ECAL Background Rates using Hall D Generator

Rakitha S. Beminiwattha
Trigger Thresholds from DIS Gen.

- Cluster thresholds generated from electron signals (DIS weighted generator)
- The trigger threshold is the DIS threshold in the shower.
 - Shower 6+1 Thresholds: \{617.9, 531.0, 460.0, 389.8, 331.0, 287.6, 271.9, 272.0\} MeV
 - Shower 2+1 Thresholds: \{501.5, 471.9, 412.8, 340.5, 291.9, 255.3, 243.7, 244.0\} MeV
- No threshold is applied to Pre-Shower clusters
ECAL Analysis with Trigger Windows

- Backgrounds are generated using cross section weighted events from hall D generator
- Combined Pions: π^-, π^+, π^0
 - Events are uniformly separated in time according to the background rates
- Tracks incident on the ECAL can then be separated to 30 ns time windows (trigger window is 30 ns)
- Each sector (12 deg) of ECAL is treated independently
- Total time in simulation is 35070 ns or 1169 background trigger windows
- Photon blocker included in the simulation
Trigger Definition

- Select 6+1 max energy cluster for each window in each sector
- If above the threshold, trigger the sector
- Trigger condition applied based on radial dependence cluster thresholds
Tracks Incident on ECAL

Total no. of tracks incident on the ECAL sector are categorized into:
- Pions (+/-)
- