

EC performance w/o background

Cited from March collaboration Meeting

son Lab

e⁻ efficiency

Sixth update of CLEO background

A.K.A. Babar More1 Block in
Zhiwen's notes
Significant improvement observed

Updated radiation dose VS layers

Lead baffle

~ 11 layers per radiation length

High radiation ϕ slice

Low radiation ϕ slice

Jin Huang <jinhuang@jlab.org>

EC group Internal Communication

Readout occupancy per shower channel for ~75MeV zero suppression

Composition of background

inner radius region within the high-radiation azimuthal sectors \rightarrow Photon dominated

PID performance – low radiation phi slice

Lead baffle

PID performance – high radiation phi slice

Lead baffle

Trigger curve – low radiation phi slice

on Lab

Trigger curve – high radiation phi slice

Lead baffle

10

Jefferson Lab

New trigger strategy

- Embedding bgd stochastically according to its 3D distribution
- Look for percentage of 3ons trigger window that pass trigger threshold
- Good for low energy background pile ups
- Can not handle rare events due to stat. limit
- Handle p<1GeV background particle trigger

- Embedding bgd stochastically according to its 3D distribution
- Produce trigger turn on curve for high energy particle
- Good for rare events, e.g. DIS
- Can not handle low energy particle dominated trigger, which is non-linear
- Handle p>1GeV particle dominated trigger

From background embedding

From trigger turn on curve

Low energy (P<1GeV) particle trigger

- Place a calorimeter 6+1 cluster at given reference radius location
- Assume a 3ons trigger integration window, stochastically simulate which bgd particle would fly into calorimeter
 - including e/gamma/pi+/-/o/proton, 1keV 1GeV
 - Particle with P>1GeV is ignored in this case, since their trigger rate should be counted in high energy trigger curve x rate study
- Simulate scintillator energy deposition in the shower part for all these particle and sum to give a trigger signal
- Repeat for 6ok times, check the probability to produce a trigger. Trigger threshold set according to the radius
- Multiply by number of trigger channels and get the total low energy trigger rate

Inspect on few triggered case

- ▶ For low radiation slice at R=230 cm, trigger threshold is
 - scintillator energy > 283 MeV
 - targeted high trigger efficiency for electron with E>1.5 GeV
- > 9 out of 6ok simulations produced a trigger

n_* : number of that particle for 30ns window sh *: shower scintillator energy deposition for that particle species

*	Row	*	n elec *	sh elec *	n gamma '	* sh gamma	* n gamma p '	sh gamma	* npip *	sh pip *	n pim * sh pim	* comment

*	5116	; *	0 *	0 *	11	* 1.4133610	* 4 7	0.8096210	* 0 *	0 *	1 * 287.67065	<- Pi- dominated
*	10508	*	0 *	0 *	13	* 0	* 10 7	17.858110	* 0*	0 *	1 * 272.90136	*
*	12082	*	0 *	0 *	13	* 1.1497589	* 5 '	3.1542911	* 1*	328.03814 *	0 * 0	<- Pi+ dominated
*	26961	*	0 *	0 *	15	* 0	* 9,	13.370458	* 0*	. 0 *	1 * 277.56695	*
*	31170) *	0 *	0 *	18	* 3.771492	* 4 *	3.6389594	* 0*	0 *	1 * 301.99948	*
*	37962	*	0 *	0 *	12	* 0	* 2 *	· 0	* 0*	0 *	2 * 315.43313	*
*	40813	*	0 *	0 *	20	* 10.953822	* 67	12.016947	* 0*	0 *	1 * 266.20440	*
*	42284	*	1 *	0 *	13	* 1.1786102	* 5,	1.1385887	* 1*	82.557189 *	1 * 216.75323	<- two pion pile
*	42872	*	0 *	0 *	16	* 0.9754827	* 4 7	· 0	* 0 *	0 *	1 * 285.33731	*
												+

Total rate from P<1GeV particle

- Sum = 0.10 ± 0.2 MHz per sector
 - Statistical precision can be improved with more simulation
 - Ignored correlation between neighboring trigger channels -> over estimate
- Dominated by radius region R~230cm, where trigger threshold is low (E_{target}=1.5GeV)

