

A1: proton CT pathcorr after correction. Sigma = 1.181 ns

A2: proton CT pathcorr after correction. Sigma = 1.181 ns: Making cut for proton within CT at +/-3.5 ns about 0 Making cut for background proton at -13.5 to -10 ns section and 6.5 to 10 ns.

Following are the parameter with <mark>Blue</mark> dot for <mark>proton within CT</mark>, **Red** sqare for <mark>background proton</mark>, and green diamond for the <mark>subtraction</mark> of the CT proton from background proton.

W2_sum

A3: W2 from (e,e')

** check what wrong with this W2 seems to be too high

A4: xbj = Q2/(2Mp)

A5: Q2

A6: |q|

A7: y scaling = ((He4_mass+omega)*sqrt(lamda*lamda-He3_mass*He3_mass*W2)-lamda*q3m)/W2,

where lamda = (He3_mass*He3_mass-proton_mass*proton_mass+W2)/2.;

A8: omega = E – E'

A9: Analytical momentum at MWDC

A10: proton momentum correction at MWDC

A11: proton momentum at target

A12: proton Energy = sqrt(M**2+p**2)

A13: proton Kinetic Energy: E - m_p

A14: Missing Momentum = sqrt(\sum[(q_i-p_i)**2])

**checking to compare whether Igor has RHRS momentum distribution to compare to this plots.

A15: Missing momentum x,y,z

A16: Missing momentum angle

A17: recoil Energy: (M_he4) + (omega) - (proton energy)

A18: Missing Mass: sqrt(E_recoil**2-p_miss**2)

A19: KE_recoil = (E_recoil) – (M_miss)

A20: Missing Energy: (omega)-(KE_proton)-(KE_recoil)

A21: Assuming all p_miss is for the forward proton: the KE_forward proton is as shown. E_forward =sqrt(M**2+p_miss**2) the KE_forward = E_forward - M

A22: diff_E_miss_KE_forward_proton = E_miss - KE_forward_proton + KE_recoil = omega -KE_proton -KE_forward_proton = E_miss** assuming all p_miss go to forward proton.

A23: track x location on E_plane

** check the dip of the background around 0.7 and peak ar about 0.3-0.4

2D figures for variation of pairing to check possible cuts.

A24: E vs p

A25: MWDC momentum vs tg_theta to check the polarity ** this need to be implement because it seem to have effect in the next page.

A26: trx vs MWDC mometum

******problem at trx = 0.2 maybe the bar problem.

A27: Missing momentum vs recoil Energy

A28: Missing momentum vs Missing E

A29: Missing momentum vs Missing Mass

A30: P_miss With Omega

A31: P_miss with Q2

A32: p_miss with |q|

A33: P_miss with xbj

A34: P_miss vs W2

A35: P_miss vs y-scaling

A36: x vs E_miss

A37 x vs missing_mass

A38: Missing momentum vs y scaling

A39: xbj vs Recoil Energy

A40: xbj vs omega

A41: xbj vs Q2

CT_pathcorr_vs_trx_sum

A42: Ctpathcorr vs Ebar location

CT_pathcorr_vs_p_sum

A43: CT pathcorr vs momentum at MWDC