Data Check for He4 Cross section: Separation of Delta/pion and/or quasi-elastic proton <u>production.</u>

With no restriction on the nn-pair p_cm. The M_missing calculated from E_residual with conservation of energy. This contain any excitation and other unobserved energies in the residual system.

Before Reaction	After Reaction
q(w, q)	$p(E_p,p)$
He(M_A,0)	B(E_B,p_B = q-p) :residual system

1. $p_miss = q - p = p_B$

2. E_miss = excitation energy of the whole residual system.

	E_miss	$= w - KE_p - KE_B$
conservation		$= E_p + E_B$ = m_p + KE_p + M_B* + KE_B
SO	E_miss	$= w - KE_p - KE_B$ $= m_p - M_A + M_B*$
SO	E_B	$= w + M_A - E_p$
	M_B*	= sqrt(E_B**2 - p_B **2) = sqrt(E_B**2- p_miss **2) = sqrt[(w + M_A - E_p)**2- p_miss **2]
	E_miss	= w - KE_p - KE_B = m_p - M_A + M_B* = m_p - M_A + sqrt[(w + M_A - E_p)**2- p_miss **2]

E_miss_data_kin_12

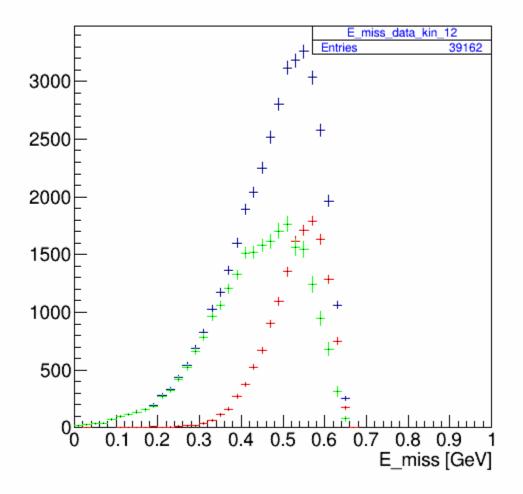
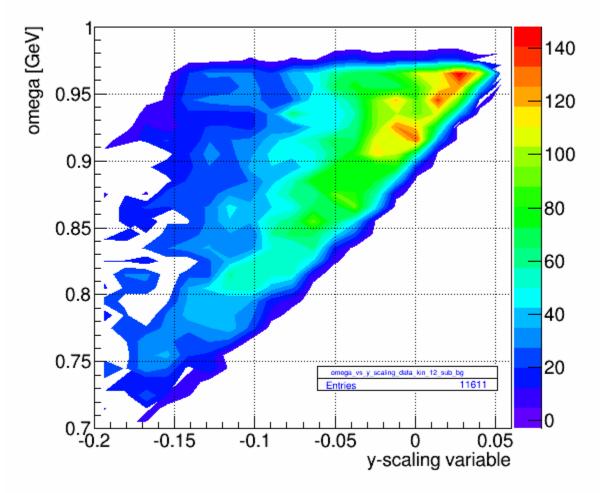


Figure 1: E_miss distribution blue: proton in CT cut-dependent red: proton in Background CT green: proton in CT with background subtracted

$$E_miss = w - KE_p - KE_B = m_p - M_A + M_B^* = m_p - M_A + sqrt[(w + M_A - E_p)^{*2}-p_miss^{*2}]$$

What E_miss telling us??

The definition suggest it is the excitation energy of the residual system (nnp).


Consider the information from Peter's thesis. His missing energy has two peaks merging together where he **separated the data for the non-detected N in the pair as proton or delta/pion** using w and y-scaling.

