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EPICS Variablesin the Data Stream

163 variables read every 3, 5, or 30 seconds including:
1. Beam Current Data

HRS Current and Field Data

Beam Energy

Helicity Pattern Info

Beam Positions at 10 different BPMs

“Correction Coll” Currents

Septum Power Supply and Set Current

8. Helmholtz Coll Currents

S R

Surprising things it does NOT have:
1. Beam Half-Wave Plate Readback (IN or OUT)
2. Septum Readback Current
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Polarization in Two Chambered Cdlls

Equilibrium Pumping Chamber Polarization:

—1
PX/PP(I=0) = (14 fir9 beam)

Equilibrium Target Chamber Polarization:

pesp = (14T Ten)”
f: = fraction of nuclel in target chamber

79 = spin up time constant without beam
['veam = Deam depolarization rate

'Y = spin relaxation rate in target chamber
D; = diffusion rate out of target chamber

O & WD BF
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Relative Equilibrium Polarizations
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Polarization Gradient

|

o
©

o
o

relative polarization

o o
o o

o
IN

;l'l'l'l"l'ﬁ‘i_ﬁ!'i"lllllll IllllllllTllllllllllf

o
_O_
=

o
w

o
N

o
=

II|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

diffusion rate out of target chamber (1/hr)

saGDH Analysis Update — p.5/18

o



Estimating Rates

. Atomic ions created by the electron beam depolarize nuclei:

- (] I 2 cm?
beam = “ionTla = A 7as ) T\ 10 pA Are

wherel';,,, IS the ionization rate per atom amng is the mean
number of nuclei depolarized.

. The ionization rate can be estimated from the Bethe-Bloch
collisional energy loss formula.

. Phys. Rev. A, 38, p4481-7 (1988) gives formulas for estimating n,,.
In our case, n, ~ 0.5 = 0.1.

. The diffusion rate exiting the target chamber is:

o 1 90 cm? At 6 cm
b \1.2hrs Vie 0.5 cm? Lit
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Polarization Gradients

1. Relative gradient without beam:

VIGC 0.9 Cm2 Ltt
Ag = (3% rel.) - (90 cm3> : ( i ) . <6cm)

2. Relative gradient due to beam:

I T
Apeam = (4% rel.) - (—15 uA) - (40 tcm>

y 0.5 cm? Ly
Att 0 cm
3. Decrease beam currehttarget chamber volumg. and

length L., transfer tube lengtl;, and/or increase transfer
tube cross sectional areh;.
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Quick Overview of Polarimetry

® ON-line =+5.0% relative difference between Water and EPR
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® ON-line =+5.0% relative difference between Water and EPR
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Quick Overview of Polarimetry

® ON-line =+5.0% relative difference between Water and EPR
® 1st Pass OFF-line =4.7%

#® Thorough Check of Flux Calculations=2.7% « last
collaboration meeting
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Quick Overview of Polarimetry

ON-line =+5.0% relative difference between Water and EPR
1st Pass OFF-line =4.7%

Thorough Check of Flux Calculations£2.7% « last
collaboration meeting

ERROR: Unnecessarily “correcting” up sweep-8.7%
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Quick Overview of Polarimetry

ON-line =+5.0% relative difference between Water and EPR
1st Pass OFF-line =4.7%

Thorough Check of Flux Calculations£2.7% « last
collaboration meeting

ERROR: Unnecessarily “correcting” up sweep-8.7%
ERROR: Improperly “correcting” down sweep-+14.7%
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Quick Overview of Polarimetry

ON-line =+5.0% relative difference between Water and EPR
1st Pass OFF-line =4.7%

Thorough Check of Flux Calculations£2.7% « last
collaboration meeting

ERROR: Unnecessarily “correcting” up sweep-8.7%
ERROR: Improperly “correcting” down sweep-+14.7%
Rederived everything from scratch+=16.5%
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Quick Overview of Polarimetry

ON-line =+5.0% relative difference between Water and EPR
1st Pass OFF-line =4.7%

Thorough Check of Flux Calculations£2.7% « last
collaboration meeting

ERROR: Unnecessarily “correcting” up sweep-8.7%
ERROR: Improperly “correcting” down sweep-+14.7%
Rederived everything from scratch+=16.5%

Doh!?! Only the water constant is changing, what is going on?
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A Step Back: The Water Lineshape

#» Boltzmann polarization of water is proportional to the field.
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A Step Back: The Water Lineshape

# Boltzmann polarization of water is proportional to the field.

# Polarization approaches equilibrium with a time consfignt
of 2 to 3 seconds.
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A Step Back: The Water Lineshape

Boltzmann polarization of water is proportional to the field.