Fifth update of CLEO background

* A.K.A. Babar More1 in Zhiwen's notes

* Inputs received on Friday Sept 6

Data points saved to ROOT format and uploaded to SVN: https://solid.physics.umass.edu/svn/solid/solidtech/calorimeter/figs

Comments on this update

- Use Babar More1 baffle in Zhiwen's notes
- Two version background are generated:
 - With krypton baffle for hadron background and that with lead baffle
- Now only one region show significant radiation effect: inner radius in the higher-radiation phi slice
- The updated dominate background is photons, which can be attenuated by x10 with 4 radiation length of absorbing material (~2cm lead)
- Updated to use 30 ns-equivalent ADC integration window instead of 50 ns
 - Suggested in previous meetings
 - Confirmed again with Alex
- Simulated assuming NO supporting structure between preshower and shower
 - Supporting structure could be before the Pb absorber or between Pb and the preshower scintillator
- Updated plots and data points uploaded to SVN https://solid.physics.umass.edu/svn/solid/solidtech/calorimeter/figs

Updated: Per-event pion rate for 1+6 hexagon cluster at Mid radius, high radiation ϕ -slice

Updated radiation dose VS layers (High radiation φ slice)

- Photon (EM) <- dominant!
- Photon (Pi^o)
- Electron
- Pion- Pion+ Proton

Krypton baffle

EM Background on Forward ECal in Layers (Red: e^{*}, Blue:γ, Green:π^{*}, Yellow:π^{*}, Cyan:π⁰->γ, Orange: proton)

4th Update

New: 5th Update

Updated radiation dose VS layers

Krypton baffle

~ 11 layers per radiation length

High radiation ϕ slice

Low radiation ϕ slice

Jin Huang <jinhuang@jlab.org>

EC group Internal Communication

Updated radiation dose VS layers

~ 11 layers per radiation length

Lead baffle

High radiation ϕ slice

Low radiation ϕ slice

Jin Huang <jinhuang@jlab.org>

EC group Internal Communication

Readout occupancy per shower channel for ~75MeV zero suppression

Krypton baffle

- High radiation phi slice
- Low radiation phi slice

bability to for background -> 0.33 nP per block

Composition of background

inner radius region within the high-radiation azimuthal sectors \rightarrow Photon dominated

PID performance – low radiation phi slice

son Lab

Krypton baffle

PID performance - high radiation phi slice Lower radius remains high

Trigger curve – low radiation phi slice

on Lab

PID performance – low radiation phi slice

Lead baffle

PID performance – high radiation phi slice

Lead baffle

Trigger curve – low radiation phi slice

n Lab

Trigger curve - high radiation phi slice

Electron Pion Trigger Efficiency Trigger Efficiency R=230 cm, Trig = 1.5 GeV R=180 cm, Trig = 2.0 GeV 0.4 0.4 R=150 cm, Trig = 2.5 GeV R=120 cm, Trig = 3.5 GeV 0.2 0.2 R=113 cm, Trig = 3.8 GeV 0 1.5 2 2.5 3 3.5 4.5 5 5.5 4 6 2 1 1.5 Momentum (GeV/c)

Lead baffle

4th update as reference

son Lab

New trigger strategy

- Embedding bgd stochastically according to its 3D distribution
- Look for percentage of 3ons trigger window that pass trigger threshold
- Good for low energy background pile ups
- Can not handle rare events due to stat. limit
- Handle p<1GeV background particle trigger

- Embedding bgd stochastically according to its 3D distribution
- Produce trigger turn on curve for high energy particle
- Good for rare events, e.g. DIS
- Can not handle low energy particle dominated trigger, which is non-linear
- Handle p>1GeV particle dominated trigger

From background embedding

From trigger turn on curve

Forth update of CLEO background

Cutting 2cm away on 1st baffle inner radius Received background simulation from Zhiwen on May 24

