GDH Analysis

Vincent Sulkosky

Pol. ³He Collaboration Meeting

October 18^{th} , 2006

- Carbon Elastic Cross Section
- Systematic Studies
- Asymmetry Analysis
- Summary

Elastic ¹²C Cross Section

- Calculated the cross section from the background subtracted yield.
- **Data and simulation were different by** \sim 23%.
- Cross Section is extremely sensitive to the scattering angle.

Systematic Studies

- Radiative Corrections.
- Scattering angle from survey: 5.99 \pm 0.04°, (σ = 0.5 mm).
- Collimator positions.
- Acceptance cuts.
- VDC high rate (multi-track) efficiency.
- Background subtraction.
- Foil density.

Radiative Corrections.

- Rechecked material before and after scattering.
- Remeasured polystyrene from entrance and exit of septum.
- Found a mistake in MC by using 1.5 cm instead of 5 cm.
- Cross section agreement improved by \sim 6% to 17.2%.

 $\rho = 0.03151 \pm 0.00036 \text{ g/cm}^2$

 $\rho = 0.03220 \text{ g/cm}^2 \text{ (A.Deur)}$

Radiative Corrections.

Before Scattering

Material	Thickness (cm)	RL Uncertainty (%)	$RL(X_0)$
Be	0.0127	10.0	3.60 x 10 ⁻⁴
^{4}He	23.9	2.1	$4.53 ext{ x } 10^{-5}$
12 C	0.0254	5.0	1.35 x 10 ^{−3}
^{4}He	20.0	0.5	$3.79 ext{ x } 10^{-5}$
12 C	0.0127	5.0	6.76 x 10 ⁻⁴
Total	43.951	5.6	2.47 x 10 ^{−3}

Radiative Corrections.

After Scattering

Material	Thickness (cm)	RL Uncertainty (%)	$RL(X_0)$
12 C	0.0128	5.0	6.79 x 10 ⁻⁴
^{4}He	101.2	5.0	1.92 x 10 $^{-4}$
Polystrene	5.04	0.4	3.63 x 10 ^{−3}
^{4}He	78.9	5.6	1.49 x 10 $^{-4}$
Polystrene	5.04	0.4	3.63 x 10 ^{−3}
^{4}He	20.32	15.0	3.85 x 10 ^{−5}
Kapton	0.0178	2.8	8.88 x 10^{-4}
Total	210.5	2.8	9.20 x 10 ^{−3}

Missing Material?

- Studied possibility of additional material (ice?).
- Adjusted raditation lengths and resolution to match elastic tail.
- About 2 times (4 mm of ice) RL gives good agreement.
- Cross section then agrees within 5%.

Missing Material?

VDC high rate (multi-track) efficiency

- Used N₂ pressure curve data to determine inefficiency of cutting multi-track events.
- Obtained yields of Nitrogen and carbon runs with acceptance and PID cuts.

from Xiaohui Zhan

VDC high rate (multi-track) efficiency

- Efficiency is deviation of pressure curve from a straight line.
- Improved cross section agreement by \sim 2%.

VDC high rate (multi-track) efficiency

Target	δ (%)	Run	$\epsilon_{ m VDC}$ (Data)	$\epsilon_{ m VDC}$ (N ₂)
Carbon	+2	2391	0.9457	0.9682
Carbon	+2	2392	0.9534	0.9675
Carbon	0	2393	0.9562	0.9559
Carbon	0	2394	0.9552	0.9562
Carbon	-2	2401	0.9095	0.9532
Carbon	-2	2402	0.9117	0.9529
Carbon	-2	2403	0.9141	0.9531
Empty	-2	2408	0.9697	0.9870
Carbon	-4	2410	0.9078	0.9541
Carbon	-4	2411	0.9086	0.9539
Empty	-4	2412	0.9687	0.9876
Nitrogen	Elastic	2465	0.9240	0.9623
(35 psig)				

Systematic Uncertainties

Simulation

Source	δ	$\delta\sigma$	Comments
Statistics		negligible	
Form Factors	± 1%	\pm 2%	
Acceptance		± 7%	$\phi_{ m tg}$ cut study
Radiative Corrections	\pm 5.6% and \pm 2.8%	\pm 0.6%	incident and scattered
Total		\pm 7.3%	

