A systematic study to characterize fine-mesh PMTs in high magnetic fields

M. Bonesinia,*, F. Stratia, G. Baccaglionib, G. Volpinib, G. Cecchetc, A. DeBaric, R. Nardoc, M. Rossellac, S. Dussonid, F. Gattid, R. Valld

aINFN—Sezione di Milano, Dipartimento di Fisica G. Occhialini, Piazza Scienza 3, Milano, Italy
bINFN—Sezione di Milano, Laboratorio LASA, via Fratelli Cervi 201, Segrate, Italy
cINFN—Sezione di Pavia, Dipartimento di Fisica Nucleare e Teorica, via A. Bassi 6, Pavia, Italy
dINFN—Sezione di Genova, Dipartimento di Fisica, via Dodecaneso 33, Genova, Italy

Available online 20 November 2006

Abstract

The performance of fine-mesh Hamamatsu photomultipliers with 1, 1.5, and 2 in. diameters has been measured in magnetic fields (up to 1.2 T) to determine gain and timing properties. Rate capabilities have also been studied.

PACS: 85.60.Ha

Keywords: Photomultipliers

1. Introduction

Hamamatsu fine-mesh PMTs have good gain and timing behavior in high magnetic fields. To avoid dynode damage and pulse amplitude reduction (loss of linearity), a limit on the average anode current (\sim100 μA) must not be exceeded. Systematic studies have been done for 1 in. (R5505), 1.5 in. (R7761) and 2 in. (R5924) Hamamatsu fine-mesh PMTs, using a resistive dipole magnet at LASA (INFN Milano), with magnetic fields up to 1.2 T and an open gap of 12 cm. A fast light pulse from a PLP-10 Hamamatsu laser (\sim405 nm, 60 ps FWHM pulse width, max repetition rate 100 MHz) is sent to the photocathode of the PMT under test via a multimode CERAM OPTEC UV 100/125 optical fiber (with a measured dispersion of <15 ps/m, see Ref. [1]). At the end of the fiber a small plexiglass prism, inserted in a black plastic cover in front of the PMT window, allows illumination at the center of the photocathode. Tests were usually done with a signal corresponding to about 300 photoelectrons (p.e.), that is typical for a minimum ionizing particle (MIP) crossing a scintillator 1–2 in. thick, 6–10 cm wide, at a distance of 1–2 m. The optical power was periodically monitored with an OPHIR PD-2A laser power meter. Data were acquired in VME standard, both for amplitude measurements (via a CAEN V465QADC) and timing measurements (via a CAEN V480 TDC). In part of the measurements an Ortec TRUMP-8 K MCA was used instead.

2. Experimental results

The PMTs under test were inserted in the central region of the test magnet, where the field had a uniformity of \sim1%. Measures were done to see gain reduction, timing resolution and rate capability as a function of magnetic field and relative orientation angle θ for the three types of fine-mesh PMTs under study. Due to the effect of magnetic field on the accelerated electrons inside the PMTs, we can expect a reduction of gain as the B field increases and also a...
marked dependence of the relative gain as a function of the inclination angle θ. Fine-mesh PMTs are well behaving up to a critical orientation θ_C depending on the photocathode size: typically $\theta_C = 30–45^\circ$, up to the measured maximum magnetic field $B \sim 1.2$ T. Some results (for a standard HV of 2000 V) are shown in Fig. 1 for a typical 2 in. PMT.

The rate capability of fine-mesh PMTs is limited by the maximum allowable average anode current I_a. Keeping this in mind, all the following plots can be easily understood. Fig. 2 shows the PMT response (P.H. in mV) as a function of the laser shot repetition rate R, in different conditions of the external magnetic field B for two typical 1 and 1.5 in. fine-mesh PMTs. Results include a correction to account for the dependence of the laser shot intensity from the laser repetition rate R, as measured with a Thorlabs DET210M photodiode.

Timing studies were conducted with laser signals corresponding to ~ 300 photoelectrons. In this, timing characteristics of fine-mesh PMTs show a weak dependence on field strength and direction, in spite of the large reduction in gain (up to a factor of 100). Only at fields ~ 1 T, the multiphoton timing resolution σ_{TDWC} seems to begin to be affected, as shown in Fig. 3 for a typical 2 in. fine-mesh PMT.

3. Conclusions

Fine-mesh PMTs show good timing properties for a simulated signal of ~ 300 p.e. (corresponding to a typical MIP signal) even in magnetic fields up to 1 T. Rate capabilities are driven by the mean flowing anode current and linearity is good if the maximum allowable value is not exceeded (typically 100 μA or a 2 in. PMT). Gain behavior turns to be problematic only if the inclination of the PMT axis with respect to the B field exceeds a critical value $\theta_C \sim 30–45^\circ$ depending on the PMT size.
Fig. 3. Transit time ratio at magnetic field B and $B = 0$ T (a), timing resolution σ_{TDWC} in 25 ps units as a function of the magnetic field B for typical 2 in. Hamamatsu R5924 fine-mesh PMT (b).

Reference