HAPPEX-III Issues

Proposed Measurement: HAPPEX High-Q²

Configuration:

- 20 cm cryogenic Hydrogen Target
- 100 µA
- 80% polarization

Kinematics: E = 3.42 GeV, θ =13.7°, E' = 3.1 GeV, Q² = 0.6 GeV²

Rate: 1.1 MHz per arm (3700 ppm width per arm, 2600 ppm per pair)

A_{PV} (assuming no strange vector FF):

 $A_{pv}^{NS} = -22.1 \text{ ppm} \pm 0.62 \text{ ppm}$ (form factor/radiative correction)

Anticipated results:

 $\delta A_{PV} = 0.55 \text{ ppm (stat)} \pm 0.33 \text{ ppm (syst)}$ $\delta (G_F^s + 0.48 G_M^s) = 0.0070 \text{ (stat)} \pm 0.0042 \text{ (syst)} \pm 0.0079 \text{ (FF)}$

Key Improvements
over H-III

- Precision polarimetry
 - Compton improvements: δ(P_{beam}) = 1%
- Q² determination
 - Nuclear Recoil method: $\delta(Q^2) = 0.5\%$
- Linearity
- Background

simulation required soon for 3.48 GeV

Experimental Error Budget

	$\delta A_{PV} / A_{PV}$	$\delta(G_{E}s + 0.48G_{M}s)$	
Polarization	1.0%	0.0028	*
Q ² Measurement	0.8%	0.0022	*
Backgrounds	0.3%	0.0009	*
Linearity	0.6%	0.0017	*
Finite Acceptance	0.3%	0.0009	*
False Asymmetries	0.3%	0.0009	"easy" (big A _{pv})
Total Systematic	1.5%	0.0042	
Statistics	2.5%	0.0070	
Total Experimental	2.9%	0.0082	

^{*} small improvement over H-II

^{*} significant improvement over H-II

Estimated Precision

	$\delta A_{PV} / A_{PV}$	$\delta(G_E s + 0.48G_M s)$
Total Systematic	1.5%	0.0042
Statistics	2.5%	0.0070
Total Experimental	2.9%	0.0082
Axial FF	1.5%	0.0042
EM FF	2.4%	0.0067
Total FF	2.8%	0.0079
TOTAL:	4.0%	0.011

H-III Critical Issues

- Compton Polarimetry *(many)
- Moller Polarimetry *(Javier)
- PMT Linearity
- Detectors, detector mounts *(Anatoly)
- Optics / Q² normalization
- Targets
- Transverse Asymmetry
- Effects of high luminosity

Compton Polarimeter High intensity, low energy, sub-1% electron beam polarimetry

Cavity

- Will be IR, but must have a cavity working for H-III at ~1kW.
- System presently functioning at about that level

New Photodetector

- Requires electron detector coincidence for calibration (probably).
- High light yield from GSO, will enable high-precision counting at 3.5 GeV?

Electron detector

- "zero-crossing" method (practiced in H-II analysis) should be <1% systematic uncertainty
- If e detector electronics fail, can old electronics be used?

Software

- Software upgrade on old DAQ halted awaiting new detector data
- New (integrating) DAQ software has evolved significantly, but long road to production

Integrating analysis

Response function test facility/plan

Moller Polarimeter

Upgrade to 1% at low currents for PREX

- Target / Magnet upgrade must occur together, for a functional polarimeter during H-III
- Compton cross-check, but also Wien angle optimization is critical!
- Addtional upgrades (post H-III): duty factor, DAQ, detectors to handle determination at higher cathode currents.

