
DAQ software used during HAPPEX-II

Bryan Moffit

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

This document describes in detail the software that was used by the HAPPEX data aqcuisition
(DAQ) system during HAPPEX-II.

HAPPEX Internal Technote 24 June 2007

Contents

1 Introduction 4

2 CODA 5

2.1 startEpicsLogger 5

2.2 getruninfo 5

2.3 getrunnumber 6

2.4 fastEpicsLogger 6

2.5 createDB 7

2.6 startAnalyzer 8

2.7 epicsRunStart parity 9

2.8 halogRunStart parity 9

2.9 end clean 10

2.10 epicsRunEnd parity 10

2.11 halogRunEnd parity 11

2.12 endAnalyzer 11

2.13 cleanAna 12

3 Parity Feedback 13

3.1 feedback 13

3.2 panFFB 13

3.3 epics feedback 14

3.4 makeFFBDB 15

3.5 makeFFBDB IHWP 15

3.6 flipper 16

4 PANGUIN 17

4.1 panguin 17

2

4.2 pan online 17

4.3 panguin analyzer 18

4.4 online.C 18

5 Birdfeed 19

5.1 runbird 19

5.2 birdfeed.tcl 19

5.3 getpanFFB asym 20

5.4 chkfeedback 20

3

1 Introduction

This document is meant to provide some detail for most of the DAQ software that was used
during HAPPEX-II. Hopefully, it will help with the effort to prepare for future HAPPEX
type experiments.

The provided locations of all files are those that existed during HAPPEX-II and may not
necessarily exist today.

A tarball (using the same directory structure as described in this document) is provided at
http://hallaweb.jlab.org/experiment/HAPPEX/docs/HAPPEXDAQ/happex daq software.tgz.

4

http://hallaweb.jlab.org/experiment/HAPPEX/docs/HAPPEXDAQ/happex_daq_software.tgz

2 CODA

Presented here are the scripts that are run by CODA during the start and end of run
sequences.

2.1 startEpicsLogger

Language: shell script
Requires: N/A
Location: ∼apar/scripts/
Started by: CODA EB (GO)
Control with: N/A
Configuration Files: N/A
Makes calls to: getruninfo

fastEpicsLogger
Output Files: N/A
Log Files: N/A

Description:

Simple script to execute getruninfo and fastEpicsLogger.

2.2 getruninfo

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: startEpicsLogger
Control with: N/A
Configuration Files: N/A
Makes calls to: ∼apar/scripts/getrunnumber
Output Files: ∼apar/datafile/rcRunNumber
Log Files: N/A

Description:

Simple script to execute getrunnumber, then store the runnumber into the rcRunNumber.

5

2.3 getrunnumber

Language: shell script
Requires: CODA dpwish
Location: ∼apar/scripts/
Started by: getruninfo
Control with: N/A
Configuration Files: N/A
Makes calls to: CODA MSQL database
Output Files: N/A
Log Files: N/A

Description:

Shell script that executes dpwish (from CODA distribution) to obtain the current run-
number from CODA’s MSQL database.

2.4 fastEpicsLogger

Language: bash script
Requires: EPICS caget

fileToEvent
Location: ∼apar/scripts/
Started by: startEpicsLogger
Control with: N/A
Configuration Files: N/A
Makes calls to: caget
Output Files: ∼apar/epics/fast.epics

(inserted into datastream with fileToEvent)
Log Files: N/A

Description:

This script contains various EPICS variables which are read by caget then appended
to fast.epics. This file is then inserted into the datastream (as event type 131) using
fileToEvent. Insertion is made every 4 seconds.

6

2.5 createDB

Language: perl script
Requires: perl lib: GetOpt

EPICS caget
Location: ∼apar/db/scripts/
Started by: CODA EB (GO)
Control with: one argument: –C <CODA configuration>
Configuration Files: Many. Described below.
Makes calls to: ∼apar/db/scripts/getHelicity

∼apar/db/scripts/getrunnumber
Output Files: ∼apar/db/parity$yr $run.db
Log Files: ∼apar/db/error.log

Description:

In order to Analyze a run correctly, a database must be constructed that accurately defines
the devices used, oversampling factor, helicity mode, etc., etc.. A PERL script (createDB)
has been written to serve just this purpose. The basic function of this script is to use the
type of CODA configuration to determine specific files to combine together. Below is a
description of those files with their location.