The y-scaling is the momentum of the struck nucleon which absorbed the virtual photon. (y<0 is equivalent to $x_Bj>1$):

y(q,w) = $[(M_A+w)*sqrt(Lamda^2 - M_(A-1)^2*W^2) - qLamda]/W^2$

where

Lamda = $(M_(A-1)^2 - M_A^2 + W^2)^2$ W = sqrt($(M_A+w)^2 - q^2$)

omega_vs_y_scaling_data_kin_12_sub_bg

Figure 2: Omega vs y of proton in CT after background subtracted. The distribution of the omega vs y is shown. In my case where the backward proton momentum is between 300-1200 MeV/c. It is not clear where to make the cut to separate the pion and delta production and the proton. From Peter's thesis. The missing momentum about 400-650 MeV/c (translate to detected momentum in the backward angle).

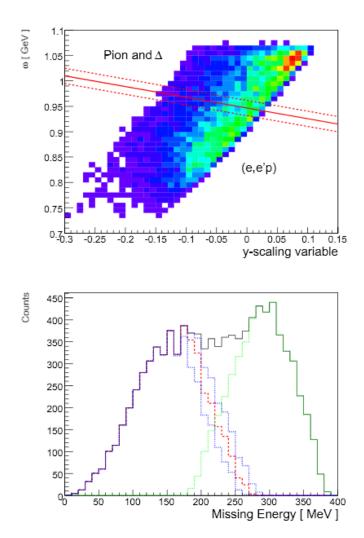


Figure 5-11: Upper Plot: Two-dimensional distribution of events in kinematic III of ω versus y-scaling variable, with empirical cut selected; dotted lines give limits of the systematic check of this cut on the final cross-section result. Lower Plot: Full missing energy distribution for kinematic III; dashed line (red online) shows the distribution after the ω -y cut is applied; dotted line (green online) shows the data rejected by this cut. The two dotted (blue) lines around the dashed (red) line show the effect of the upper and lower limits of the $\omega - y$ cut and are used to evaluate the systematic error associated with this cut.

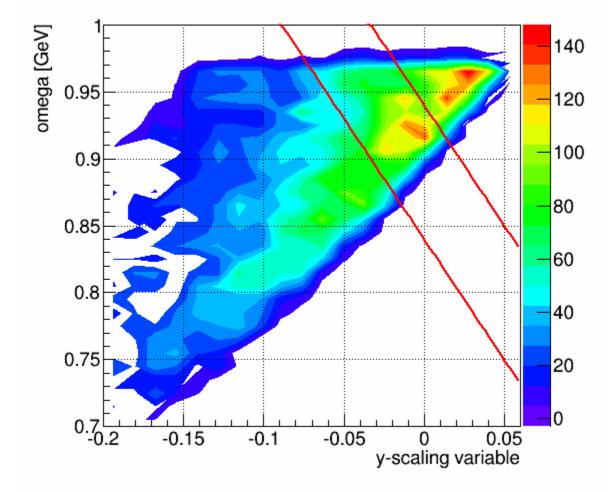


Figure 3: Omega vs y after background subtracted with the section line cuts.Section 1:Omega $\geq = 0.94 - 1.8*y$ Section 2:Omega $\leq = 0.94 - 1.8*y$ Section 3:Omega $\leq = 0.84 - 1.8*y$