Transverse Asymmetry

- Expected (G0, H-III measurements) to be around 10 ppm (half of A_{PV})
- Horizontal transverse polarization is dangerous for unmeasurable vertical asymmetry:
 - 99.5% longitudinal -> 10% transverse
 - 50%(A^T) * 10%(pol) * 16% (vertical bite) * 10% (acceptance) = 0.08% systematic uncertainty
 - Harmless, unless acceptance cancellation is poor _and_ initial polarization is poor.
 - 99% L -> 15% T, 93% L -> 35% T. Measurement of size of A^T and vertical acceptance study will be required.
- Vertical transverse polarization less dangerous. Mott can measure to ~2%

H-III spin rotation

Hall	# of passes	Energy (MeV)
Linac		1140.00
A	3	3484.12
B C	5 4	5764.12 4624.12

21.70

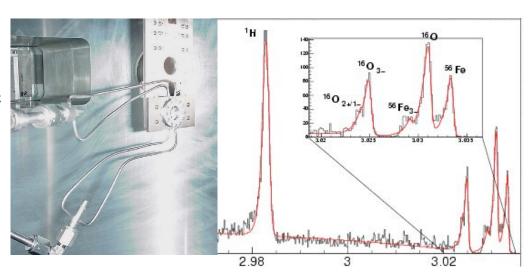
 α

This tool is a little imprecise, but it seems that at 3.48 GeV (3 pass), Hall B will have 25% reduction in polarization if Hall A is optimized.

Source Angle Theta-A Theta-B Theta-C Pol-A(%) Pol-B(%) Pol-C (%) 25.05

7((7 (00

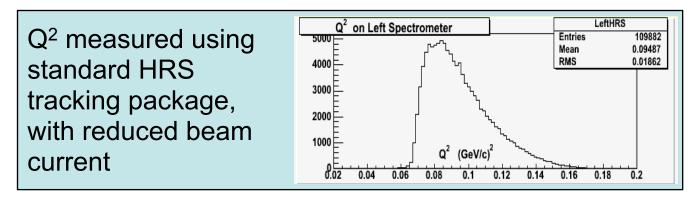
0.00	21.78	59.52	35.05	76.67	6.08	-98.68
5.00	21.81	59.55	35.08	81.97	14.75	-96.89
10.00	21.83	59.57	35.11	86.65	23.32	-94.37
15.00	21.86	59.60	35.14	90.67	31.70	-91.13
20.00	21.89	59.63	35.16	94.00	39.85	-87.19
25.00	21.92	59.66	35.19	96.62	47.69	-82.59
30.00	21.94	59.69	35.22	98.50	55.17	-77.36
35.00	21.97	59.71	35.25	99.63	62.23	-71.55
40.00	22.00	59.74	35.27	100.00	68.82	-65.19
45.00	22.03	59.77	35.30	99.61	74.88	-58.33
50.00	22.06	59.80	35.33	98.46	80.37	-51.03
55.00	22.08	59.82	35.36	96.57	85.25	-43.34
60.00	22.11	59.85	35.39	93.94	89.48	-35.32
63.23	22.13	59.87	35.40	91.85	91.86	-29.99


Optics Calibration

Goal: $\delta_{\mathcal{Q}^2} < 0.5\%$

- Optics calibration
 - sieve/no sieve with C, tantalum... especially multi-foil
 - -3 pass
- Pointing (angle) measurement, δθ < 0.25%
 - required in near real-time for beam alignment? (maybe more important for PREX... "neutral axis")
 - requires 1 pass beam for sufficient rates
 - water cell + Ta, sieve
 - will additional 1-pass optics data be required?

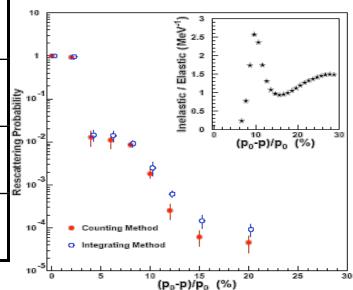
Nuclear recoil, using water cell optics target: δp between elastic and excited state peaks reduces systematic error from spectrometer calibration.