KEY:

$config CODA Configuration
$oversample Total # of Integration Gates per Helicity Window
$crate A Specific Crate, defined in a CODA Configuration

In all cases, if a specific file is not found.. a default file will be used.

• ∼apar/db/config/$config.def
Contains the Crates that are included in a given configuration.

• ∼apar/db/cuts/$config $oversample.cuts
Contains the cut definitions for a given configuration and oversample value. Also con-
tains ”curmon” (indicates which devices to use for beam cuts)

• ∼apar/db/dacnoise/$crate.dacnoise
Contains calibrated dacnoise slopes for ADCs for a given crate.

• ∼apar/db/datamap/$crate.datamap
Contains the datamap for a given crate. If the CODA Configuration is a single crate
configuration, the TIR and Timing board lines will be replaced with default lines (in
order for PAN to retreive important timing and helicity information).

• ∼apar/db/helicity/current.helicity
Helicity information is retreived automatically from EPICS when createDB is run, and
saved to this file, at the beginning of each run

• ∼apar/db/misc/$config.misc

7

Contains so miscellaneous arguments (e.g. anatype, blindstring) for a given configura-
tion.

• ∼apar/db/ped/$crate $oversample.ped
Contains pedestals for ADCs and Scalers for a given crate and oversample value.

• ∼apar/db/timebrd/timebrd.cfg
Contains information from a timing board (Counting House for Multi-crate configura-
tions): Oversample, Integrate Gate, and Ramp Delay. This file is updated automatically
at the beginning of each run.

2.6 startAnalyzer

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: CODA EB (GO)
Control with: N/A
Configuration Files: ∼apar/feedback/feedback enable.dat

∼apar/bryan/panguin/pan/panguin enable.dat
Makes calls to: caget

makeFFBDB IHWP
panFFB
pan online (script for panguin backend)

Output Files: N/A
Log Files: ∼apar/feedback/feedback.log

∼apar/feedback/runlog/ffb $run.log

Description:

Script the handle the execution of the online PAN programs. Checks the configuration
files to see if those programs should be run. For panFFB: Runs caget to obtain the current
state of the IHWP, then runs makeFFBDB IHWP with the appropriate argument. For
the panguin backend: simply executes the pan online script.

8

2.7 epicsRunStart parity

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: CODA EB (GO)
Control with: one argument: CODA Configuration
Configuration Files: N/A
Makes calls to: ∼apar/scripts/getruninfo

∼apar/scripts/halogRunStart parity
Output Files: N/A
Log Files: N/A

Description:

Simple script execute halogRunStart parity. CODA Configuration (passed from CODA
EB) argument is passed on to halogRunStart parity.

2.8 halogRunStart parity

Language: bash script
Requires: caget
Location: ∼apar/scripts/
Started by: epicsRunStart parity
Control with: one argument: CODA configuration
Configuration Files: N/A
Makes calls to: caget

dpwish ∼apar/scripts/guis/runstart.tcl
Output Files: ∼apar/epics/runfiles/halog start $run.epics

∼apar/epics/runfiles/Start of Run $run.epics
Log Files:

Description:

Script that handles the automatic Start of Parity Run HALOG entry. If not commented
out, will display a GUI for shift worker. Saves several relevant EPICS variables to the
output files, then submits them to the HALOG. Has a line to process the output files and
submit them to a MySQL database. Also has another line to add the run to a MySQL
database that takes care of the runlist.

9

2.9 end clean

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: CODA EB (END)
Control with: N/A
Configuration Files: N/A
Makes calls to: N/A
Output Files: N/A
Log Files: N/A

Description:

Script to handle the process killing of fastEpicsLogger and any caget processes.

