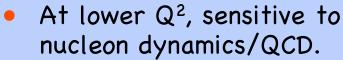
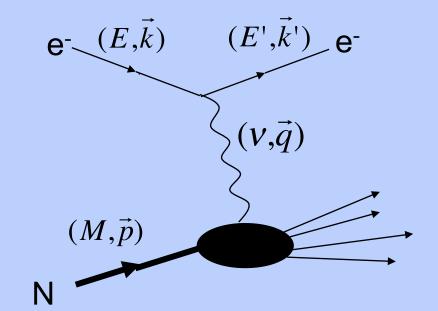
### Neutron Spin Structure Functions and Moments at Low Q<sup>2</sup>



Marciana Marina, Isola d'Elba, Italy.

Todd Averett College of William and Mary Williamsburg, VA USA

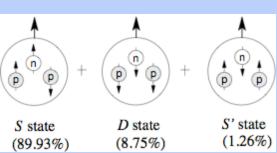

on behalf of the Jefferson Lab Hall A and Polarized <sup>3</sup>He Collaborations


June 23, 2008

Elba-X

#### Polarized Inclusive Electron Scattering

- Scattering longitudinally polarized electrons from polarized nuclei.
- E = 1-5.7 GeV
- Virtual photon probe of quark/nuclear structure.
- At large Q<sup>2</sup>, interaction dominated by scattering by single, asymptotically-free quark.





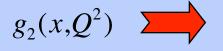

 $Q^{2} = \vec{q} \cdot \vec{q} - v^{2} - (\text{four - momentum transfer squared})$  $x = \frac{Q^{2}}{2Mv} \qquad (\text{fractional momentum of struck quark})$ 

# Experimental Method

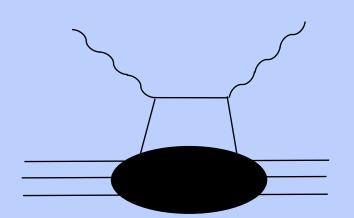
- Inclusive polarized electron scattering from a <sup>3</sup>He target polarized longitudinal or transverse to electron helicity.
- Polarized <sup>3</sup>He --> polarized neutron target.
- <sup>3</sup>He ground state:



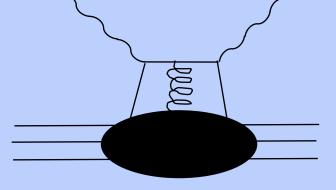
 Measure e-N asymmetries and un-polarized crosssections--extract polarized cross-section differences:


$$\Delta \sigma_{\parallel}(v,Q^2) = A_{\parallel}\sigma_0 \qquad \Delta \sigma_{\perp}(v,Q^2) = A_{\perp}\sigma_0$$

#### Spin structure functions


$$g_1(v,Q^2), g_2(v,Q^2) \propto \Delta \sigma_{\parallel}, \Delta \sigma_{\perp}$$

$$g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x,Q^2)$$

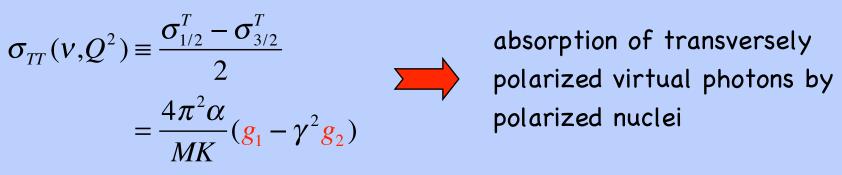

At large Q<sup>2</sup>, related to polarized quark PDF's. Non-pQCD higher-twist contributions suppressed by powers of 1/Q.



Asymptotically-free AND higher-twist contributions enter at same order for any  $Q^2$ .



leading twist




twist-3

June 23, 2008

Elba-X

# Virtual Photon-Nucleon Polarized **Cross Sections**



K is the virtual photon flux—convention dependent

$$h = -1$$

$$S = -1/2$$

$$\sigma_{3/2}$$

$$f_{1/2}$$

$$h = +1$$

$$S = -1/2$$

June 23, 2008

Elba-X

Longitudinal-transverse interference cross-section

$$\sigma_{LT}(v,Q^2) = \frac{4\pi^2 \alpha}{MK} (g_1 + g_2)$$

• Note 
$$\Delta \sigma^{eN}_{_{ll,\perp}} \propto \sigma_{TT}, \sigma_{LT}$$

- If we assume  $\Delta$  resonance is purely transverse,  $\sigma_{LT} \approx 0 \implies g_2 \approx -g_1$
- At large Q<sup>2</sup>, this is also expected in DIS region from the Wandzura-Wilczek relation, derived using the OPE:

$$g_2(x,Q^2) = -g_1(x,Q^2) + \int_x^1 dy \, \frac{g_1(y,Q^2)}{y} + \overline{g}_2(x,Q^2)$$

Todd Averett, College of William and Mary

June 23, 2008

Elba-X

#### Gerasimov-Drell-Hearn Sum Rule for Real Photons

- Begin with the spin dependent part of the forward Compton amplitude,  $S_1$
- Use the following dispersion relation and three assumptions