At Q²~0.1 GeV² (6°) in 2004: Achieved $\delta\theta$ ~ 0.3%

Measuring Q²

Goal: $\delta_{Q^2} < 0.5\%$

- Central scattering angle must be measured to $\delta\theta$ < 0.25%
- Detector-response weighted rate distribution
- 1 MHz production rate -> 10 kHz rate over H elastic peak at 1uA
- Stability? Frequent remeasurement may be required


Also: Asymmetry distribution must be averaged over finite (detector weighted) acceptance

-> simulation task

Backgrounds

		Al Quasi- elastic	Spectrometer Rescatter
HAPPEX-I (0.48 GeV ²)	fraction	1.4%	0.2%
	δ(A _{PV})/ A _{PV}	0.3%	0.1%
This proposal (0.6 GeV ²)	fraction	1.4%	0.4%
	δ(A _{PV})/ A _{PV}	0.3%	0.1%

The probability of rescattering inside the spectrometer as measured by a dipole field scan

Measured using:

- Dedicated runs at low current
- Dedicated integrating runs

Also requires:

- careful target end-wall thickness measurements
- target density / gas target runs

Target

25 cm LH₂ cell 25 cm LD₂ cell

Need to minimize cell end-cap thickness

Current guess: 7 mil (LH2)

Careful measurement required. The more involved we are with Dave M's work, the better.

Other targets?
BeO viewer
multi-foil optics (C?)
Ta optics

Coordinate target choice with Lead test?

PMT linearity

- •0.6% PMT linearity requirement
- Beam monitor linearity less stringent for H-III (~1% desired)

PMT bench tests Luis's apparatus. Who does it?

In situ system

- Beam intensity modulation
 - 5-10% intensity at few Hz
- LED test system
 - Offset (static) LED to level
 - Pulsing LED
 - Beam off studies and in situ studies
- LED system, detector modifications to be done!

Source/Helicity-Correlated Beam

- Required precision is comparable to HAPPEX-He.
- Careful configuration required, but not highest priority for H-III
- New Request: ability to modulate beam intensity by 5-10% in short calibration runs.
- The H-III setup is very important for PREX for training/ practice and for detailed understanding of the source. The lumi detectors and beam monitors will be high precision, and allow a careful study of what problems PREX might face.

Schedule

Install start 6/15, "collab tests" 8/19 Commissioning 8/21 51 days from 8/26 - 10/25

A run-plan for commissioning must accommodate:

1-pass pointing measurement

- 1-pass PREX tests
- target-change
- 3-pass moller commissioning
- 3-pass optics

Are these compatible (cryo needed for PREX target?)

00/10/02	Junuay	Pown	IN I EVITI TIOMII	
08/17/09	Monday	Restore		
08/18/09	Tuesday	Restore		
08/19/09	Wednesday	Collab Tests		
08/20/09	Thursday	Collab Tests		
08/21/09	Friday	1.14	Commission	3.484/100/p
08/22/09	Saturday	1.14	<u>E05-109</u>	3.484/100/p
08/23/09	Sunday	1.14	Happex III	3.484/100/p
08/24/09	Monday	1.14	Commission	3.484/100/p
08/25/09	Tuesday	1.14	Commission	3.484/100/p
08/26/09	Wednesday	1.14	E05-109	3.484/100/p
08/27/09	Thursday	1.14	E05-109	3.484/100/p
08/28/09	Friday	1.14	E05-109	3.484/100/p
08/29/09	Saturday	1.14	E05-109	3.484/100/p
08/30/09	Sunday	1.14	E05-109	3.484/100/p
08/31/09	Monday	1.14	E05-109	3.484/100/p
09/01/09	Tuesday	1.14	E05-109	3.484/100/p
00/02/00	Mednecday	1 14	F05_100	2 494/100/n

Summary, to-do list

- All things Compton (IR cavity, e-det, DAQ, photon detector)
- Moller upgrade
- HAPPEX detector refurbishment
- PMT linearity studies
- PMT linearity system design/construction
- Optics / Q² plan
- Simulation (scattering angle!)
- Auxilliary target selection
- Monitor cryotarget progress
- Beam Modulation system
- DAQ maintenance (Need to train a second black-belt!)
- Feedback / Slow Controls / monitors
- Analysis Chain
- Run plan, including commissioning and PREX test