1.0 Define Inputs

- \(b := 62.5 \text{mm} \) Side of module
- \(a_1 := 2 \cdot (28.14 \text{mm}) \) Distance between tension rods
- \(a_2 := 2 \cdot (56.25 \text{mm}) \)
- \(n_L := 194 \) Number of layers of lead
- \(n_s := 194 \) Number of layers of scintillator
- \(t_L := 0.5 \text{mm} \) Thickness of lead
- \(t_s := 1.5 \text{mm} \) Thickness of scintillator
- \(t_{\text{gap}} := 0.24 \text{mm} \) Thickness of gap
\[\rho_L := 0.011340 \, \frac{\text{kg}}{\text{cm}^3} \]
Density of lead

\[E_L := 2560 \, \text{ksi} \]
Modulus of lead

\[\rho_s := 0.001220 \, \frac{\text{kg}}{\text{cm}^3} \]
Density of scintillator

\[E_s := 460 \, \text{ksi} \]
Modulus of scintillator

\[\mu := 0.1 \]
Coefficient of friction between layers

\[D_{\text{rod}} := 2.5 \, \text{mm} \]
Diameter of rods

\[F_y := 18000 \, \text{psi} \]
Yield strength of brass rods

\[E_{\text{brass}} := 15000 \, \text{ksi} \]
Modulus of brass

\[E_{\text{steel}} := 30000 \, \text{ksi} \]
Modulus of steel

2.0 Calculate Properties of Calorimeter

Length := \(n_L t_L + n_s t_s = 388.00 \, \text{mm} \)

Length = 15.28 \, \text{in}

Area := 100 \, \text{cm}^2

Weight := \(n_L g \rho_L \cdot \text{Area} \cdot t_L + n_s g \rho_s \cdot \text{Area} \cdot t_s \)

Weight = 32.1 \, \text{lbf}

Weight = 142.7 \, \text{N}

\[q := \frac{\text{Weight}}{\text{Length}} \]

\[q = 2.10 \, \frac{\text{lbf}}{\text{in}} \]

\[A_{\text{rod}} := \frac{\pi \cdot D_{\text{rod}}^2}{4} \]
\[\Lambda_{\text{rod}} = 0.01 - \text{in}^2 \]

3.0 Pre-Loading

Assume a pre-load is applied to the stack and then four threaded rods are snugged to the stack and then the pre-load is released.

\[F_{\text{preload}} := 500 \text{kg} \cdot g = 1102.31 \text{ lbf} \]

\[k_{\text{BrassRod}} := \frac{6 \Lambda_{\text{rod}} E_{\text{brass}}}{\text{Length}} = 44827.75 \text{ lbf/in} \]

\[k_{\text{SteelRod}} := \frac{6 \Lambda_{\text{rod}} E_{\text{steel}}}{\text{Length}} = 89655.51 \text{ lbf/in} \]

\[k_{\text{stack}} := \left(\frac{n_s t_s}{\text{Area} \cdot E_s} + \frac{n_L t_L}{\text{Area} \cdot E_L} \right)^{-1} = 587175.52 \text{ lbf/in} \]

\[\Delta_{\text{stack}} := \frac{F_{\text{preload}}}{k_{\text{stack}}} = 0.001877 \text{ in} \]

\[\Delta_{\text{rod}} := \frac{\Delta_{\text{stack}} \cdot k_{\text{stack}}}{k_{\text{BrassRod}} + k_{\text{stack}}} = 0.00174 \text{ in} \]

\[F_{\text{rod}} := \Delta_{\text{rod}} k_{\text{BrassRod}} = 78.19 \text{ lbf} \]
Preload in rods due to initial applied load on stack

\[N_{\text{req}} := \frac{\text{Weight}}{\mu} = 320.77 \text{ lbf} \]
Required normal force to carry the load in friction

Use a preload on the rods that is twice the required value for safety factor

\[N_{\text{preload}} := 2 \cdot N_{\text{req}} = 641.55 \text{ lbf} \]

\[\Delta_{\text{rodN}} := \frac{N_{\text{preload}}}{k_{\text{BrassRod}}} = 0.014 \text{ in} \]
σ_{rod} := \frac{N_{preload}}{6\cdot A_{rod}} = 14053.15 \text{ psi}

4.0 Calculate the increase in rod loading due to being cantilevered.

\[F_{\text{cantilever}} := \frac{q\cdot \text{Length}^2}{a_2 + 2a_1\cdot \left(\frac{a_1}{a_2}\right)} = 73.73 \text{ lbf} \]

\[F_{rod} := \frac{N_{preload}}{6} + F_{\text{cantilever}} = 180.65 \text{ lbf} \]

\[\Delta_{rodN} := \frac{F_{rod}}{k_{\text{BrassRod}}} = 0.004 \text{ in} \]

\[\sigma_{rod} := \frac{F_{rod}}{6\cdot A_{rod}} = 3957.21 \text{ psi} \]

\[\sigma_{\text{scintillator}} := \frac{F_{rod}}{\text{Area}} = 11.65 \text{ psi} \]
Tensile stress in rods

\[\tau_{rod} := \frac{F_{rod}}{\pi\cdot D_{rod}\cdot \frac{3}{32} \text{ in}} = 6231.82 \text{ psi} \]
Shear stress in threads

Brass tensile yield strength of 18000 psi and the shear yield strength of the threads is 9000 psi so both stresses are ok