Hall A Calorimeter

M. Bevins June 9, 2006

- Overview
- Design
- Thermal Simulations
- Operational Limits
- Pictures
- Status/Schedule

Overview

- Hall A experiment requires *absolute* beam current be measured to the 0.5% 1.0% level for currents around 1μ A
 - Existing absolute current calibration system is designed for much greater currents and would require extrapolation for lower beam currents
- A device based on calorimetry has been built to satisfy this requirement
 - Idea is as follows:
 - Expose block of material to beam for a well defined period of time
 - Measure the temperature rise, due to this exposure
 - Using the heat capacity of the material one can determine the energy[Joules] deposited during the exposure
 - Knowing the beam energy[MeV], the beam current[μ A] can be extracted
 - Challenges:
 - Must limit energy loss via particle loss or thermal loss so that the beam current can be extracted without additional uncertainties
 - Heat capacity of materials are not known with the precision required here so it must be measured (used resistive heater inserted into calorimeter and precision power supply)

Overview

 Large copper and silver calorimeters built at SLAC in the late 1960's reportedly achieved precisions of about 1% and influenced the design of this calorimeter

- The optimal size shape and material for the calorimeter was driven by particle containment studies (P. Degtiarenko)
 - Tungsten 16cm dia x 16cm lg with entrance hole to minimize losses from backscattered particles
 - Thermal response time comparable to larger silver cylinder with equivalent particle loss (larger silver cyl not practical to fabricate)

- Calorimeter Material
 - Desire a fully dense, machinable part with good thermal properties
 - *Pure* tungsten shapes typically produced by powder met process (pressing and sintering followed by a extrusion or swaging operation to reduce porosity). Subsequent operations to reduce porosity are not practical for a part a large as ours.
 - Density and machinability can be improved by adding small amounts of Ni and Cu (W,Ni,Cu 95:3.5:1.5) but thermal properties are less desirable.
 - Found a WCu 90:10 pseudo-alloy that is nearly fully dense, homogenous, machinable, and has higher thermal conductivity than the above materials and still retains a high density.

• Hall A Layout

7

- Invasive nature of measurement requires the calorimeter material to be inserted into and out of the beam line
- An advanced compliant thermal interface material was identified that allows us to cool the slug by placing it in contact with a chilled plate rather than embedding or otherwise attaching cooling tubes
 - reduces heat loss from the slug and simplifies thermal response
- Operational Scheme

Three positions:

- 1. In beam
- 2. Equilibrating (slightly raised above chilled plate)
- 3. Cooling (resting on chilled plate)

• Mechanism

• Compliant Thermal Interface

- Consists of an array of aligned 7µm diameter carbon fibers
- Each fiber spans the gap between mating surfaces resulting in improved thermal performance over conventional particle filled pads
- High aspect ratio provides mechanical compliance (~.006" displacement at 15psi for .020" thk pad)
- Fibers are directly attached to cooling plate using a thermally conductive epoxy then encapsulated in a silicone.

Vacuum Vessel

- For initial modeling, a 2d transient axis-symmetric implicit finite difference (FD) model was written using Visual Basic for Applications in Excel (used to compare materials and estimate conductive and radiation loss)
- Lumped mass model used for initial cooldown estimates
- IDEAS TMG transient solver now available at Jlab was used to check results from FD code and conduct more detailed analyses

• IDEAS/TMG Thermal Model Results

- Peak temperature gradients and resulting thermal stresses were estimated using longitudinal ebeam absorption profile
 - Uniform radial distribution equivalent to 7.5mm x 7.5mm square raster

Operational Limits

- Device is an uncooled 2.5kW dump
- Three allowed positions:
 - In beam (completely raised)
 - Equilibrating, slightly raised of the cooling plate (intermediate position)
 - On cooling plate (completely lowered)
- Should not be inserted with beam on
- Should not be exposed to more than 2.5kW of beam
- Beam must be rastered
- Ion chambers/BLM will not like this device

Pictures - Device in Jlab machine shop

Pictures - Gold plated WCu cylinder

Pictures - WCu cylinder mounted in assy

Pictures - Cooling plate in vessel

Pictures - Device on test stand

Status/Schedule

- Calibrations in lab are going *very* well
- Complete heat capacity measurements by 6/15
- Survey group has marked mounting positions on Hall A girder
- All installation hardware is on hand (cartridges, caps, bellows, flanges, etc.)
- Modifications to Hall A girder completed by ~mid month
- Installation in Hall A last week of June
- Survey and alignment
- Cabling and checkout in the hall first two weeks of July