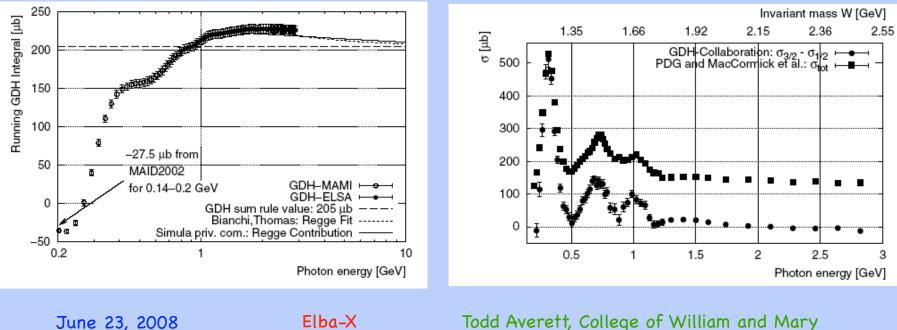
Re 
$$S_1(v) = \frac{2v}{\pi} \int_{v_0}^{\infty} dv' \frac{\text{Im } S_1(v')}{{v'}^2 - v^2}$$

- Optical Theorem Im  $S_1(v) = \frac{v}{8\pi} \sigma_{TT}(v)$  Low Energy Theorem Re  $S_1(v) = -\frac{e^2 \kappa^2}{8\pi M^2} v$  where  $\kappa$  is the target anomalous magnetic moment

$$\int_{\nu_0}^{\infty} \frac{\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu)}{\nu} d\nu = -2\pi^2 \alpha \left(\frac{\kappa}{M}\right)^2$$

- Unsubtracted Dispersion Relation: One assumption is convergence of the dispersion integral.
- Sum Rule valid for any spin ½ nucleon/nucleus. Elba-X Todd Averett, College of William and Mary June 23, 2008

#### The GDH Sum Rule at $Q^2=0$


$$I_{GDH} \equiv \int_{v_{thr}}^{\infty} \frac{\sigma_{1/2} - \sigma_{3/2}}{v} dv = -2\pi^2 \alpha \frac{\kappa^2}{M^2}$$

S. Gerasimov, Yad. Fiz. 2 (1965) 598, Sov. J. Nucl. Phys. 2 (1966) 930. S.D. Drell and A.C. Hearn, PRL 16 (1966) 908.

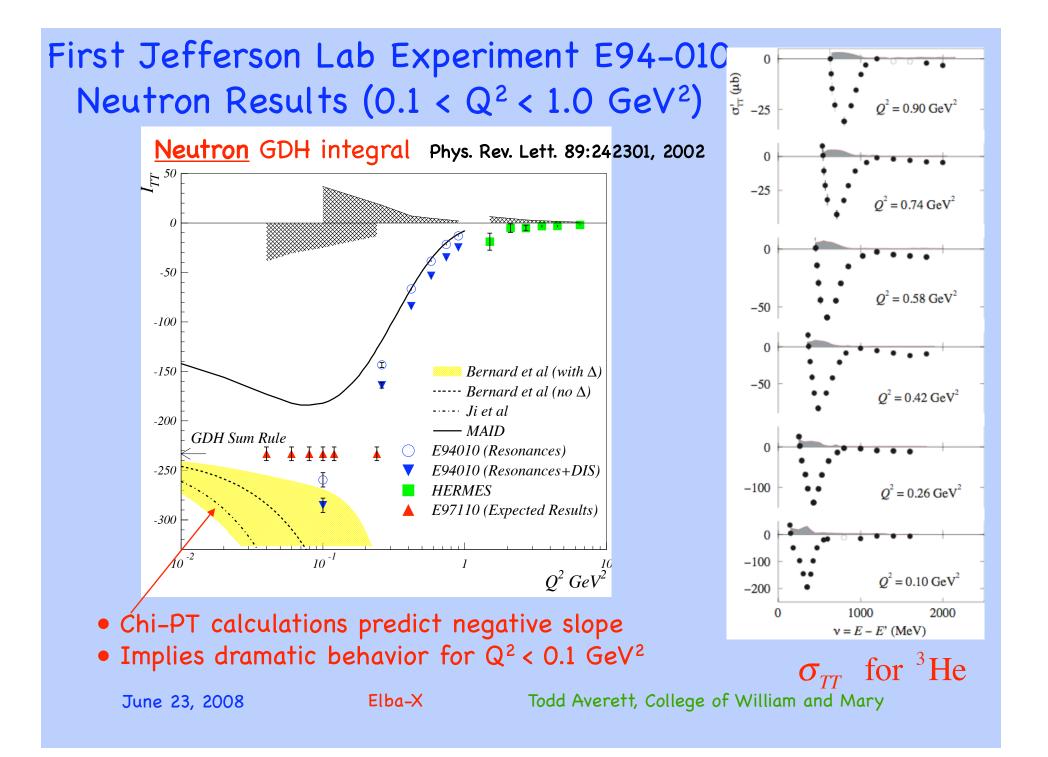
$$I^{p} = -205 \ \mu b$$
  $I^{n} = -233.5 \ \mu b$   $I^{^{3}He} = -496 \ \mu b$ 

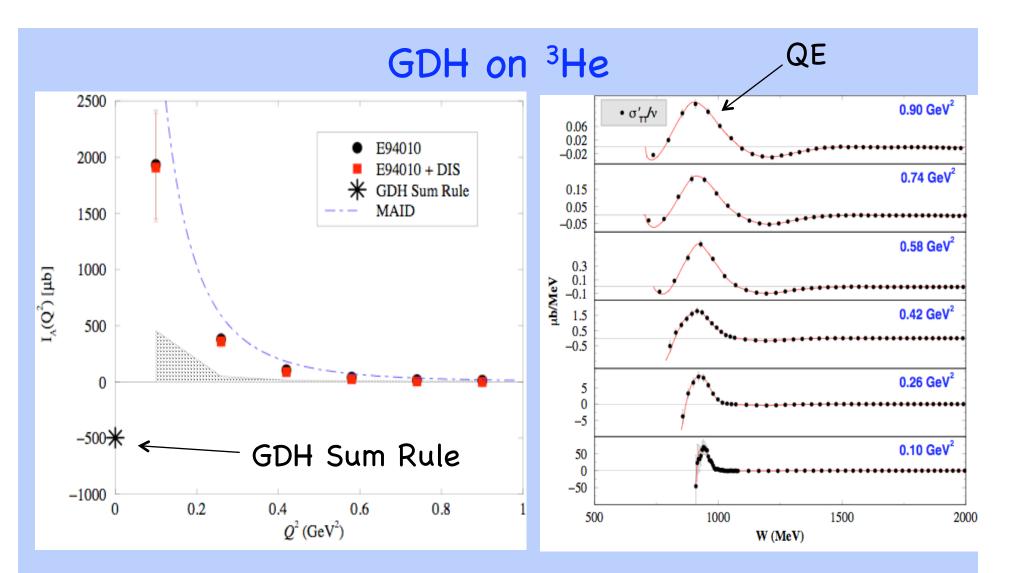
(<sup>3</sup>He must receive large contribution below pion production threshold)

#### Proton data from MAMI/ELSA, PRL 93 (2004) 032003.



### Extended GDH Sum for Q<sup>2</sup>>0


LHS: Replace real photon cross sections with transversely polarized virtual photon cross sections.


RHS: Calculate amplitudes using models.

$$\int_{v_{thr}}^{\infty} \frac{\sigma_{1/2}^{T}(v,Q^{2}) - \sigma_{3/2}^{T}(v,Q^{2})}{v} dv = S_{1}(Q^{2})$$

 $\sigma_i^T(v,Q^2)$  = transversely-polarized virtual photon absorption cross-sections.

- Q<sup>2</sup>-evolution provides information about nucleon transition from hadronic to partonic degrees of freedom.
- At small Q<sup>2</sup>, calculate S(Q<sup>2</sup>) using Chiral-PT.
- At large  $Q^2$ , calculate  $S(Q^2)$  using pQCD, twist-expansion.
- Phenomenological models (e.g. MAID), lattice calculations for transition region, Q<sup>2</sup>=0.1 – 1.0 GeV<sup>2</sup>.





- Large, positive contribution from QE asymmetry.
- Implies dramatic behavior below Q<sup>2</sup>=0.1 GeV<sup>2</sup>
- Karl Slifer, Temple Univ., Ph.D. Thesis, arXiv:0803.2267, accepted for pub.

# $g_1(x,Q^2)$ and $g_2(x,Q^2)$ integrals

• Could also use: 
$$\sigma_{TT} = \frac{4\pi^2 \alpha}{MK} (g_1 - \gamma^2 g_2)$$
$$\overline{\Gamma}_1(Q^2) \equiv \int_0^{x_{th}} g_1(x, Q^2) dx = \frac{Q^2}{8} \overline{S}_1(Q^2) \quad \text{(no elastic contribution)}$$

• Note: 
$$\overline{\Gamma}_1(0) = 0$$

• GDH integral: 
$$I_A = \frac{16\pi^2 \alpha}{Q^2} \int_0^{x_{th}} \left[ g_1(x,Q^2) - \frac{16M^2 x^2}{Q^2} g_2(x,Q^2) \right] dx$$

•  $x_{th}$  = two-body break-up for <sup>3</sup>He

• Calculate  $\overline{S}_1(Q^2)$  near Q<sup>2</sup>=0 using Chiral Perturbation Theory

#### Higher-twist Contributions to Nucleon Structure

• OPE expansion of first moment of  $g_1$  at large  $Q^2$ ,

$$\Gamma_1(Q^2) \equiv \int_0^1 g_1(x,Q^2) dx = \mu_2(Q^2) + \frac{\mu_4(Q^2)}{Q^2} + \frac{\mu_6(Q^2)}{Q^4} + \cdots$$

•  $\mu_2$  = leading-twist contribution; related to polarized PDF's,  $\Delta q_i/q_i$ ; gives quark contribution to nucleon spin,  $\Delta \Sigma$ 

$$\mu_4 = \frac{M^2}{9} \left( a_2 + 4d_2 + 4f_2 \right)$$

- a<sub>2</sub>=twist-2 target mass correction.
- d<sub>2</sub>=twist-3 reduced matrix element.

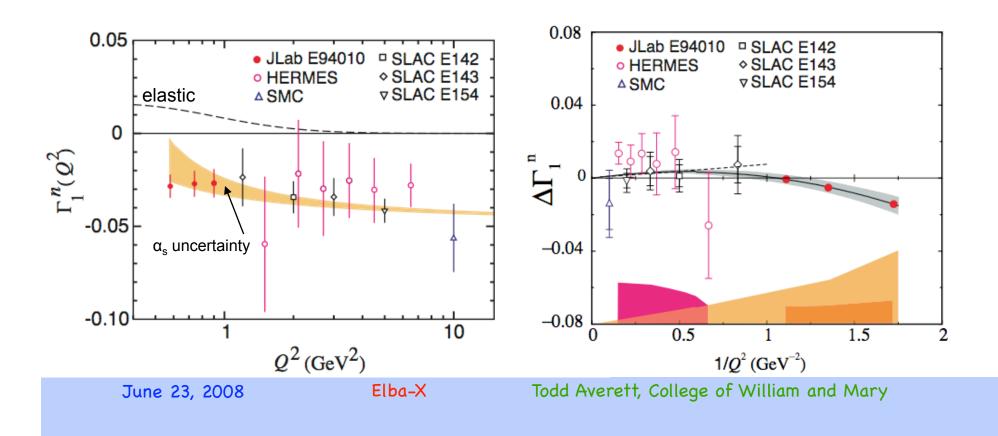
non-trivial quark-gluon correlations

• f<sub>2</sub>=twist-4 reduced matrix element.