Updated: Per-event pion rate for 1+6 hexagon cluster at Mid radius, high radiation ϕ -slice

Background particle per trigger + 6.1 GHz γ 1.4 1.2 3rd Update 0.8 0.6 0.4 0.2 0 4 5 7 8 0 1 2 3 6 particle count / 50 ns

Updated radiation dose VS layers (High radiation ϕ slice)

- Photon (EM) <- dominant!
- Photon (Pi^o)
- Electron
- Pion- Pion+ Proton

3rd Update

EM Background on Forward ECal in Lavers (Red: e^{*}, Blue: γ, Green: π^{*}, Yellow: π^{*}, Cyan

New: 4th Update

Communication

EC group Internal Jin Huang <jinhuang@jlab.org>

Update on PID Mid radius, higher γ φ-band shown Other configuration also simulated

Je

Trigger turn on curve for 2 GeV electron Shower Hex 1+6 trigger > 1.6 GeV

Je
Trigger turn on curve for 2.5 GeV electron Shower Hex 1+6 trigger > 2.1 GeV

Pion Efficiency

Je

Electron Efficiency

Readout occupancy per shower channel for ~75MeV zero suppression

Probability to for background -> 0.33 MIP per block Probability 10 10-2 10⁻³ Probability 10 260 10 220 240 120 140 160 180 200 Radius (cm)

Lab

Probability to for background -> 0.33 MIP per block Improvement 10-2 • High radiation phi slice Low radiation phi slice 10⁻³ 10 120 220 260 140 160 180 200 240 Radius (cm) EC group Internal Communication

Third update of CLEO background

Received background simulation from Zhiwen on May 19 Running background imbedding

Updated radiation dose VS layers

- Photon (EM) <- dominant!
- Photon (Pi°)
- Electron
- Pion- Pion+ Proton

High radiation azimuthal region

Low radiation azimuthal region

EC group Internal

Communication

Background imbedding and distribution Mid-R, High Radiation phi slice

Shower raw signal distribution, Black: background, Red: π, Blue: #e

• Photon (6GHz/6+1 Hex cluster)

- Electron
- Pion- Pion+ Proton Jin Huang <jinhuang@jlab.org>

Jefferson Lab

Updated: Per-event pion rate

for 1+6 hexagon cluster at Mid radius, high radiation ϕ -slice

+ 6 GHz photon not shown (3GHz for lower ϕ -radiation)

Jin Huang <jinhuang@jlab.org> EC gro

Update on PID with DC component removal (PS > MIP + Bgd + (2-3) σ)

Pion Efficiency

Je

Electron Efficiency

Update on PID with DC component removal (PS > MIP + Bgd + (2-3) σ)

Je

44

More detail in PID cut

Middle radius, lower $\gamma \phi$ -band, full bgd

Pion Efficiency

Electron Efficiency

Update on PID with DC component removal (PS > MIP + Bgd + (2-3) σ)

Inner radius, lower γ φ-band

Electron Efficiency

Pion Efficiency

Je

Trigger turn on curve for 2 GeV electron Shower Hex 1+6 trigger > 1.6 GeV

Je

47

Trigger turn on curve for 2.5 GeV electron Shower Hex 1+6 trigger > 2.1 GeV

Pion Efficiency

Je

More detail in trigger cut

Middle radius, higher γ φ-band, full bgd Shower Hex 1+6 trigger > 2.1 GeV

Pion Efficiency

Electron Efficiency

Readout occupancy per shower channel for ~75MeV zero suppression

Trigger Study for Second update of CLEO background

Reported May 7 Calorimeter Meeting

Update on PID with DC component removal (MIP + 2.5 σ)

Mid radius, higher $\gamma \phi$ -band

Je

Pion Efficiency

Update on PID with DC component removal (MIP + 2.5 σ)

Inner radius, lower γ φ-band

Je

Pion Efficiency

Electron Efficiency

Pion Trigger Turn-On Curve (No background), Electron Eff. > 97%

Hex 1+6 Shower Trigger > 1.6GeV (for 2GeV electron)

