Fiber update

Zhiwen Zhao/Mehdi Meziane 2012/02/12

WLS fiber comparison

Table 1 Optical properties of each type of WLS fibers before the irradiation. Average light output at 140 cm and RMS, average attenuation length ($L_{\rm att}$) and RMS, for ten fibers of each type. The values are normalized to I_{140} of the Y11(200)MSJ fibers

Fiber type	I_{140}	RMS (%)	$L_{\rm att}$ (cm)	RMS (%)
BCF91A MC	0.98	9.6	280	9.5
Y11(200)MSJ	1.00	1.8	280	1.6
S250-100	0.81	5.7	230	5.6

Table 2 Relative light output at x = 140 cm, for total doses of 1.16 and 6.93 kGy

Fiber type	$\frac{R(140)}{R(30)}$ for 1.16 kGy			$\frac{R(140)}{R(30)}$ for 6.93 kGy		
	0 days	1 day	10 days	0 days	1 day	10 days
BCF91A MC Y11(200)MSJ S250-100			0.85 0.91 0.81	0.54 0.71 0.52	0.56 0.72 0.55	0.56 0.74 0.64

Design Consideration

- Shashlik type EC has enough light, but less comparing to other type. (400 p.e./MIP for COMPASS module). we still want to minimize light loss.
- Fiber aperture is about 20-30 degree. Use optics to reduce area in fiber connection could mean large light loss. We plan to 1 to 1 connection with same size fiber to reduce light loss.
- X to 1 connection without area reduction doesn't show design or cost advantage so far.

Fiber cost

	1mm WLS	1mm clear	0.5mm WLS	0.5mm clear	Total cost
Length(km)	170	510	3.4	3.4	
Saint- Gobain/ Bicron	BCF91A \$0.87/\$87 \$150k	BCF98 \$0.64/\$64 \$330k	BCF91A \$0.72/\$1.44 \$2.5k	Assume \$2.5k	\$500k
KURARAY	Y-11(200)MS \$3.39/\$339 576k	Clear-PSMS \$2.15/\$215 \$1097k	Y-11(200)MS \$2.04/\$4.08 \$7k	Assume \$7k	\$1700k

- Length estimation based on 1700 modules
 - 1. 100*1m of 1mm WLS fiber per module shower part
 - 2. 100*3m (average of 1200*2m and 500*5m) of 1mm clear fiber per module shower part
 - 3. 2*1m of 0.5mm WLS fiber per module pre-shower part
 - 4. 2*3m of 0.5mm clear fiber per module pre-shower part
- Other notes
 - 1. Quote will change slightly according to quantity
 - 2. We have 2mm fiber quote from both suppliers, they cost about 4 times of 1mm fibers so the price scale by volume. It doesn't save us.

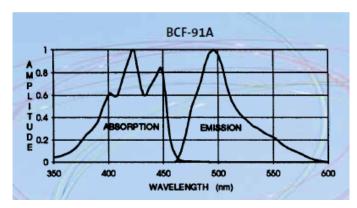
Meeting with Saint-Gobain

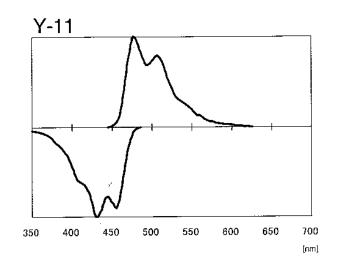
- Met with Saint-Gobain sales on 2/7
- What we learned
 - Bicron has fibers in square or round shape. The square one is a bit more expensive due to larger volume.
 - We need to check with IHEP what shape was used in COMPASS module or what's better used for us.
 - Their world fiber production facility is at Ohio, so if we need large volume fibers shipped to Russia, there will be cost and time.
 - They make scintillator with various thickness. To embed WLS, they can do groove drilling. They think the mold-with-hole method Fermi lab used could have scintillation light reduced by half, but it could still be enough for EC use.
- What we asked
 - Keep contact and update quote as the project moves forward.
 - The price quote were based on spool, they can look into cost if they have fibers cut at our required length.
 - They will look into feasibility and cost of making fiber connection, e.g. glue 1 to 1 and sealed within a plastic tube.

backup

WLS fiber in scintillator pad

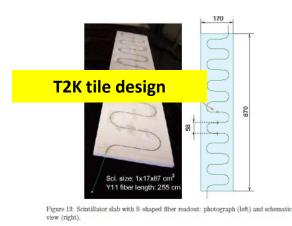
- Drill on scintillator and glue WLS in
- Used by LHCb etc.
- Will use by CLAS12 FT-Hodo

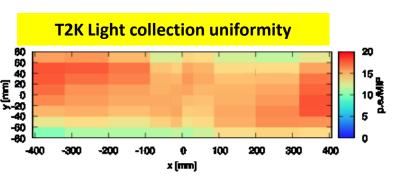



Fiber

- WSL fiber in shower, 100/module
 - Bicron BCF-91A
 - multi-clad, 1/e length >3.5m
 - 1mmD, bend 20cmD (?)
 - \$0.87/m
 - less rad hard

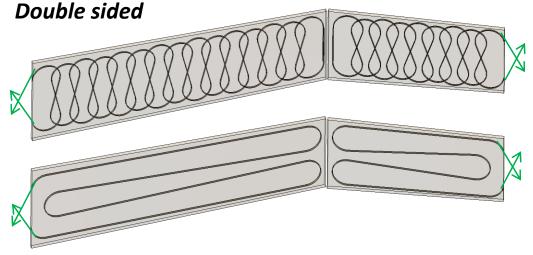
- KURARAY Y-11(200)MS
 - multi-clad, 1/e length >3.5m
 - 0.5mmD, bend 5cmD
 - \$1/m
 - more rad hard
- Clear fiber for both, 101-102/module
 - Bicron BCF-98
 - \$1/m


Fiber connection


- Shower will use 1-1 bundle fiber connector.
 Used in previous experiments (LHCb, Minos)
 custom made fiber connector \$175/module, quote by LEONI
- Preshower will use comercial 1-1 single fiber connector, a few \$ each.

fiber bundle to PMT connector, cost estimate \$25/module

Optimization: WLS fiber pattern



Design rules:

- -Minimum bending diameter of 55mm;
- -Maximum point-to-fiber distance of 27mm
- -WLS fibers uncut

sPHENIX tile design

Single sided

Response uniformity measurements with cosmic muons are now ongoing at INR