 d<sub>2</sub> and f<sub>2</sub> related to nucleon color susceptibilities; nucleon response to color electric and magnetic fields:

$$\chi_E = \frac{2}{3}(2d_2 + f_2), \quad \chi_M = \frac{1}{3}(4d_2 - f_2)$$

# Quantifying HT contributions


- Goal: Use new precision data to calculate moments and quantify higher-twist contributions.
- a<sub>2</sub> given by x<sup>2</sup> moment of g<sub>1</sub><sup>twist-2</sup>; use fit to world data; a<sub>2</sub><sup>n</sup>=-0.0031(20) at Q<sup>2</sup>=5 GeV<sup>2</sup>.
- d<sub>2</sub> given by x<sup>2</sup> moment of g<sub>2</sub><sup>twist-3</sup>; sensitive to quark-gluon interactions; calculable measured data using:

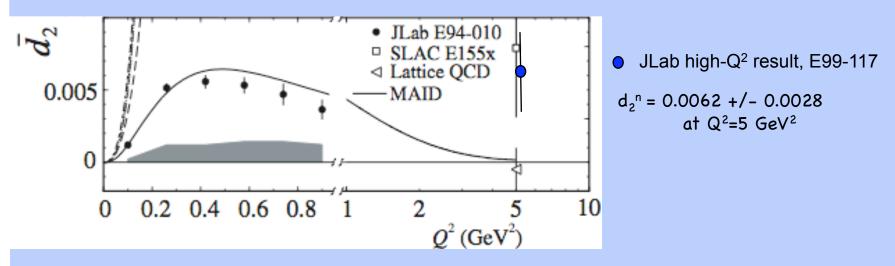
$$d_2(Q^2) = \int_0^1 x^2 \Big[ 2g_1(x,Q^2) + 3g_2(x,Q^2) \Big] dx$$

- SLAC E155x: d<sub>2</sub><sup>n</sup>=0.0079(48) at Q<sup>2</sup>=5 GeV<sup>2</sup>
- Unknowns:  $f_2$ ,  $\mu_6$ .

# Quantifying HT contributions

- Analysis of world data using Bianchi-Thomas for low-x extrap; new JLab data to constrain high-x contrib.
- Fit  $\Gamma_1^n$  for Q<sup>2</sup>>5 GeV<sup>2</sup> assuming no HT effects
- Evolve using DGLAP to  $Q^2 < 5$  GeV<sup>2</sup>; subtract from measured  $\Gamma_1^n$  to get  $\Delta \Gamma_1^n (1/Q^2)$ ; new precision data at low- $Q^2$  from JLab.

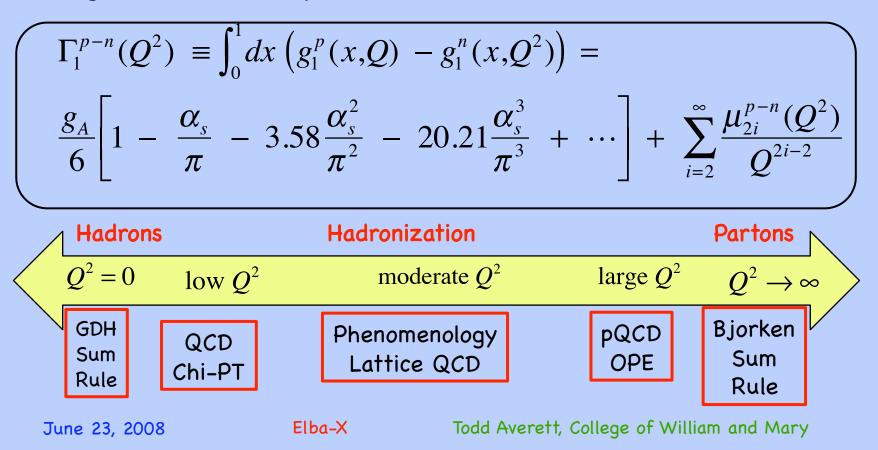



#### HT contributions and color susceptabilities

• Results of fits show small HT contributions to  $g_1^n$  at  $Q^2=1$  GeV<sup>2</sup>:

 $f_2^n = 0.034 \pm 0.043, \qquad \mu_6^n = (-0.019 \pm 0.017)M^4$ 

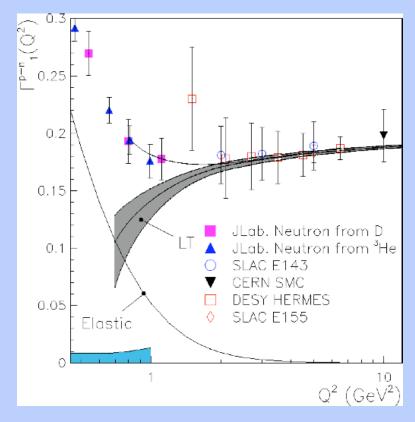
- Extract color susceptabilities at Q<sup>2</sup>=1 GeV<sup>2</sup>:  $\chi_E^n = 0.033 \pm 0.029, \quad \chi_M^n = -0.001 \pm 0.016$
- Z.-E. Meziani *et al.*, PLB, 613 (2005) 148.