Polarization approaches equilibrium with a time consiant
of 2 to 3 seconds.

#® The characteristic time for field sweep AFP Is also a few
seconds.
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A Step Back: The Water Lineshape

Boltzmann polarization of water is proportional to the field.

Polarization approaches equilibrium with a time consiant
of 2 to 3 seconds.

#® The characteristic time for field sweep AFP Is also a few
seconds.

# Spins don’t have time to “catch up” with changing field.
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A Step Back: The Water Lineshape

Boltzmann polarization of water is proportional to the field.

Polarization approaches equilibrium with a time consiant
of 2 to 3 seconds.

#® The characteristic time for field sweep AFP Is also a few
seconds.

Spins don’t have time to “catch up” with changing field.

Low field to high field sweep is different from high field to
low field sweep.

#» — The NMR lineshape for water is roughly but not exactly
the sgrt of a Lorentzian.
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A Step Back: The Water Lineshape

°

Boltzmann polarization of water is proportional to the field.

Polarization approaches equilibrium with a time consiant
of 2 to 3 seconds.

#® The characteristic time for field sweep AFP Is also a few
seconds.

Spins don’t have time to “catch up” with changing field.

Low field to high field sweep is different from high field to
low field sweep.

» — The NMR lineshape for water is roughly but not exactly
the sgrt of a Lorentzian.

# Analytic form of lineshape can be derived from the Bloch
Eqgs making a few approximations.

e

| I
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Low to High Field

up sweep: low to HIGH field
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High to Low Field

dn sweep: HIGH to low field

amplitude relative to HO
o
(0]

0.2

time (sec)
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A Tale of Two Theses

# How do we handle the different heights of the up and dn
sweeps?- consult the experts!
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A Tale of Two Theses

# How do we handle the different heights of the up and dn
sweeps?- consult the experts!

» AnonymousPrinceton Thesis: “Since the relaxation during the
resonance is already taken into account in equation (5.9), the
heights of the up and down peaks should be the same. [p.128]”
up=dn!
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A Tale of Two Theses

# How do we handle the different heights of the up and dn
sweeps?- consult the experts!

®» AnonymousPrinceton Thesis: “Since the relaxation during the
resonance is already taken into account in equation (5.9), the
heights of the up and down peaks should be the same. [p.128]”
up=dn!

» Anonymous Caltech Thesis: “For the purposes of calulating ~,,
the fitted amplitudes for U P and DOW N sweeps will be divided
by their corresponding thermal polarizations and then averaged,
yielding just one value of Sw/P,Lth for each water calibration. [p70]”
up !'=dn?
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A Tale of Two Theses

How do we handle the different heights of the up and dn
sweeps?- consult the experts!

Anonymous Princeton Thesis: “Since the relaxation during the
resonance is already taken into account in equation (5.9), the
heights of the up and down peaks should be the same. [p.128]”
up=dn!

Anonymous Caltech Thesis: “For the purposes of calulating K,
the fitted amplitudes for U P and DOW N sweeps will be divided
by their corresponding thermal polarizations and then averaged,

yielding just one value of Sw/P,Lth for each water calibration. [p70]”
up '=dn?

Could it possible that Princeton or Caltech might be wrong!
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A Tale of Two Theses

How do we handle the different heights of the up and dn
sweeps?- consult the experts!

Anonymous Princeton Thesis: “Since the relaxation during the
resonance is already taken into account in equation (5.9), the
heights of the up and down peaks should be the same. [p.128]”
up=dn!