2.10 epicsRunEnd parity

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: CODA EB (GO)
Control with: one argument: CODA Configuration
Configuration Files: N/A
Makes calls to: ∼apar/scripts/halogRunEnd parity
Output Files: N/A
Log Files: N/A

Description:

Simple script execute halogRunEnd parity. CODA Configuration (passed from CODA
EB) argument is passed on to halogRunEnd parity.

10

2.11 halogRunEnd parity

Language: bash script
Requires: caget
Location: ∼apar/scripts/
Started by: epicsRunStart parity
Control with: one argument: CODA configuration
Configuration Files: N/A
Makes calls to: caget

dpwish ∼apar/scripts/guis/runend.tcl
Output Files: ∼apar/epics/runfiles/halog end $run.epics

∼apar/epics/runfiles/End of Parity Run $run.epics
Log Files:

Description:

Script that handles the automatic End of Parity Run HALOG entry. If not commented
out, will display a GUI for shift worker. Saves several relevant EPICS variables to the
output files, then submits them to the HALOG. Has a line to process the output files and
submit them to a MySQL database.

2.12 endAnalyzer

Language: bash script
Requires: ∼apar/scripts/cleanAna
Location: ∼apar/scripts/
Started by: CODA EB (END)
Control with: N/A
Configuration Files: N/A
Makes calls to: ∼apar/scripts/cleanAna
Output Files: N/A
Log Files: N/A

Description:

Makes four system beeps. Removes pan.root softlink used by panguin backend. Execute
cleanAna with panFFB as the argument.

11

2.13 cleanAna

Language: bash script
Requires: N/A
Location: ∼apar/scripts/
Started by: endAnalyzer
Control with: one argument: process name
Configuration Files: N/A
Makes calls to: kill
Output Files: N/A
Log Files: N/A

Description:

Script that attempts to end the provided process with a SIGHUP 31.

12

3 Parity Feedback

Feedback on charge asymmetry (AQ) and position differences (∆x, ∆y) is mainly handled
by a background process running PAN on data that is retrieved from the Event Transfer
(ET) System (which is initiated in CODA, see section 2). This PAN process then com-
municates to EPICS through a shell command. This section goes over each program that
controls and aids this process.

3.1 feedback

Language: bash script
Requires: N/A
Location: ∼apar/bin/
Started by: user
Control with: one argument: on/off
Configuration Files: N/A
Makes calls to: N/A
Output Files: ∼apar/feedback/feedback enable.dat
Log Files: ∼apar/feedback/feedback.log

Description:

This command effectively turns enables/disables feedback before the start of a CODA run.
It simply puts a 1 (feedback on) or 0 (feedback off) into∼apar/feedback/feedback enable.dat.
An entry (with date) is also appended to ∼apar/feedback/feedback.log.

3.2 panFFB

Language: C++
Requires: libcoda.a and pan compiled with ET System (ONLINE=1)
Location: ∼apar/feedback/
Started by: ∼apar/scripts/startAnalyzer
Control with: ∼apar/bin/feedback
Configuration Files: ∼apar/db/control.db (created with makePANFFB)

∼apar/feedback/runDB/control.db $run (copy)
Makes calls to: ∼apar/epics/epics feedback
Output Files: N/A
Log Files: ∼apar/feedback/feedback.log

∼apar/feedback/runlog/ffb $run.log

Description:

13

Analyzes data acquired from ET and computes changes (differences) to source element
DAC values. The AQ or ∆x response to DAC values must by added as parameters to
∼apar/db/control.db (this is handled with makeFFBDB).

panFFB is simply a version of PAN that has been compiled with the ET system (ONLINE=1
in the codaclass/Makefile and src/Makefile). After compilation, copy the executable to the
above Location.

3.3 epics feedback

Language: bash script
Requires: bc (CLI calculator), caget, caput
Location: ∼apar/epics/
Started by: user or panFFB
Control with: two input arguments
Configuration Files: N/A
Makes calls to: EPICS (caget and caput)
Output Files: N/A
Log Files: ∼apar/feedback/feedback.log
Description:

Makes changes to source DAC values using EPICS caget and caput. An entry (with
date) is also appended to ∼apar/feedback/feedback.log. First argument is the source
DAC to control, second is how much to change to current value. For HAPPEX-II, the
first argument:

1 IGLdac3:ao_7 IA

2 IGLdac3:ao_5 PZT X

3 IGLdac3:ao_6 PZT Y

4 IGLdac2:G2Ch3Pos IGLdac2:G2Ch4Neg PITA

5 IGLdac3:ao_4 IA-HallC

The version provided was used in HAPPEX-II (2005) to provide:

• IA feedback
• Hall-C IA feedback
• PITA feedback

PZT feedback was tested in previous years (2002-2003), but has not been tested since.