+ Preshower Pad on top of central shower block > MIP + 1σ

Trigger turn on curve with background

Inner radius, higher $\gamma \phi$ -band

Je

Pion Efficiency

Electron Efficiency

All background particle pile ups

- Look at single Hexagon shower blocks which passed 0.75 MIP cut.
 - Full background spectrum used
 - ADC integration window = 50ns
- ~10% blocks will produce a 0.75MIP signal for clock trigger
 - Data readout is least 10% of modules
 - A shower MIP trigger is likely just trigger on lower energy particles

Lab

- higher $\gamma \phi$ -band
- lower $\gamma \phi$ -band

Quick estimation on impact of preshower radiation damage

- Radiation on preshower is high for PVDIS
 - Last meeting we showed that preshower will show radiation damage in a few months run in PVDIS configuration (assuming no cure for photon bgd)
 - Estimated light loss is a fraction depending on the choice of scintillator and fibers
- Our preshower was designed to produce high photon yield
 - Scint . thickness = 2cm with WLS imbedding
 - Expected photon / MIP = 140 e_v
 - After 50% radiation damage (70 e_γ), MIP resolution from photon fluctuation = 12%
 - Intrinsic fluctuation on MIP sampling = 23%, PID cut on MIP + 2.5 σ
 - Therefore, effect on radiation damage to MIP resolution is expected to be minimal, as long as we calibrate the photon yield online

Beam test for LHCb pad (1.5cm thick) From LHCb technical design report

57

Second update of CLEO background

Reported Apr 30 Calorimeter Meeting

For each sector, background rate were calculated in high and low regions in phi

- Photon (EM) <- dominant!
- Photon (Pi°)
- Electron
- Pion- Pion+

High radiation azimuthal region

EM Background on Forward ECal in Layers (Red: e΄, Blue: γ, Green: π⁺, Yellow: π΄, Cyan: π⁰->γ)

Low radiation azimuthal region

Background distribution New: with photon and pi+, Mid R, High Rad phi slice

n Lab

Raw signal distribution, Black: background, Red: π ⁻

• Photon (7 GHz/6+1 Hex cluster!)

- Electron
- Pion- Pion+

PID Performance (pion eff. w/ 94% elec. eff) w/o photon and pi+, Mid R, High Rad phi slice

PID Performance (pion eff. w/ 94% elec. eff) w/o photon, w/ pi+, Mid R, High Rad phi slice

PID Performance (pion eff. w/ 94% elec. eff) w/ photon, w/ pi+, Mid R, High Rad phi slice

Jefferson Lab

Look elsewhere, Outer/Inner R PID Performance (pion eff. w/ 94% elec. eff)

w/ photon, w/ pi+, Outer R, High Rad phi slice

w/ o photon, w/ pi+, Inner R, High Rad phi slice

w/ photon, w/ pi+, Outer R, Low Rad phi slice

w/ o photon, w/ pi+, Inner R, Low Rad phi slice

First update of CLEO background

Reported Apr 23 Calorimeter Meeting

Zhiwen Updated background contribution for all configurations. PVDIS shown here:

Jefferson Lab

Updated: Per-event pion rate for 1+6 hexagon cluster at inner radius

Updated: electron efficiency Only electron and pi- background used

Updated: pion rejection Only electron and pi- background used

PVDIS trigger turn on curve 2GeV electron cut based on shower Hex1+6 cluster only

PVDIS – current baffle (with direct γ)

From Dec Collaboration Meeting

PVDIS – preview for a baffle w/o direct γ

From Dec Collaboration Meeting

Last Version of Background Simulation (reported last week)

Jin Huang <jinhuang@jlab.org>

Why it is hard – lots of deep pions

Per-event pion rate for 1+6 hexagon cluster at inner radius

Background particle per trigger

75

Electron efficiency w/ background at inner radius. Ignore gamma and pi+ bgd

Pion efficiency w/ background at inner radius. Ignore gamma and pi+ bgd

p (GeV/c)

What we can further try

- Position or kinematic dependent trigger threshold and cut threshold
- Use track multiplicity to assist calorimeter cuts

78