saGDH Analysis Update Target Analysis

> Jaideep Singh University of Virginia

Polarized Helium-3 Collaboration Meeeting CEBAF Center F224-5, October 18, 2006

Outline

- 1. saGDH HALOG Search Engine
- 2. MySQL <-> ROOT interface to Database
- 3. EPICS variables in the Data Stream
- 4. Polarization Gradients and Beam Depolarization
- 5. Polarimetry Issues
- 6. Outlook

EPICS Variables in the Data Stream

163 variables read every 3, 5, or 30 seconds including:

- 1. Beam Current Data
- 2. HRS Current and Field Data
- 3. Beam Energy
- 4. Helicity Pattern Info
- 5. Beam Positions at 10 different BPMs
- 6. "Correction Coil" Currents
- 7. Septum Power Supply and Set Current
- 8. Helmholtz Coil Currents

Surprising things it does NOT have:

- 1. Beam Half-Wave Plate Readback (IN or OUT)
- 2. Septum Readback Current

Polarization in Two Chambered Cells

Equilibrium Pumping Chamber Polarization:

$$P_p^{\infty}/P_p^{\infty}(I=0) = \left(1 + f_t \tau_{\rm su}^0 \Gamma_{\rm beam}\right)^{-1}$$

Equilibrium Target Chamber Polarization:

$$P_t^{\infty}/P_p^{\infty} = \left(1 + \frac{\Gamma_t^0 + \Gamma_{\text{beam}}}{D_t}\right)^{-1}$$

- 1. f_t = fraction of nuclei in target chamber
- 2. $\tau_{su}^0 = spin up time constant without beam$
- 3. Γ_{beam} = beam depolarization rate
- 4. $\Gamma_t^0 =$ spin relaxation rate in target chamber
- 5. D_t = diffusion rate out of target chamber

Relative Equilibrium Polarizations

Estimating Rates

1. Atomic ions created by the electron beam depolarize nuclei:

$$\Gamma_{\text{beam}} = \Gamma_{\text{ion}} n_a \approx \left(\frac{1}{40 \text{ hrs}}\right) \cdot \left(\frac{I}{10 \ \mu \text{A}}\right) \cdot \left(\frac{2 \text{ cm}^2}{A_{\text{tc}}}\right)$$

where Γ_{ion} is the ionization rate per atom and n_a is the mean number of nuclei depolarized.

- 2. The ionization rate can be estimated from the Bethe-Bloch collisional energy loss formula.
- 3. Phys. Rev. A, 38, p4481-7 (1988) gives formulas for estimating n_a . In our case, $n_a \approx 0.5 \pm 0.1$.
- 4. The diffusion rate exiting the target chamber is:

$$D_t = \left(\frac{1}{1.2 \text{ hrs}}\right) \cdot \left(\frac{90 \text{ cm}^3}{V_{\text{tc}}}\right) \cdot \left(\frac{A_{\text{tt}}}{0.5 \text{ cm}^2}\right) \cdot \left(\frac{6 \text{ cm}}{L_{\text{tt}}}\right)_{\text{saGDH Analysis Update - p.6/18}}$$

Polarization Gradients

1. Relative gradient without beam:

$$\Delta_0 = (3\% \text{ rel.}) \cdot \left(\frac{V_{\text{tc}}}{90 \text{ cm}^3}\right) \cdot \left(\frac{0.5 \text{ cm}^2}{A_{\text{tt}}}\right) \cdot \left(\frac{L_{\text{tt}}}{6 \text{ cm}}\right)$$

2. Relative gradient due to beam:

$$\Delta_{\text{beam}} = (4\% \text{ rel.}) \cdot \left(\frac{I}{15 \ \mu \text{A}}\right) \cdot \left(\frac{L_{\text{tc}}}{40 \ \text{cm}}\right)$$
$$\times \left(\frac{0.5 \ \text{cm}^2}{A_{\text{tt}}}\right) \cdot \left(\frac{L_{\text{tt}}}{6 \ \text{cm}}\right)$$

3. Decrease beam current *I*, target chamber volume V_{tc} and length L_{tc} , transfer tube length L_{tt} , and/or increase transfer tube cross sectional area A_{tt} .