### d<sub>2</sub><sup>n</sup> in the resonance region



- Also calculate  $d_2^n$  below  $Q^2=1$  GeV<sup>2</sup>.
- Agrees with MAID.
- Trend towards lattice result.
- However, note disagreement of exp't and lattice at Q<sup>2</sup>=5 GeV<sup>2</sup>; upcoming experiment to measure d<sub>2</sub><sup>n</sup> at larger Q<sup>2</sup>.
- Phys. Rev. Lett. 92 (2004) 022301.

### Bjorken Sum Rule


- Can be derived using extended GDH formalism.
- Originally derived before QCD--rigorous test of quark -parton model as Q<sup>2</sup> → ∞.
- Rigorous test of pQCD at moderate Q<sup>2</sup>.



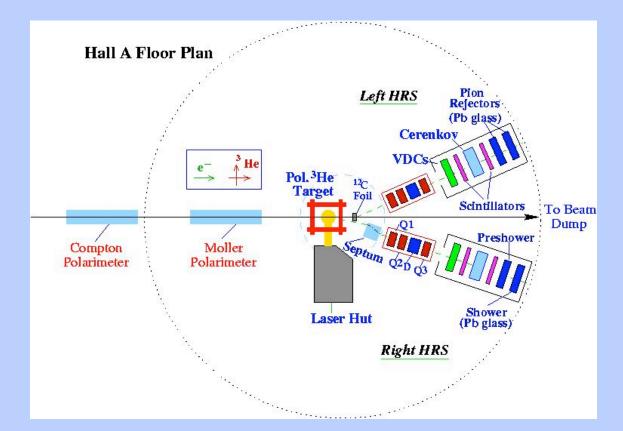
#### HT from Bjorken Sum Rule at low-Q<sup>2</sup>

- Combine <sup>3</sup>He data with p,d data from CLAS to study Q<sup>2</sup>-evolution of BJ sum rule, Γ<sub>1</sub><sup>p-n</sup>. Less sensitive to low-x behavior, resonance contribs.
- At Q<sup>2</sup>=1.0 GeV<sup>2</sup>,  $\mu_4^{p-n} = -0.06 + / -0.02$ ,  $\mu_6^{p-n} = 0.09 + / -0.02$
- Both HT contributions are non-zero, but the sum is zero.
- OPE not converging at order  $\mu_6^{p-n}/Q^4$ .
- PRL 93 (2004) 212001

See new data in talk by S. Kuhn



#### elastic + inelastic data


Todd Averett, College of William and Mary

June 23, 2008

Elba-X

### Jefferson Lab Hall A

- Data needed at lower  $Q^2$  to test Xhi-PT calculations and allow extrapolation to  $Q^2=0$ .
- New measurement of  $g_1^n$ ,  $g_2^n$  at very low  $Q^2$

