Deuteron Quasi-Elastic Run: 2035

INFORMATION target: LD2 4 cm LD2 density: 0.16756 g/cm^3 at T 22 K & p = 30 psi

beam E0 1.16 GeV current 10.2 uA $L_p0 = 1.055$ $L_theta0 = 20.5$ prescale \rightarrow ps1=0 ps2=0 **ps3=280** ps4=0 ps5=0 ps6=170 ps7=0 ps8=0 **Dead time 14.02% BCM charges 0.006384 (C)**

Quasi-Elastic Identification from D(e,e') invariant mass (W).

Let Μ = electron mass target Mass (input) MA = f_A = (0_vector, M) \rightarrow Target At rest f_Q f_P1 =(q_vector, omega) f_P0 -= f_A1 = f_A + f_Q = (q_vector, MA+omega) The invariant mass^2: W^2 = A1^2 = MA^2 + 2*MA*omega+ omega^2 |q3m|^2 (*) -= $MA^2 +$ 2*MA*omega-Q^2 (*) For elastic: $2*MA*omega - Q^2= 0$ (**) $\dot{W^2} = MA^2$ which give But for quasi-elastic W[^]2 is not at MA[^]2

In our case, since we are NOT at the elastic scattering from deuteron, so the W2 is not exactly at the M_deutron 2 .

h_W2

Figure 1.1: Invariant mass ^2 (W2) redline indicate the deuteron mass^2

h_W2_2Mw_Q2

Figure 1.2 invariant mass² (W2) vs 2*M*omega-Q² (the quantity that would be zero for elastic). If the target is proton 2*MA*w-Q2 = 2*MA*w*(1-X_bj)

The invariant mass distribution shows that we are not at the elastic scattering from deuteron.

Kinematic coverage in term of Q^2 and $\left|q\right|$

Figure 2 Q2 vs |q|

h_Q2_vs_q3m

Data Selection in BigBite

- 1. has track in BigBite BB.tr.n>=1
- 2. has hit in either E or dE or both
- 3. track data match to hit data either fullhit (has both E and dE) or parthit(either E or dE)

5. Three option for Proton PID using graphical cut after CT minimum cut

Physics of D(e,e'p)B

1. $p_{miss} = sqrt((\sqrt{g_xi - p_xi})^2)$ 2. $E_{recoil} = MA + omega - sqrt(p_{proton}^2 + mp^2)$ 3. $M_{miss} = sqrt(E_{recoil}^2 - p_{miss}^2)$

Below data is "NOT using proton PID", but remove unknown section BB_p <0.3 GeV/c

Figure 5.1/.2/.3 missing momentum, recoil_energy, and missing mass respectively. Additional restriction with BB_p>=300 MeV/c Blue line: all data red line: for fullhit data green line: for parthit data in E

The missing mass peak at 0.928 GeV/c² which is 0.012 GeV/c² lower than the deuteron mass. This might be from the non-corrected momentum reconstruction with energy lose.

E_vs_p_withTrackMatch

dE_vs_E_withTrackMatch

Figure 6.1/6.2/6.3 trying to identify what the strip about momentum at 0.250 GeV/c in Fullhit data

dE_vs_p_withTrackMatch