• ON-line = +5.0% relative difference between Water and EPR

- ON-line = +5.0% relative difference between Water and EPR
- Ist Pass OFF-line = -4.7%

- ON-line = +5.0% relative difference between Water and EPR
- 1st Pass OFF-line = -4.7%
- Thorough Check of Flux Calculations = +2.7% ↔ last collaboration meeting

- ON-line = +5.0% relative difference between Water and EPR
- 1st Pass OFF-line = -4.7%
- Thorough Check of Flux Calculations = $+2.7\% \leftrightarrow$ last collaboration meeting
- **ERROR**: Unnecessarily "correcting" up sweep = +9.7%

- ON-line = +5.0% relative difference between Water and EPR
- 1st Pass OFF-line = -4.7%
- Thorough Check of Flux Calculations = +2.7% ↔ last collaboration meeting
- **ERROR**: Unnecessarily "correcting" up sweep = +9.7%
- **ERROR:** Improperly "correcting" down sweep = +14.7%

- ON-line = +5.0% relative difference between Water and EPR
- 1st Pass OFF-line = -4.7%
- Thorough Check of Flux Calculations = $+2.7\% \leftrightarrow$ last collaboration meeting
- **ERROR:** Unnecessarily "correcting" up sweep = +9.7%
- **ERROR:** Improperly "correcting" down sweep = +14.7%
- **•** Rederived everything from scratch = +16.5%

- ON-line = +5.0% relative difference between Water and EPR
- 1st Pass OFF-line = -4.7%
- Thorough Check of Flux Calculations = $+2.7\% \leftrightarrow$ last collaboration meeting
- **ERROR:** Unnecessarily "correcting" up sweep = +9.7%
- **ERROR:** Improperly "correcting" down sweep = +14.7%
- **Solution** Rederived everything from scratch = +16.5%

Doh!?! Only the water constant is changing, what is going on?

Boltzmann polarization of water is proportional to the field.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.
- The characteristic time for field sweep AFP is also a few seconds.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.
- The characteristic time for field sweep AFP is also a few seconds.
- Spins don't have time to "catch up" with changing field.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.
- The characteristic time for field sweep AFP is also a few seconds.
- Spins don't have time to "catch up" with changing field.
- Low field to high field sweep is different from high field to low field sweep.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.
- The characteristic time for field sweep AFP is also a few seconds.
- Spins don't have time to "catch up" with changing field.
- Low field to high field sweep is different from high field to low field sweep.
- The NMR lineshape for water is roughly but not exactly the sqrt of a Lorentzian.

- Boltzmann polarization of water is proportional to the field.
- Polarization approaches equilibrium with a time constant T_1 of 2 to 3 seconds.
- The characteristic time for field sweep AFP is also a few seconds.
- Spins don't have time to "catch up" with changing field.
- Low field to high field sweep is different from high field to low field sweep.
- The NMR lineshape for water is roughly but not exactly the sqrt of a Lorentzian.
- Analytic form of lineshape can be derived from the Bloch Eqs making a few approximations.

Low to High Field

High to Low Field

■ How do we handle the different heights of the up and dn sweeps? \Rightarrow consult the experts!

- How do we handle the different heights of the up and dn sweeps? \Rightarrow consult the experts!
- Anonymous Princeton Thesis: "Since the relaxation during the resonance is already taken into account in equation (5.9), the heights of the up and down peaks should be the same. [p.128]" up=dn!

- How do we handle the different heights of the up and dn sweeps? \Rightarrow consult the experts!
- Anonymous Princeton Thesis: "Since the relaxation during the resonance is already taken into account in equation (5.9), the heights of the up and down peaks should be the same. [p.128]" up=dn!
- Anonymous **Caltech** Thesis: "For the purposes of calulating κ_w , the fitted amplitudes for UP and DOWN sweeps will be divided by their corresponding thermal polarizations and then averaged, yielding just one value of S_w/P_w^{th} for each water calibration. [p70]" **up != dn?**

- How do we handle the different heights of the up and dn sweeps? \Rightarrow consult the experts!
- Anonymous Princeton Thesis: "Since the relaxation during the resonance is already taken into account in equation (5.9), the heights of the up and down peaks should be the same. [p.128]" up=dn!
- Anonymous **Caltech** Thesis: "For the purposes of calulating κ_w , the fitted amplitudes for UP and DOWN sweeps will be divided by their corresponding thermal polarizations and then averaged, yielding just one value of S_w/P_w^{th} for each water calibration. [p70]" **up != dn?**
- Could it possible that Princeton or Caltech might be wrong!