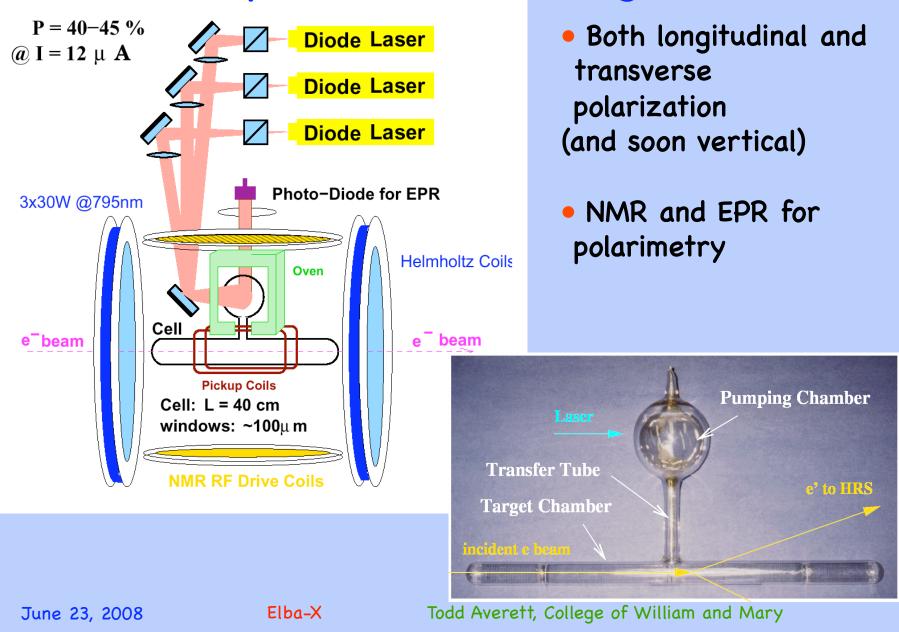


• E97-110 measured at 6° and 9°; 0.02 < Q<sup>2</sup> < 0.3 GeV<sup>2</sup>

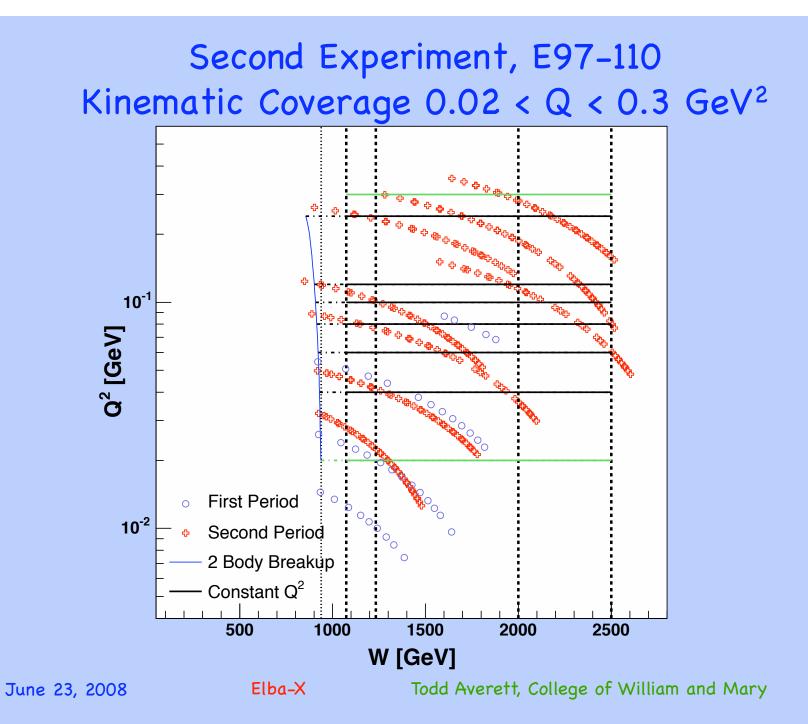
June 23, 2008



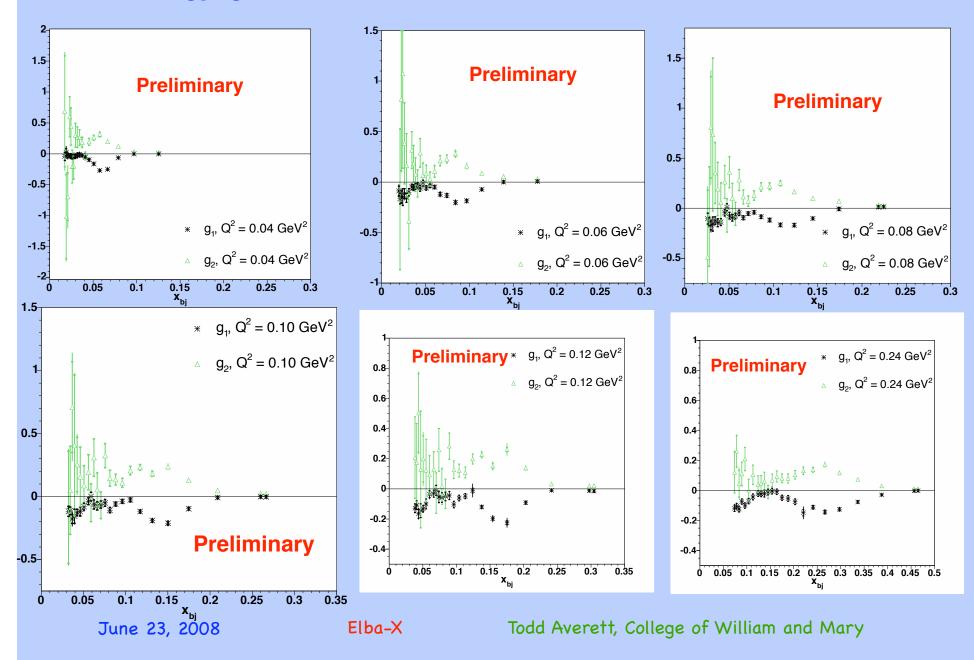
Septum Magnets

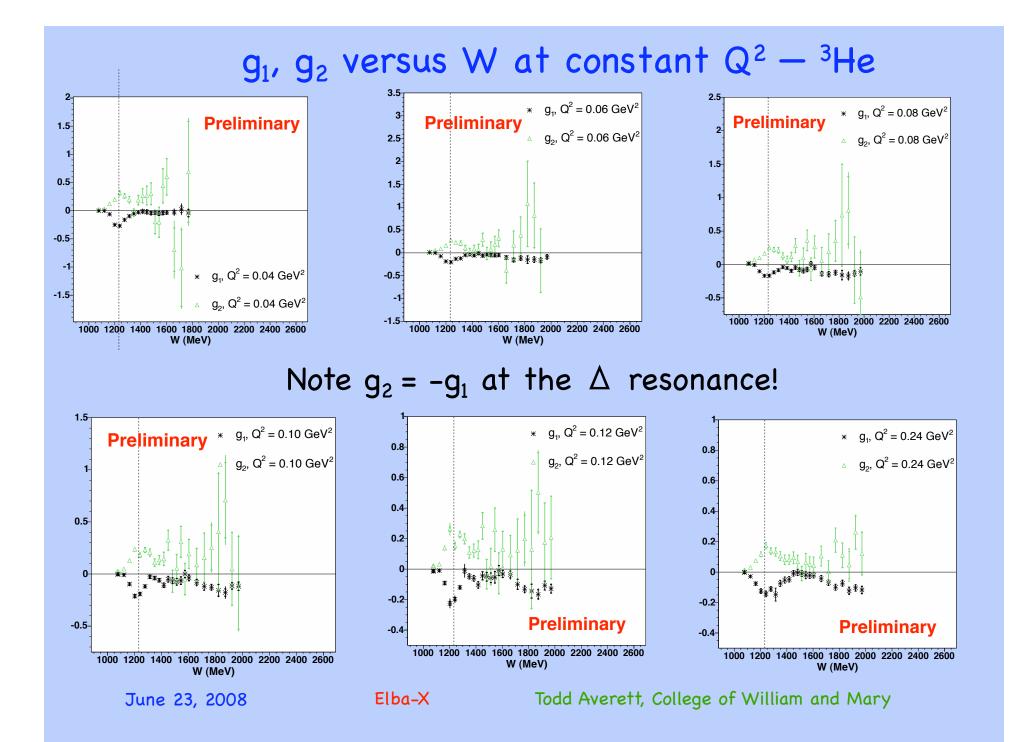

Two new superconducting septum magnets used to reach scattering angles down to 6°

