Inclusive Electron Rates from Peter Bosted Fit* and its comparison with current model**

*Referred as "PB" in this report *Current model used in electron events generator, based on theory and cteq6 PDF fit, referred as "DIS" in this report

Ziheng

1	Transplant Peter Bosted fit to current software, an event generator.	Successful
2	Compare simulation results from PB fit and current model ("DIS")	Notable difference
3	Search for the source of discrepancy	Just started

Outline

1. Transplant PB fit to current Event Generator

2. Simulate inclusive events, using different nucleus

3. Compare produced simulation with data, to verify the software developing.

Proton Target

Data (JLab E94-110)

Deuteron Target

Data (JLab E00-002)

Carbon Target

Data (JLab E06-109)

Aluminum Target

Data (JLab E06-109)

Copper Target

Data (JLab E06-109)

Simulation from software with PB

Data (JLab E06-109)

Iron Target

Simulation from software with PB

DIS VS PB

 $W^2[GeV^2]$

rate_PB/rate_DIS	PVDIS H: rate from DIS	PVDIS H: Ite from PB
rate_PB/rate_DIS	PVDIS D: rate from DIS	PVDIS D: Ite from PB
rate_PB/rate_DIS	JPsii H: rate from DIS	JPsi H: ate from PB
rate_PB/rate_DIS	SIDIS He3: rate from DIS	SIDIS He3: Ite from PB

PVDIS H2 target at E0=11GeV

(W*W) {rate*(theta>0.12 & theta <0.16) }

(W*W) {rate*(theta>0.19 & theta <0.23)} 140 120 100 80 60 Q2>1 E0=11GeV, theta=12 ГП 40 Blue - PB 20 Red - DIS W2 [GeV^2]

(W*W) {rate*(theta>0.33 & theta <0.37)}

(W*W) {rate*(theta>1.06 & theta <1.1)}

PVDIS D2 target at E0=11GeV

SIDIS He3 target at E0=11GeV

JPsi H target at E0=11GeV

(W*W) {rate*(theta>0.33 & theta <0.37)}

(W*W) {rate*(theta>1.06 & theta <1.1)}

Distribution of Ratio

Rate DIS

The two models give different results, ratio in common range is about

 $0.5 \sim 4$

Potential problems with current model

- Coding errors when using cteq6 library
- Physics reasons when current model uses PDF fittings
- Both are right, but different functioning ranges. (less likely)
- Unrealized problems with PB
- Which one is right? which one should l use? (PB)

Summary

- successful software transplantation, producing simulations that agree with data of different nucleus.
- Notable difference exits. 0.5~4 ratio in common range; 0~2.5 in other DIS range; 1 around W2~16;
- Ratio distributions have minor difference between nucleus, but share the same pattern.
- Further research: what causes the difference? which one is more reliable?