Hall A "LEDEX" RunPlan 1st Low-Energy Beam Period (E₀ = 362 MeV): July 24 – Aug. 20, 2006 E05-103

PROCEDURES FOR PHOTODISINTEGRATION PRODUCTION SEQUENCE

1. Change Spectrometer Settings and Take Pointing Measurements

- <u>Change HRS-L momentum & angle</u> settings to those specified for the current PRODUCTION Kinematics Point from the Kin-Table (follow Counting House "Whiteboard" instructions from J. Lerose for cycling quads when setting momentum; see "How To" on LEDEX webpage).
- Small collimator on HRS-L (will be already bolted in place).
- Check beam position on BPMs (few-tenths of mm on each); set Raster ON: ASK MCC for "6 x 4.5" (± ≈ 3 mm in X and Y)
- Set prescales T3=low; other prescales set high (65535) for low deadtime.
- Beam current of up to 20 microamps (up to max DAQ rate of 2-3 kHz)
- Set target to following settings, and take 5 minutes of pointing data at each setting (separate run for each target). (Target C "optics" is not the slanted one)

$\mathbf{p}_{\mathbf{h}}$	θ _h	Target	Time
(GeV/c)	(deg)		(min)
Look up for		C "optics"	5
current Kin. Point		4 cm Dummy	5
in Kin-Table		15 cm Dummy	5
		Tantalum	5

2. Production Measurement Sequence:

- <u>FPP Carbon Doors</u>: place either the 3" doors (if momentum above ~660 MeV/c), 1.5" doors (if central momentum between ~560-660 MeV/c) <u>or</u> NO doors (less than ~560 MeV/c) → check FPP Figure of Merit Simulation / runplan document.
- Check beam position on BPMs; ensure RASTER ON (see notes above).
- Set prescales T3=low; other prescales set high (65535) for low deadtime.
- Pre-run estimates are that Beam Currents between 1-4 µA will provide the max DAQ rate of between 2-3 kHz. In each case, the current should be adjusted to give max DAQ rate between 2-3 kHz.
- Set target/radiator to settings indicated in Table below, but:
 - **FIRST**: *TAKE A FEW MINUTES OF DATA AT EACH TARGET/RADIATOR* COMBINATION IN TABLE BELOW IN ORDER TO DETERMINE RATES (AND MAX CURRENT THAT CAN BE USED FOR EACH COMBO) – THEN STEFFEN'S LEXEX WEB-CALCULATOR WILL BE USED TO DETERMINE MODIFIED RUN TIMES FOR EACH RUN TYPE (the split of times given below is a rule-of-thumb split of luminosity into 50%-25%-25%-short).
 - **THEN:** take FPP data for the approximate times indicated below (final run times will come from above running of Steffen's calculator, using rates/currents for each point).

p _h (GeV/c)	θ _h (deg)	Target	Radiato r	DAQ Rate (kHz)	Time (hr)
As set in f	irst step	LD_2	IN	2-3 (max)	~6
above	(1.)	LD_2	NONE	2-3 (max)	~3
		LH ₂	IN	2-3 (max)	~3
		LH ₂	NONE	2-3 (max)	0.2