Minimum Q<sup>2</sup>=0.02 GeV<sup>2</sup> «nearly-real photons»

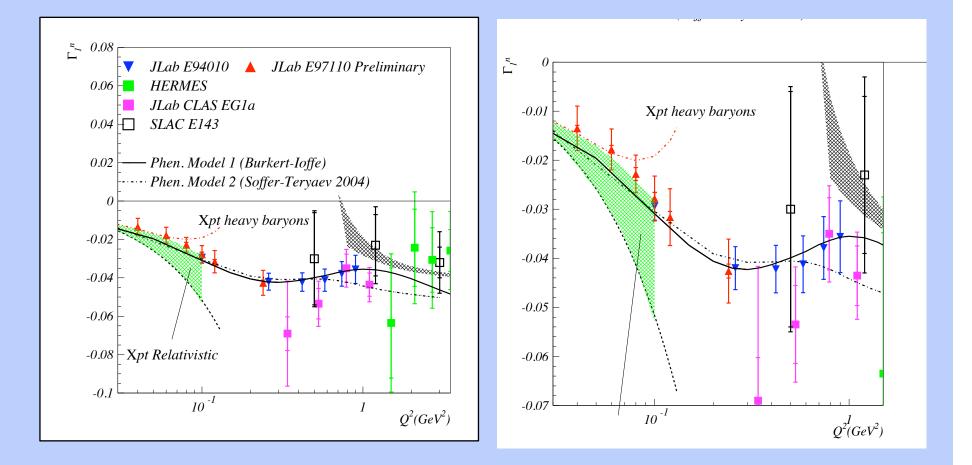

June 23, 2008

Elba-X


# Hall A polarized <sup>3</sup>He target



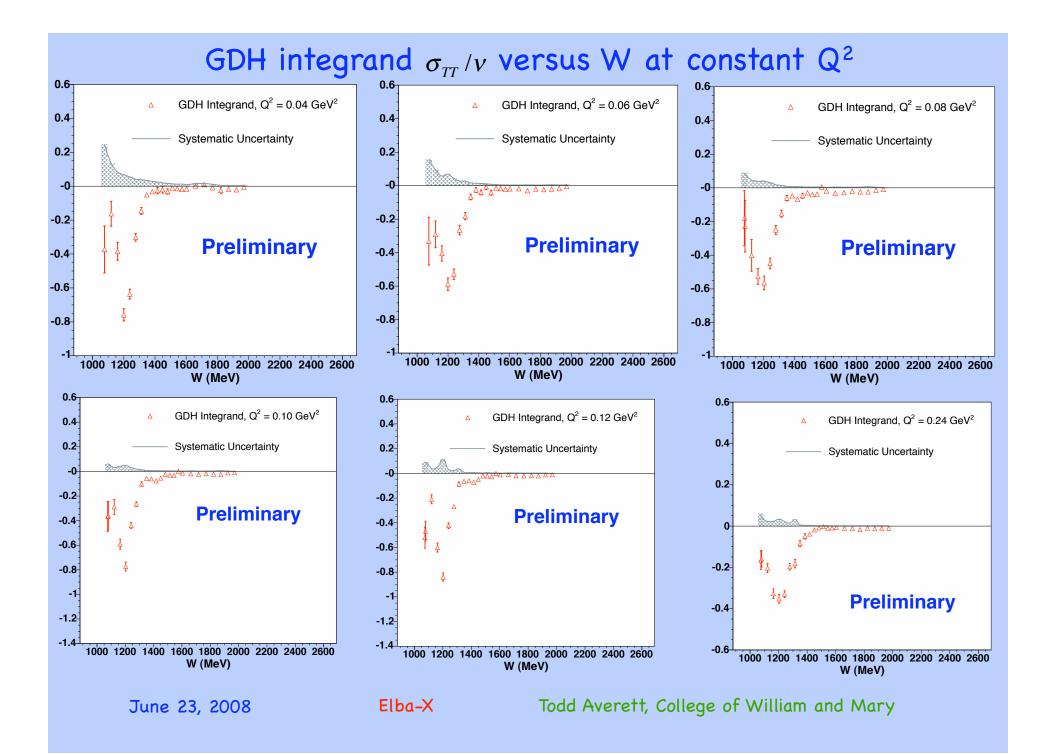



#### $g_1$ , $g_2$ versus x at constant $Q^2 - {}^3He$






### First moment of $g_1^n(Q^2)$ --PRELIMINARY

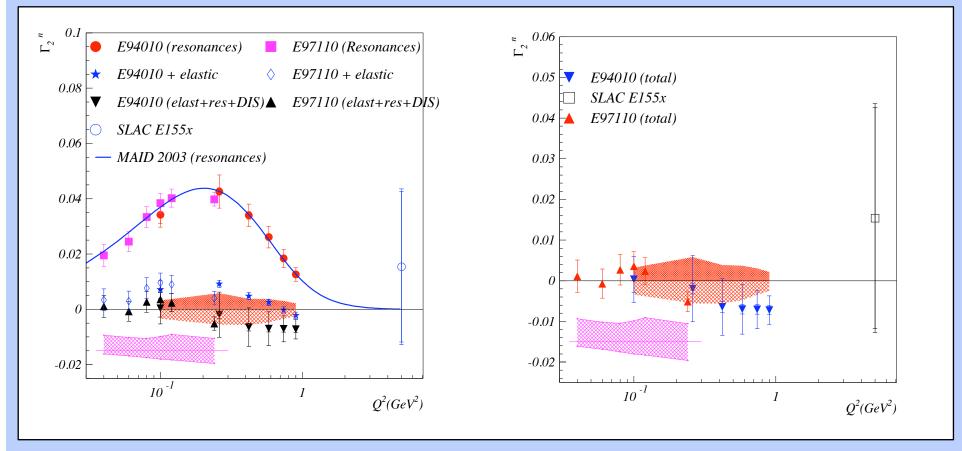


#### Analysis by V. Sulkosly, Jefferson Lab

June 23, 2008

Elba-X



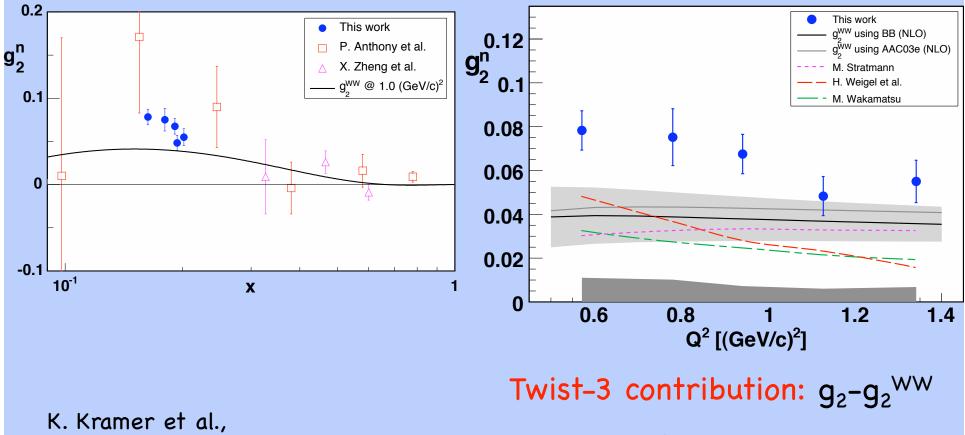

### Burkhardt-Cottingham Sum Rule

- Use two dispersion relations for Compton amplitude S<sub>2</sub> and same assumptions as for GDH Sum Rule.
- Also require convergence of  $S_2$  faster than (a.k.a. SuperConvergence) 1/v

$$\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$$

- Valid for all Q<sup>2</sup>.
- Can't measure at x=0 where  $g_2$  might diverge...

#### First moment of $g_2^n(Q^2)$ --PRELIMINARY BC Sum Rule




#### Large inelastic/resonance contribution cancelled by elastic

June 23, 2008

Elba-X

# E97-103: $Q^2$ dependence of $g_2^n$

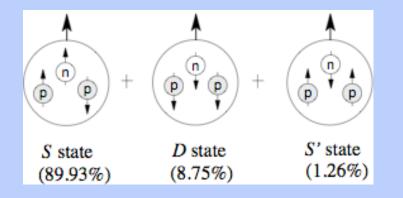


arXiv:nucl-ex/0506005, PRL

 $G_{tw-3} = 0.0262 \pm 0.0043 \text{ (stat.)}$  $\pm 0.0080 \text{ (sys.)} \pm 0.0099 \text{ (}g_2^{WW}\text{)}$ 

# Summary and Outlook

- Precision measurements of polarized and un-polarized cross sections and structure functions  $g_1$  and  $g_2$  for <sup>3</sup>He and neutron from QE to DIS at low Q<sup>2</sup>.
- Behavior of GDH g₁ and g₂ integrals measured for <sup>3</sup>He and neutron as Q<sup>2</sup>→0.
- Burkhardt-Cottingham Sum Rule satisfied. Behavior at low x still not known. Inelastic contribution is large at low Q<sup>2.</sup>
- New precision measurement of generalized GDH down to Q<sup>2</sup>=0.02 GeV<sup>2</sup>; results coming soon.
- Reliable extraction of neutron structure functions from <sup>3</sup>He at very low Q<sup>2</sup> will require help from theorists, new data from Jlab in 2009, polarized <sup>3</sup>He(e,e'd).