Anonymous Caltech Thesis: “For the purposes of calulating K,
the fitted amplitudes for U P and DOW N sweeps will be divided
by their corresponding thermal polarizations and then averaged,

yielding just one value of Sw/P,L’th for each water calibration. [p70]”
up '=dn?

Could it possible that Princeton or Caltech might be wrong!
Don’t be silly! They are both basically right...
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Fitting Techniques

fit sweep rate up down norm
VL - - - | Bloch Egs for up & dn peaks
fvVL a=+ay | 1.0 adjustf Bloch Egs for up peak

¥ ¥ adjust adjust Bloch-Egsforuppeak
a = o 1.0 1.0 Py, at steadyHo

V(t) = f(t,a)v/L(t,lal) =V(0)- P(t)/Py
= “Norm”. What percent polarizatio®’,, does the voltage

measured at resonant€0) equal?

1. First two methods listed above: get = P(0) and then solve
full Bloch equations numerically to ge&t(0).

2. Last method: simply set, = y Hj.
3. Method 3: Not even wrong...



Fitsto S mulated data

fit data up dn
f(+a)vVL - +1.01 —1.25
f(=a)vVL - —0.80 +0.99
f(+a)VL flip +1.01 —1.26
f(—a)VL flip —0.80 +0.99

L - —0.87 +1.08

Simulated data obtained from numerical solution to Bloch equz
tionswithT} = 3.0s, T = 2.7, |a| = 1.2 G/s, H; = 60 mG, 1%

gaussian noise, and a normalizationfHf= y Hy.
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Ratio of Constants

& = ()l () &) ()
() () (@) (), o




Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
() () () () o
~H ~H W
PtC TpC GH Q GH D

Density of liquid waterpyy, Is well known.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
() () () () o
~H ~H W
PtC TpC GH Q GH D

Ratios of preamp settings:,,, Is well known.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

Ratio of -curve gains(¢, appear very stable.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

ro/ Ty Varies by about 6% from 200 to 300 Celsius.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

Need to look at detalls of polarization gradient for saGDH, bu

It Is at most 5 to 6 percent.
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Ratio of Constants

Cw (P () () (6N (6"
Cx Vay ) \olGH ) \ By ) \ GT ) \ G )

GW
GH

Py
Ptc

KoL te
Tpc

() (7)1

Need to look at time constant lines
7 = 30 ms reduces the helium signal heig

think that the effect is nearly the same for t

A

2r) (ow

—m | (ow

GH )

naping effects, A

Nt by about 10%, but

ne water lineshape.
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Ratio of Constants

Cu (P (00 ) (1) (6" (G
Or V) \@BGE ) \ By, ) \ G )\ GH ) _
Ppc K01 tc GW GW
“\ P T o) \qm) (w)
tc pcC Q D

Have started to look into gradient effects in the helium line

shape and EPR. Two EPRs done at O septum current are consis
with those done at higher septum currents. Nothing obvious stan

out, but more work needs to be done.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

| have made sure that am | using the correct transition i

the analysis. Some EPRs have slopes, but | believe that is unc
control. Other than that, | have not looked into other systemat

effects.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

Flux calculations are tricky and | am still looking into this.
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Ratio of Constants

Cw  (Bw) (BN ) (1) GV (&
Cg Viv ) \®EGE ) \ By, ) \ GH /o \ GH ) _
(7 () (&), (@), o
~H ~H W
PtC TpC GH Q GH D

| believe | am now fitting the lineshape correctly. The up anc

down peaks are very sensistive to theused in the analysis, BUT
the average is very insensitive: the average changes by 0.32% |
second off;. | am worried about whether we are letting the spins

reach equilibrium, see plots.
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Low to High Field

up sweep: low to HIGH field
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High to Low Field

dn sweep: HIGH to low field

1.5

0.5

polarization relative to low field
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time (sec)

saGDH Analysis Update — p.17/18



Conclusion

After a “comedy” of errors on my part, | believe that we have ¢

16% difference between our two methods of calibration for ou

polarimetry. | am still hopeful, because there are still some thing
| need to look at.
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