.08-0.04) =8.8e-2 rad^2 dOmega_proton = sin(97)*dtheta*dphi = 8.74e-2 srad.

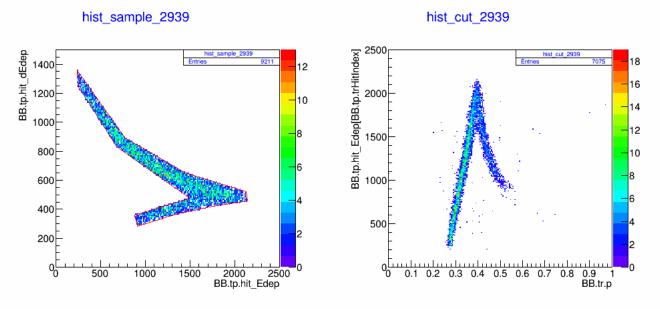
current distribution: without the dOmega cut for both electron and proton

2. other parameter needed.

Identify "flat" region for BB acceptance:XXXX
 Identify "flat" region for LHRS acceptance:XXX
 make sure that with all the cut the change in p-distribution not change
 electronic dead-time factor***

check the computer deadtime this is not much differ than the online one

3. already have:


3.1 BB tracking efficiency:

Eff: 79.2% before the turning point in dE vs E (low p)

Eff: 72.2% after the turning point in dE vs E (high p)

over all Eff: 77.8%

** can use either but then add the uncertainty to explain

The **sample data** is within the rough coincidence time<u>without</u> BB-path-length correction (better than no cut on CT at all). Scan through all the hit for which dE and E plane data matched. Only keep the data with all the hit has information within the proton PID dE_vs_E cut.

The **cut data** has additional requirement. The data must have track. The track can also be match to the fullhit data. The data also pass graphic E vs p proton PID.

Sensitivity***---> into the uncertainty not the correcting factor.
3.2 Effect/correction factor for making the electron PID??
3.2 Effect/correction factor for making the proton PID??
make sure not rejecting the proton.
3.3 correction factor for requiring a single track in LHRS
Eff: 99.4% has a single track