The High-finesse Fabry-Perot Cavity

Abdurahim Rakhman

Advisors:

Prof. Paul Souder, Dr. Sirish Nanda

PREx Collaboration Meeting 12/07/2007

Outline

- Compton Upgrade at Jefferson Lab
- Principles of the Fabry-Perot Cavity
- Cavity Parameters & Prometheus Laser
- Mode Matching
- Cavity Locking
- Conclusions and Future Plans

Compton Polarimeter:

Compton Upgrade:

Gain: 7000 15000

Parameter	Symbol	Specification
Fabry-Perot Resonator		
Finesse	F	49,000
Power Gain	G	14,990
Q-factor	Q	1.8×10^{11}
Length	L	0.35 m
Free Spectral Range	$\Delta \nu_{FSR}$	153 MHz
Cavity Bandwidth	$\delta \nu_{cav}$	3.12 kHz
Beam Waist Size	σ	$60 \ \mu m$

Previously locking was successful with a $G \sim 2,000$

Current Cavity Mirror:

Los Gatos Research, Inc. (LGR) Type: Plano-Concave Radius of Curvature: 1 m Reflectivity: 99.987±0.001% G=6,000 F=18,000

Prometheus Laser:

Innolight GmbH, Germany

- •809 nm Pump Diodes
- •1064 nm Nd:YAG
- •532 nm SHG via PPKTP

Wavelength	532 nm
Output power	100 mW
Mode	TEM00
Beam roundness	<1.1
Beam diameter	0.38 mm
Beam divergence	2.8 mrad
Polarization	>100:1
Thermal tuning coefficient	-6 GHz/K
Thermal tuning range	60 GHz
Thermal response bandwidth	1 Hz
PZT tuning coefficient	$2 \mathrm{MHz/V}$
PZT tuning range	±200 MHz
PZT response bandwidth	100 kHz
Spectral line width	1 kHz/100 ms
Coherence length	>1 km
Frequency drift	2 MHz/min
Relative intensity noise (RIN)	> -90 dB/Hz
Noise eater option RIN	> -140 dB/Hz

Prometheus Laser Profile:

Beam is highly elliptic, circularization is needed

Before

After

Mode-Matching:

- laser mode (beam) should match the cavity resonator mode
- beam waist at the center should match the natural waist of the cavity

TEM00 mode

OptoCad:

FORTRAN90 program for tracing Gaussian beams computes the parameters of the optical system

optoCad (v 0.84h), 05 Dec 2007, gcpc.ps Green cavity optical layout by OptoCad

Complete ray tracing by OptoCad (in development):

Pound-Drever-Hall (PDH) Locking Scheme:

Detect phase of the resonance from reflected light Feedback to tunable element to stay "locked" to resonance

Digital CavLock Electronics (Homemade):

previous

current

Search / scan / lock logic:

Cavity Locking:

Conclusions:

- Prometheus Laser has been reprofiled
- Mode matching of LGR mirror has been accomplished
- Complete ray tracing of the system by OptoCad is in development
- Cavity feedback loop tuning in progress
- Short duration lock has been achieved

Thank you !

Cavity Parameters:

Free Spectral Range :
$$FSR = \frac{c}{2d}$$

Gain: $G = \frac{\left(R_1R_2\right)^{\frac{1}{4}}}{1 - \sqrt{R_1R_2}}$

Finesse:
$$F = \frac{FSR}{FWHM} = \pi \bullet G$$

Band Width: $\Delta v = \frac{FSR}{F}$