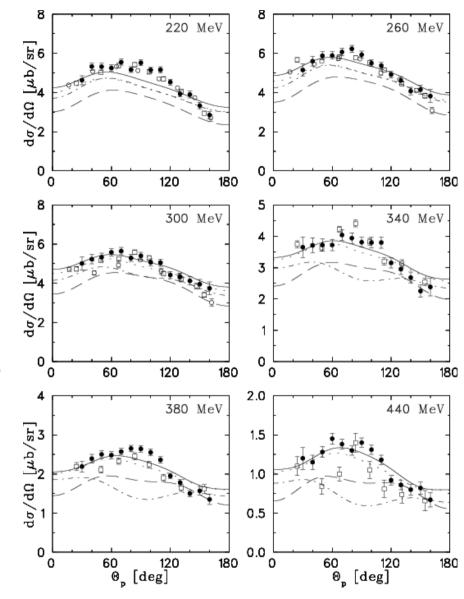
Low Energy Deuteron Photodisintegration

F Butaru, R Gilman, C Glashausser, D Higinbotham, X Jiang, E Kuchina, G Kumbartzki, J Glister, Z-E Meziani, S Nanda, R Ransome, B Reitz, A Saha, A Sarty, B Sawatzky, P Solvignon, E Schulte, S Strauch, H Yao JLab, Rutgers, St Marys, S Carolina, Temple **Motivation** Experimental details Time request Summary

Context

- Investigating and understanding the quark/hadron transition in nuclei has been a focus of JLab research
- Deuteron studies, particularly photo-disintegration, have been primary sources of information on the transition in nuclei; data above 1 GeV are not explained by conventional hadronic theory, but there are 5 competing quark model explanations
 - E89-012 (PRL 1998), E96-003 (PRL 2001), E99-008
 (PRC 2002) + 93-017: cross sections =
 - 89-019 (PRL 2001), 00-007 (prelim), 00-107 (jeopardy)
 - 03-101 (³He, in queue) Jlab PAC 28

Motivation - "Breakdown" in Hadronic Theory at Low Energy


- Low and intermediate energy deuteron photodisintegration has been extensively studied
 - Many (now mostly) consistent cross sections
 - ~1200 polarization data points

• Mostly Σ , p_v , and T

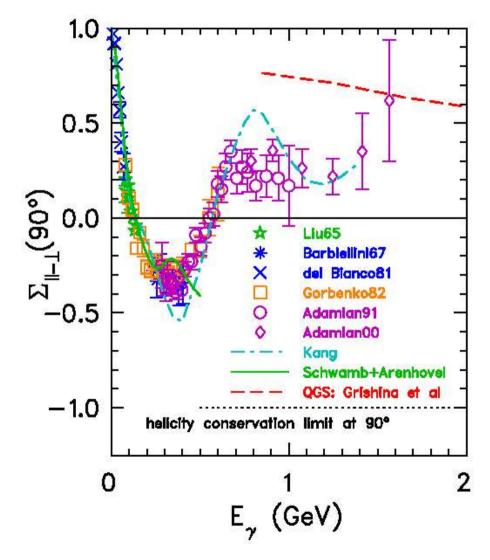
- Generally well understood with modern calculations, particularly the work of Schwamb and Arenhövel, that incorporate:
 - Modern NN potentials
 - Relativity
- (But...)

Agreement in $ds/d\Omega$

- Low-energy deuteron photodisintegration well understood in modern calculations, particularly the work of Schwamb and Arenhövel: figure from NPA 690, 682 (2001)
- Some poor data, but overall agreement with a few problem regions

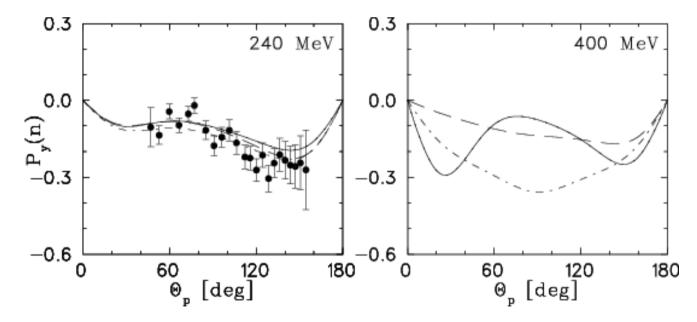
Jlab PAC 28

Agreement in Σ


- Low-energy deuteron photodisintegration well understood in modern calculations, particularly the work of Schwamb and Arenhövel: figure from NPA 690, 682 (2001)
- Overall agreement with a few problem regions