- How do we handle the different heights of the up and dn sweeps? \Rightarrow consult the experts!
- Anonymous Princeton Thesis: "Since the relaxation during the resonance is already taken into account in equation (5.9), the heights of the up and down peaks should be the same. [p.128]" up=dn!
- Anonymous **Caltech** Thesis: "For the purposes of calulating κ_w , the fitted amplitudes for UP and DOWN sweeps will be divided by their corresponding thermal polarizations and then averaged, yielding just one value of S_w/P_w^{th} for each water calibration. [p70]" **up != dn?**
- Could it possible that Princeton or Caltech might be wrong!
- Don't be silly! They are both basically right...

Fitting Techniques

fit	sweep rate	up	down	norm
\sqrt{L}	-	-	-	Bloch Eqs for up & dn peaks
$f\sqrt{L}$	$\alpha = +\alpha_0$	1.0	adjust	Bloch Eqs for up peak
11	11	adjust	adjust	Bloch Eqs for up peak
11	$\alpha = \pm \alpha_0$	1.0	1.0	$P_{\rm th}$ at steady H_0

$$V(t) = f(t,\alpha)\sqrt{L(t,|\alpha|)} = V(0) \cdot P(t)/P_n$$

- \Rightarrow "Norm": What percent polarization P_n does the voltage measured at resonance V(0) equal?
 - 1. First two methods listed above: set $P_n = P(0)$ and then solve full Bloch equations numerically to get P(0).
 - 2. Last method: simply set $P_n = \chi H_0$.
 - 3. Method 3: Not even wrong...

Fits to Simulated data

fit	data	up	dn
$f(+\alpha)\sqrt{L}$	-	+1.01	-1.25
$f(-\alpha)\sqrt{L}$	-	-0.80	+0.99
$f(+\alpha)\sqrt{L}$	flip	+1.01	-1.26
$f(-\alpha)\sqrt{L}$	flip	-0.80	+0.99
\sqrt{L}	-	-0.87	+1.08

Simulated data obtained from numerical solution to Bloch equations with $T_1 = 3.0$ s, $T_2 = 2.7$ s, $|\alpha| = 1.2$ G/s, $H_1 = 60$ mG, 1% gaussian noise, and a normalization of $P_n = \chi H_0$.

 $\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm to}^{\rm H}G_{\rm \Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau}$ $\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_O \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_m (\rho_{\rm W})$

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Density of liquid water, ρ_W , is well known.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Ratios of preamp settings, G_p , is well known.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Ratio of Q-curve gains, G_Q , appear very stable.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \\ \times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

 $\kappa_0/T_{\rm pc}$ varies by about 6% from 200 to 300 Celsius.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H} G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau}
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Need to look at details of polarization gradient for saGDH, but it is at most 5 to 6 percent.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \\
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Need to look at time constant lineshaping effects, G_{τ} . A $\tau = 30 \text{ ms}$ reduces the helium signal height by about 10%, but I think that the effect is nearly the same for the water lineshape.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \\
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Have started to look into gradient effects in the helium lineshape and EPR. Two EPRs done at 0 septum current are consistent with those done at higher septum currents. Nothing obvious stands out, but more work needs to be done.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \\
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

I have made sure that am I using the correct transition in the analysis. Some EPRs have slopes, but I believe that is under control. Other than that, I have not looked into other systematic effects.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau}
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

Flux calculations are tricky and I am still looking into this.

$$\frac{C_{\rm W}}{C_{\rm E}} \propto \left(\frac{P_{\rm W}}{V_{\rm W}}\right) \left(\frac{\Phi_{\rm tot}^{\rm W}}{\Phi_{\rm tc}^{\rm H}G_{\Phi}^{\rm H}}\right) \left(\frac{1}{B_{\rm He}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\nabla} \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_{\tau} \\
\times \left(\frac{P_{\rm pc}}{P_{\rm tc}}\right) \left(\frac{\kappa_0 T_{\rm tc}}{T_{\rm pc}}\right) \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_Q \left(\frac{G^{\rm W}}{G^{\rm H}}\right)_p (\rho_{\rm W})$$

I believe I am now fitting the lineshape correctly. The up and down peaks are very sensistive to the T_1 used in the analysis, BUT the average is very insensitive: the average changes by 0.32% per second of T_1 . I am worried about whether we are letting the spins reach equilibrium, see plots.

Low to High Field

High to Low Field

Conclusion

After a "comedy" of errors on my part, I believe that we have a 16% difference between our two methods of calibration for our polarimetry. I am still hopeful, because there are still some things I need to look at.