Systematic Uncertainties

Experimental

Source	δ	$\delta\sigma$	Comments
Statistics		< 0.5%	
Beam Current	± 1%	\pm 1%	
Foil Density	± 1%	\pm 1%	Preliminary
Tracking Effi ciency	\pm 1.8%	\pm 2.2%	using N ₂ pressure curve
Background Subtraction	\pm 0.9%	\pm 0.2%	from tracking effi ciency
Background Subtraction		$<\pm$ 2%	from using -2% data for 0 %
Energy	\pm 1 MeV	$<\pm$ 0.5%	
Scattering Angle	\pm 0.7%	\pm 6.6%	0.5 mm uncertainty from survey
Collimator Positions	\pm 250 microns	\pm 5.8%	Should be rechecked
Total		\pm 9.4%	

Data and MC Comparison

Absolute Comparison!

Data and MC Comparison

Absolute Comparison!

δ Comparison of $\sigma_{ m MC}/\sigma_{ m exp}$

Scattering Angle

- Matched simulation to data at 0% (6.022°).
- Possible overall angle offset, but witin uncertainity (0.04°).

Other Systematics

- Beam position cut (rastered runs): Small difference < 0.5%.</p>
- Added vertical and horizontal beam angles to MC.
- Angles are $<< 0.01^{\circ}$ and have little effect.

Other Systematics

- \bullet θ_{tg} cut study:
 - Looked at slices in θ_{tg} to check elastic tail versus vertical acceptance (ice check).
 - Elastic tail is fairly uniform versus θ_{tg} .

Other Systematics

- \bullet θ_{tg} cut study:
 - The cross section ratio is not and is significantly worse at negative θ_{tg} .

$ heta_{ m tg}$ cut (mrads)	$\sigma_{ m exp}$ (μ barns)	$\sigma_{ m MC}$ (μ barns)	Ratio
± 55	115.86	129.97	1.1086
20 to 40	123.14	131.00	1.0512
0 to 20	169.85	182.41	1.0614
-20 to 0	161.85	180.68	1.1032
-35 to -20	116.92	134.73	1.1387
-55 to -35	60.10	64.38	1.0586

- Unknown radiation lengths (ice, etc.): $\sim 9.7\%$.
- Scattering angle, there are possible checks: $\sim 6.6\%$.
- Sensitivity to θ_{tg} acceptance: < 2% or ~ 5%.
- Difference in unrastered versus rastered: $\sim 1-2\%$.
- The 1.096 GeV data is not useful due to background.

Still To Do

- \checkmark ³He and N₂ elastic analysis (Jaideep).
- **•** Finalize systematics for 12 C elastic analysis.
- Acceptance study at 9°.

³*He Asymmetry Analysis*

- Replayed all the second period data at 6° and 9° .
 - 6°: 276 GB.
 - **9**°: **356 GB**.
- Overview:
 - Began with tight PID cuts.
 - Checked A_Q and A_{LT} .
 - Removed short runs < 0.5 M events.</p>
 - Used dilution factors from Xiaohui Zhan.
 - Obtained $P_{\rm t}$ and $P_{\rm b}$ from Jaideep.

Charge Asymmetry

Livetime Asymmetry

³He Asymmetries

No Radiative Corrections!

³He Asymmetries

PID Cut Study

PID Cut Study

W Bin Size Comparison

Pol. 3 He Collaboration Meeting – p.18/21

False Asymmetry

From nitrogen and empty reference cell runs.

False Asymmetry

Cell Comparison

Pol. ³He Collaboration Meeting – p.20/21

Remaining Items

- Check Pion Asymmetries.
- Resolve issue with prescale factors and uncertainties (T. Holmstrom).
- Write Asymmetry and BCM technotes.

Near Term Plan

- Acceptance study at 9°.
- PID cut effi ciency study.
- Collimator background study (T. Holmstrom).
- Unpolarized cross section analysis.
- Radiative Corrections (R. Feuerbach).