Jlab PAC 28

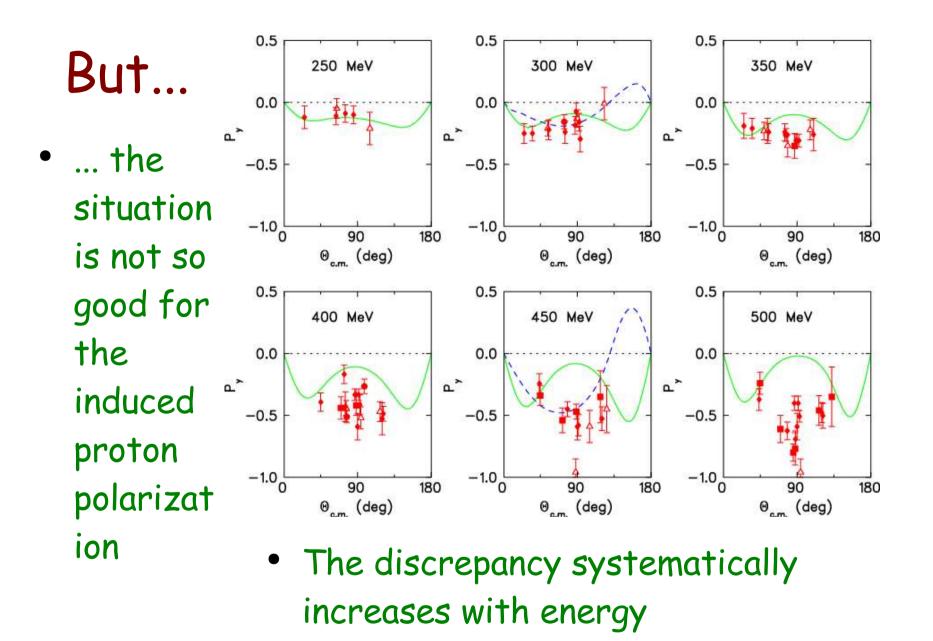
Agreement in $\boldsymbol{\Sigma}$


- Schwamb and
 Arenhövel model
 works up to ~ 500
 MeV
- Simpler Kang et al.
 in qualitative
 agreement up to
 1.4 GeV

Jlab PAC 28

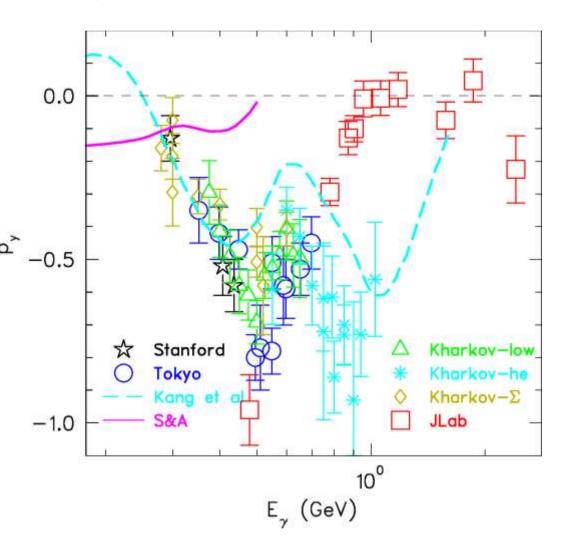
Agreement in p_y^n

 Low-energy deuteron photodisintegration is generally well understood with modern calculations, particularly the work of Schwamb and Arenhövel: figure from NPA 690, 682 (2001)


Jlab PAC 28

Agreement in C_{1}, C_{2} 0.5 Schwamb and Arenhövel agree ر[×] 0.0 with the Hall A Wijesooriya lab $\theta_{cm} = 90^{\circ} E89-019$ -0.5Wijesooriya cm data at 480 MeV, Schwamb & 1.0 and point towards Arenhovel higher energy data ر[™] 0.5 •Theory in c.m. 0.0 0.00 0.25 0.50 0.75 1.0

Jlab PAC 28


August 2005

 E_{γ} (GeV)

Problems Emphasized at 90°

- Neither hadronic calculation reproduces data well
- Induced
 polarization very ^{a^{*}} −0.5
 large near 500
 MeV
- Despite some poor p_y data, it is clear there is a problem Jlab PAC 28

Comment

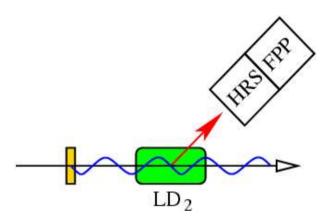
- The agreement with $C_{x'}$, but disagreement with $p_{y'}$ near 500 MeV, is odd - these two are the imaginary and real parts of the same combination of amplitudes $-\sigma(\theta) C_{x'} = 2 \operatorname{Re} \Sigma_{i=1,3} (F_{i,+}^* F_{i+3,-} + F_{i,-} F_{i+3,+}^*)$
 - $\sigma(\theta) p_{y} = 2 \operatorname{Im} \Sigma_{i=1,3} (F^{*}_{i,+}F_{i+3,-} + F_{i,-}F^{*}_{i+3,+})$
- Schwamb and Arenhövel predict the magnitude of this combination of amplitudes is small
- The data tells us that the magnitude is about as large as the cross section
- Perhaps the good agreement of the $C_{x'}$ (and $C_{z'}$) data point is fortuitous