14

3.4 makeFFBDB

Language: perl script
Requires: perl libs:FindBin, TaFileName
Location: ∼apar/feedback/
Started by: startAnalyzer
Control with: N/A
Configuration Files: ∼apar/feedback/striplist.txt

∼apar/feedback/panFFB.db
∼apar/db/parity$yr $run.db

Makes calls to: N/A
Output Files: ∼apar/db/control.db

∼apar/feedback/runDB/control.db $run (copy)
Log Files: N/A

Description:

Modifies the PAN database file, created by createDB, to only include the parameters
and devices needed for parity feedback. striplist.txt contains items to copy exactly to
control.db. panFFB.db contains the exact lines to append to control.db. See examples for
striplist.txt and panFFB.db.

3.5 makeFFBDB IHWP

Language: perl script
Requires: perl libs:FindBin, TaFileName
Location: ∼apar/feedback/
Started by: startAnalyzer
Control with: one argument: <IHWP State>
Configuration Files: ∼apar/feedback/striplist.txt

∼apar/feedback/panFFB.db IN
∼apar/feedback/panFFB.db OUT
∼apar/db/parity$yr $run.db

Makes calls to:
Output Files: ∼apar/db/control.db

∼apar/feedback/runDB/control.db $run (copy)
Log Files: N/A

Description:

Same as makeFFBDB, but uses the IHWP state (IN or OUT) as an argument. This
argument only effects with panFFB.db {IN,OUT} to use. See examples for striplist.txt
and panFFB.db {IN,OUT}.

15

3.6 flipper

Language: (1) bash script (flipper)
(2) tcl/tk script (flipper.tcl)

Requires: tcl/tk lib: BLT
EPICS extension: et wish

Location: ∼apar/bryan/birdfeed/with ca/
Started by: user
Control with: N/A
Configuration Files: ∼apar/feedback/IHWP.{IN,OUT}
Makes calls to: EPICS (directly with et wish)
Output Files: N/A
Log Files: N/A

Description:

Set of scripts to help automate changes to source settings after the IHWP is inserted or
extracted. Bash script simply sets up environment variables for the tcl/tk script (including
an option to increment the Slug Number). tcl/tk script looks at the current IHWP setting,
reads the appropriate IHWP.{IN,OUT}, and makes the changes to the source elements.

16

4 PANGUIN

PANGUIN is basically an implementation of the onlineGUI that updates its plots based
on the updates made to a ROOTfile by a backend process.

4.1 panguin

Language: bash scripts
Requires: N/A
Location: ∼apar/bin/
Started by: user
Control with: one argument: on/off
Configuration Files: N/A
Makes calls to: N/A
Output Files: ∼apar/bryan/panguin/pan/panguin enable.dat
Log Files: N/A

Description:

This command effectively turns enables/disables panguin before the start of a CODA run.
It simply puts a 1 (feedback on) or 0 (feedback off) into
∼apar/bryan/panguin/pan/panguin enable.dat.

4.2 pan online

Language: bash script
Requires: panguin analyzer
Location: ∼apar/bryan/panguin/pan/
Started by: startAnalyzer
Control with: panguin
Configuration Files: N/A
Makes calls to: panguin analyzer

getrunnumber
Output Files: ∼apar/bryan/panguin/pan/ROOTfiles/parity06 $run standard.root

∼apar/HAPPEX/pan/pan.root (softlink)
Log Files: ∼apar/bryan/panguin/pan/output/out $run.txt

Description:

Script to handle the execution of panguin analyzer and update the softlink of the ROOT-
file to pan.root. Also removed older ROOTfiles generated by previous processes.

