

Figure 1: Omega vs y-scaling: variation at the separation of proton to quasi-elastic & Delta-pion at Omega = 0.84 (+/- 0.03) - 1.8*y

wycut1: (blue):	Omega = 0.84 − 1.8*y
wycut2: (pink):	Omega = 0.84 (+0.03) - 1.8*y
wycut3: (black):	Omega = 0.84 (- 0.03) − 1.8*y

P_detected_all__kin_12_sub_bg

Figure 2.1: detected proton-momentum at target after background subtraction.

wycut1: (blue):	Omega = 0.84 – 1.8*y
wycut2: (pink):	Omega = 0.84 (+0.03) − 1.8*y
wycut3: (black):	Omega = 0.84 (-0.03) - 1.8*y

Figure 2.2: The wycut ratio of detected proton-momentum at target after background subtraction

wycut2 to wycut1: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y
wycut3 to wycut1: (black):	Omega = 0.84 (- 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y

The Effect on the choice of wycut is ~10% differ in momentum bin

p_miss_all__kin_12_sub_bg

Figure 3.1: [*p_miss*] *at target after background subtraction.*

wycut1: (blue):	Omega = 0.84 – 1.8*y
wycut2: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y
wycut3: (black):	Omega = 0.84 (- 0.03) − 1.8*y

p_miss_wycut2_to_wycut1_ratio

Figure 3.2: The wycut ratio of [p_miss] at target after background subtraction

wycut2 to wycut1: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y
wycut3 to wycut1: (black):	Omega = 0.84 (-0.03) − 1.8*y	to	Omega = 0.84 - 1.8*y

The choice of omega-y cut effect more in the high missing momentum.

Figure 4.1: [*E_miss*] *at target after background subtraction.*

wycut1: (blue):	Omega = 0.84 – 1.8*y
wycut2: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y
wycut3: (black):	Omega = 0.84 (- 0.03) − 1.8*y

E_miss_wycut2_to_wycut1_ratio

Figure 4.2: The wycut ratio of [E_miss] at target after background subtraction

wycut2 to wycut1: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y
wycut3 to wycut1: (black):	Omega = 0.84 (-0.03) − 1.8*y	to	Omega = 0.84 - 1.8*y

The high E_miss has more change with the choice of omega-y cut

x_bj_all__kin_12_sub_bg

Figure 5.1: [*x*_*bj*] *at target after background subtraction.*

wycut1: (blue):	Omega = 0.84 – 1.8*y
wycut2: (pink):	Omega = 0.84 (+0.03) - 1.8*y
wycut3: (black):	Omega = 0.84 (- 0.03) − 1.8*y

Figure 5.2: The wycut ratio of [*x*_*bj*] *at target after background subtraction*

wycut2 to wycut1: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y
wycut3 to wycut1: (black):	Omega = 0.84 (-0.03) – 1.8*y	to	Omega = 0.84 − 1.8*y

Q2_all__kin_12_sub_bg

Figure 6.1: [Q2] *at target after background subtraction.*

wycut1: (blue):	Omega = 0.84 – 1.8*y
wycut2: (pink):	Omega = 0.84 (+0.03) − 1.8*y
wycut3: (black):	Omega = 0.84 (− 0.03) − 1.8*y

Q2_wycut2_to_wycut1_ratio

Figure 6.2: The wycut ratio of [Q2] at target after background subtraction

wycut2 to wycut1: (pink):	Omega = 0.84 (+ 0.03) − 1.8*y	to	Omega = 0.84 − 1.8*y
wycut3 to wycut1: (black):	Omega = 0.84 (-0.03) – 1.8*y	to	Omega = 0.84 - 1.8*y

x_bj_all__kin_12_sub_bg

Figure 7.1: x_bj distribution with blue: wycut1 green: wycut1 with x_bj>1.1 yellow: wycut1 with Q2>1.8

Q2_all__kin_12_sub_bg

Figure 7.2 Q2 blue: wycut1 green: wycut1 with x_bj>1.1 yellow: wycut1 with Q2>1.8

Figure 7.3-5 p_detected,E_miss,p_miss