#### Systematic Uncertainties

| Source                     | Systematic Uncertainty   |            |               |
|----------------------------|--------------------------|------------|---------------|
| Angle                      | 6°                       | <b>9</b> ° | 3.775 GeV, 9° |
| Target density             |                          | 2.0%       |               |
| Acceptance/Effects         | 5.0%                     | 5.0%       | 15.0%         |
| VDC efficiency             | 3.0%                     | 2.5%       | 2.5%          |
| Charge                     |                          | 1.0%       |               |
| PID Detector and Cut effs. |                          | < 1.0%     |               |
| $\delta\sigma_{ m raw}$    | 6.4%                     | 6.2%       | 15.5%         |
| Nitrogen dilution          | 0.2–0.5%                 |            |               |
| $\delta\sigma_{ m exp}$    | 6.5%                     | 6.3%       | 15.5%         |
| Beam Polarization          | 3.5%                     |            |               |
| Target Polarization        | 7.5%                     |            |               |
| Radiative Corrections      | 5–10% in $\Delta$ region |            |               |
| Total on $\Delta\sigma$    | 11.6–14.5%               | 11.5–14.4% | 18.3–20.2%    |

Jefferson Lab - P.8/24

# Neutron Results from <sup>3</sup>He

• Use Bissey et al. formalism, can include contribution from  $\Delta$  in nucleus



- Biggest nuclear effect due to Fermi motion.
- Integrals less sensitive to nuclear corrections than e.g. structure functions.
- New experiment to study polarized
   <sup>3</sup>He(e,e'd)--<sup>3</sup>He wave function.
   August 24, 2006
   Few Body 18
   Todd Averett, College of William and Mary