x_bj_middle_cut_option_3_kin_12

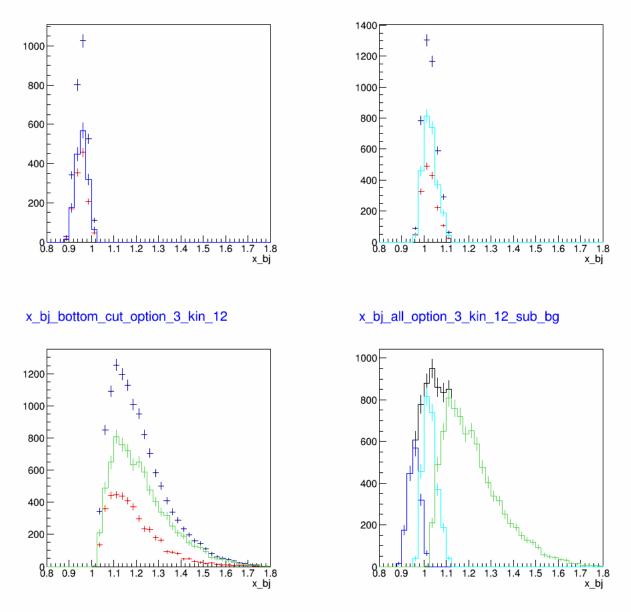


Figure 4: x_bj distribution for all three sectionTop Left:top cut : Omega >= 0.94 - 1.8*yTop Right:middle cut : Omega <= 0.94 - 1.8*y&Bottom Left:lower cut : Omega <= 0.84 - 1.8*yBottom Right:Overlap of all x_bj after background subtracted for each section.

This suggest the data in section 1 (top left) are for Delta/pion production, the data in section 2 (top right) are for the quasi-elastic proton, and the data in section 3 (bottom left) are the candidate for the proton/neutron that got knocked out from Np-pair.

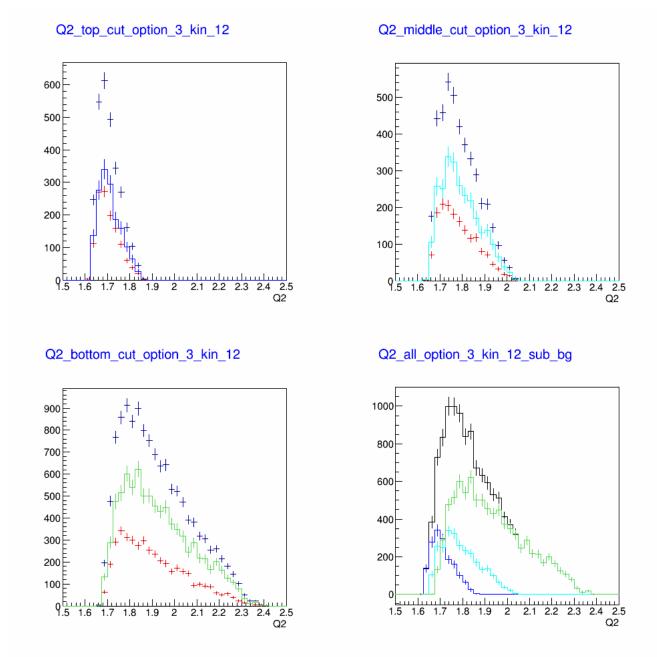


Figure 5: Q2 distribution for all three sectionTop Left:top cut : Omega >= 0.94 - 1.8*yTop Right:middle cut : Omega <= 0.94 - 1.8*y&Bottom Left:lower cut : Omega <= 0.84 - 1.8*yBottom Right:Overlap of all Q2 after background subtracted for each section.

E_miss_top_cut_option_3_kin_12

1800 E ++1600 1000 1400 800 1200 1000 600 800 400 600 400 200 200 00 0 0.1 0.2 0.3 0.6 0.7 0.4 0 0.7 0.1 0.2 0.3 0.4 0.6 0.5 E miss [GeV] E_miss [GeV] E_miss_bottom_cut_option_3_kin_12 E_miss_all_option_3_kin_12_sub_bg 3000 2400 2200 2500 2000 1800 2000 1600 1400 1500 1200 1000 1000 800 600 500 400 200 0₀ 00 5 0.6 0.7 E_miss [GeV] 5 0.6 0.7 E_miss [GeV] 0.2 0.3 0.3 0.1 0.4 0.5 0.1 0.2 0.4 0.5

Figure 6: E_{miss} distribution for all three sectionTop Left:top cut : Omega >= 0.94 - 1.8*yTop Right:middle cut : Omega <= 0.94 - 1.8*y & Omega >= 0.84 - 1.8*yBottom Left:lower cut : Omega <= 0.84 - 1.8*yBottom Right:Overlap of all E_{miss} after background subtracted for each section.