Historical Note

- Most outstanding problem: the breakdown in the ability to describe the induced proton polarization p_y that starts at $E_y \sim 300 \text{ MeV}$ (W-md $\sim 280 \text{ MeV}$), leading to a peak at $\theta_{cm} = 90^{\circ}$, $E_y \sim 500 \text{ MeV}$ (W-md $\sim 570 \text{ MeV}$)
- This peak led to the "dibaryon" excitement of the 1970s-1980s; it remains an unexplained, leading indicator of the difficulty awaiting hadronic theory at higher energies

Motivation Summary

- While γd→pn at low energies, up to a few hundred MeV, is understood with conventional hadronic theory, it starts to fail at ~300 MeV, most obviously in p_y - a ~30 year old unsolved problem
- We propose a systematic set of high precision data, to more clearly see how the theory "breaks down", and give clues to the underlying physics


From H. Arenhövel

- ``I think your proposal is very interesting, because we certainly need more precise data on the outgoing nucleon polarization in that energy region for clarification of the various theoretical treatments. Therefore, I and also Michael Schwamb support wholeheartedly your proposal.''
- ``I only would not call it "low energy" but "intermediate energy". ''
- JLab theory review by F Gross and W van Orden also "enthusiastic" for similar reasons: ``This new data... would be of considerable help''

Jlab PAC 28

Experiment Overview

- 10 µA, ~400-500 MeV beam, polarized electrons
- 4% X_0 radiator (untagged γ 's)
- 15 cm LD₂ target
- P into HRS with FPP
- Done before: Hall A E89-019, E00-007, ...

• Low energy beam generally impossible to schedule, but target of opportunity: 1 pass beam into Hall A during low energy 1 pass GO run in Hall C

Feasibility - Already Done

- During E89-019, we had 3 hours of beam (2 1/3 hours of production data) at 528 MeV
- 1.2 kHz DAQ rate for 8 μ A, 4% photon radiator, LD₂
- The data obtained at $\theta^{cm} = 90^{\circ}$ were:

$$-P_v = -0.96 \pm 0.11$$

$$-C_{x'}^{cm} = 0.08 \pm 0.04$$

 $-C_{z'}^{cm} = 0.10 \pm 0.04$

• The total acceptance was about 80 MeV, the average photon energy was 480 MeV

Backgrounds

- There is 100 (140) MeV region of photon energy before start of $\gamma d \rightarrow pn\pi^0$ background at forward angles (90°)
- End caps rates low, removed by target cuts
- Pions rates are low, and pion momentum is too low at forward angles for pions to be seen
 - TOF in detector stack separates π/p
- In-target radiator is seen directly for angles < 20°, otherwise we have had no radiator background problems (no one-bounce problem) in Hall A

Spin-Transport "Problem"

- In HRS, with 45° bend, the spin transport p_y hole is for $\gamma = 1.115$, T = 108 MeV, p = 464 MeV/c
- Our momentum range is about 500 750 MeV/c, so the "natural" size of our p_y uncertainty is ~3 x the size of the polarization-transfer uncertainties

What is Needed?

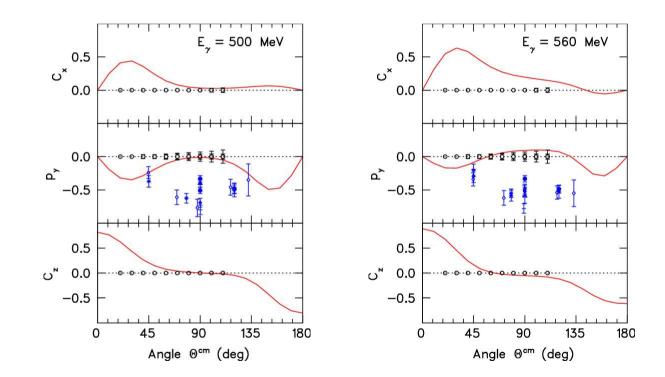
- Special GO run intended for summer 2006 shutdown offers opportunity for low energy beam
- G_{E}^{n} runs in Hall A spring 2006, hall reconfigured to standard setup summer 2006
- Photon radiator and cryo-target will need to be reinstalled: +few hours
- Front FPP chambers and electronics rack need to be reinstalled: ~3-4 days
 - We do the FPP check out and calibration
 - Expect FPP needed for other expts in 2006-2007
- FPP code currently is old ESPACE FORTRAN, need few months to convert to Hall A root C++ analyzer