17

4.3 panguin analyzer

Language: C++
Requires: N/A
Location: ∼apar/bryan/panguin/pan/
Started by: pan online
Control with: panguin
Configuration Files: ∼apar/db/parity$yr $run.db
Makes calls to: N/A
Output Files: ∼apar/bryan/panguin/pan/ROOTfiles/parity$yr $run standard.root

∼apar/HAPPEX/pan/pan.root
Log Files: ∼apar/bryan/panguin/pan/output/out $run.txt

Description:

Program to analyze data from ET, and store it to a ROOTfile (updating every 100 helicity
pairs).

panguin analyzer is simply a version of PAN that has been compiled with the ET system
(ONLINE=1 in the codaclass/Makefile and src/Makefile). After compilation, copy the
executable to the above Location.

4.4 online.C

Language: C++
Requires: ROOT/CINT
Location: ∼apar/HAPPEX/pan/panguin
Started by: user
Control with: N/A
Configuration Files: /apar/HAPPEX/pan/panguin/*.cfg
Makes calls to: N/A
Output Files: N/A
Log Files: N/A

Description:

ROOT script to generate a GUI that looks at TTree variables or histograms stored in a
ROOTfile. In “watchfile” mode, will continuously update its plots corresponding to the
updates made to the ROOTfile. For the HAPPEX-II configuration, it watched pan.root
(a softlink to the real ROOTfile generated by panguin analyzer). Documentation may be
found here: http://www.jlab.org/∼moffit/onlineGUI/

18

http://www.jlab.org/~moffit/onlineGUI/

5 Birdfeed

birdfeed (sometimes referred to as: runbird) is simply a monitor (just watches stuff) for
parity feeedback.

5.1 runbird

Language: bash script
Requires: N/A
Location: ∼apar/bryan/birdfeed/with ca/
Started by: user
Control with: N/A
Configuration Files: N/A
Makes calls to: ∼apar/bryan/birdfeed/with ca/birdfeed
Output Files: N/A
Log Files: N/A

Description:

Script to set up enviroment variables and execute the birdfeed.tcl script.

5.2 birdfeed.tcl

Language: tcl/tk
Requires: tcl/tk libs: BLT

EPICS extension: et wish
Location: ∼apar/bryan/birdfeed/with ca/
Started by: runbird
Control with: N/A
Configuration Files: N/A
Makes calls to: EPICS (directly with et wish)

getpanFFB asym
chkfeedback

Output Files: N/A
Log Files: N/A

Description:

Script to display a GUI and monitor EPICS variables and various log outputs generated
by panFFB.

19

5.3 getpanFFB asym

Language: perl script
Requires: N/A
Location: ∼apar/bryan/birdfeed/with ca/
Started by: birdfeed.tcl
Control with: two arguments: $runnumber $device
Configuration Files: N/A
Makes calls to: N/A
Output Files: N/A
Log Files: N/A

Description:

Script to scan a panFFB run log (/adaqfs/home/apar/feedback/runlog/ffb $runnumber.log)
for the measured beam asymmetries.

5.4 chkfeedback

Language: perl script
Requires: N/A
Location: ∼apar/bryan/birdfeed/with ca/
Started by: birdfeed.tcl
Control with: N/A
Configuration Files: N/A
Makes calls to: N/A
Output Files: N/A
Log Files: N/A

Description:

Script that checks the status of HAPPEX feedback (looking for it’s process ID in the
process list, and checking the timestamp on the current panFFB log).

20

	Introduction
	CODA
	startEpicsLogger
	getruninfo
	getrunnumber
	fastEpicsLogger
	createDB
	startAnalyzer
	epicsRunStart_parity
	halogRunStart_parity
	end_clean
	epicsRunEnd_parity
	halogRunEnd_parity
	endAnalyzer
	cleanAna

	Parity Feedback
	feedback
	panFFB
	epics_feedback
	makeFFBDB
	makeFFBDB_IHWP
	flipper

	PANGUIN
	panguin
	pan_online
	panguin_analyzer
	online.C

	Birdfeed
	runbird
	birdfeed.tcl
	getpanFFB_asym
	chkfeedback