The two section (top left and top right) eliminate most of the higher missing Energy. We are not able to see the clear separation as what you can see in Peter's case.

E_miss_middle_cut_option_3_kin_12

P_miss_top_cut_option_3_kin_12

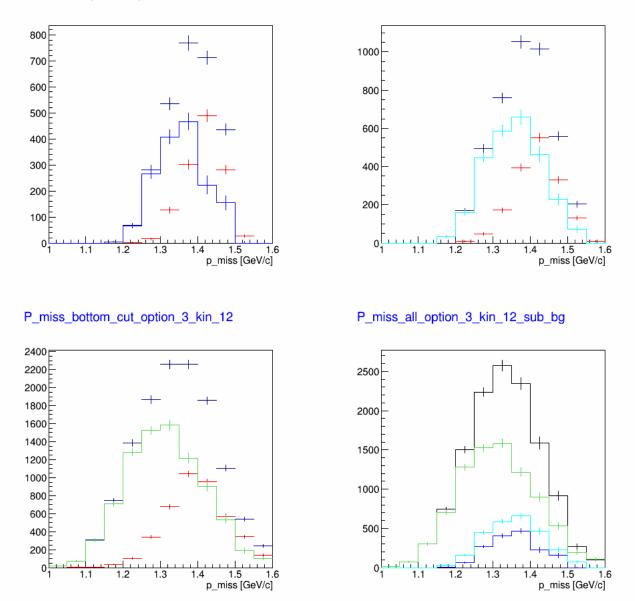


Figure 7: p_miss distribution for all three sectionTop Left:top cut : Omega >= 0.94 - 1.8*yTop Right:middle cut : Omega <= 0.94 - 1.8*y & Omega >= 0.84 - 1.8*yBottom Left:lower cut : Omega <= 0.84 - 1.8*yBottom Right:Overlap of all p_miss after background subtracted for each section.

P_miss_middle_cut_option_3_kin_12

P_detected_top_cut_option_3_kin_12

P_detected_middle_cut_option_3_kin_12

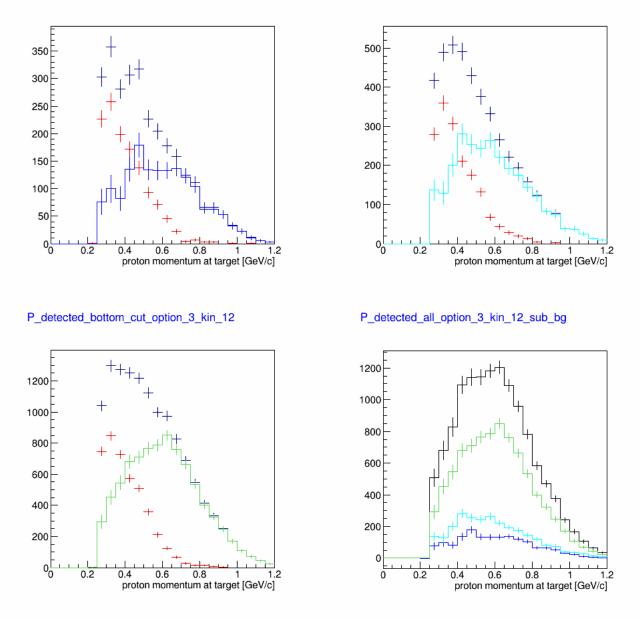


Figure 8: $p_detected$ at target distribution for all three sectionTop Left:top cut : Omega >= 0.94 - 1.8*yTop Right:middle cut : Omega <= 0.94 - 1.8*y & Omega >= 0.84 - 1.8*yBottom Left:lower cut : Omega <= 0.84 - 1.8*yBottom Right:Overlap of all $p_detected$ after background subtracted for each section.

The uncertainty of the cut will later be studied.