Jlab PAC 28

20-MeV bins

- Observables strongly energy dependent, so we need small energy bins
- Observed p_y goes from -0.2 at 300 MeV to -1 at 500 MeV, or 0.08 / 20 MeV bin
- Predicted Cz' goes from 0.75 at 230 MeV to 0 at 500 MeV, or ~0.052 / 20 MeV bin
- Final binning will depend on observed energy dependences and measurement uncertainties
 - Estimated resolution for reconstructed Eγ ~ few MeV

Estimated Uncertainties


- For 585 MeV beam, with standard assumptions plus FPP performance and spin transport
- Uncertainties for each 20 MeV bin
- Program takes 11 days for production γd, plus
 3 days for FPP/ep calibrations (also gives P_{beam})
- 5 of 10 angle settings given below, as examples

Θcm (deg)	20	50	80	90	110
# settings	2	2	2	2	3
Typical Δp_y	0.03	0.04	0.06	0.06	0.12
Typical ∆c _{×'}	0.02	0.02	0.02	0.02	0.03
Typical $\Delta c_{z'}$	0.02	0.02	0.02	0.02	0.03

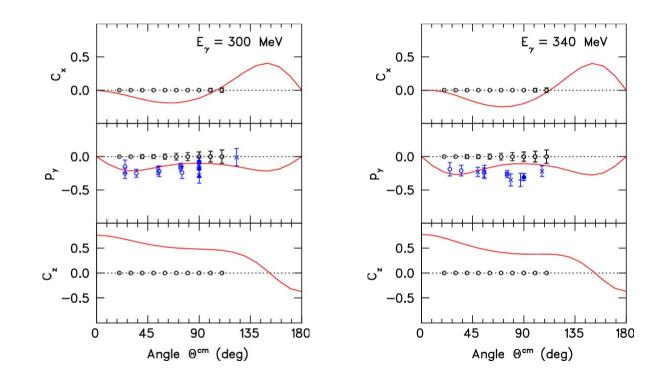
Jlab PAC 28

Expected Results

- 580 MeV beam, 20 MeV bins, 2 examples below
- $C_{x'}$ and $C_{z'}$ previously basically unmeasured
- More systematic, better precision data for p_v

Jlab PAC 28

Estimated Uncertainties


- For 360 MeV beam, with standard assumptions plus FPP performance and spin transport
- Uncertainties for each 20 MeV bin
- Program takes 14 days for production gd, plus
 3 days for FPP/ep calibrations (also gives P_{beam})
- 5 of 10 angle settings given below, as examples

Θcm (deg)	20	50	80	90	110
# settings	2	3	3	3	4
Typical ∆p _y	0.03	0.05	0.05	0.10	0.15
Typical ∆c _{×'}	0.01	0.01	0.01	0.02	0.03
Typical $\Delta c_{z'}$	0.01	0.01	0.01	0.02	0.03

Jlab PAC 28

Expected Results

- 360 MeV beam, 20 MeV bins, 2 examples below
- $C_{x'}$ and $C_{z'}$ previously basically unmeasured
- More systematic, better precision data for p_v

Jlab PAC 28

Why Two Energies

- GO proposes 2 energy settings, 585 and 360 MeV, plan to run higher energy run first
- It appears what happens afterward depends on the online results of the first part of the experiment
- There are questions about whether parity quality beam will be technically feasible as the beam energy is lowered
- We are not sure what energy will run, but would like to be able to take advantage of whatever energies GO ultimately uses

Jlab PAC 28

TAC Report

- Verify FPP status: We agree FPP not used since 2002, but also requested for two experiments likely to be scheduled late '06 / early '07
- Multiple low-energy beam feasibility: We agree have been in contact with accelerator, tests will be needed, but people optimistic
- Radiator/target effect on beam dump: in 1999, beam hitting flow diverters limited radiator; 4 % radiator OK at 530 MeV, expect we will need 3 % at 360 MeV
- Beam polarization: $\Delta C_{x'}$, $\Delta C_{z'} \leftrightarrow \Delta p_{y'}$, so it is not necessary to adjust request

Summary: Low Energy vd -> pn

- Induced polarization is a 30-year old unsolved problem; systematic, precise data is the best hope to lead to a solution: 10 c.m. angles x 5 20-MeV photon energy bins
- $C_{x'}$, and $C_{z'}$ are nearly unmeasured, and there is valuable information in their comparison with theory
- Py will be more systematically measured, with improved uncertainties, compared to the previous measurements
- Requires 14 (17) days at 580 (360) MeV
- An easy experiment in Hall A that is nearly impossible to do elsewhere; no conflict with other proposals / experiments - if there is low energy GO run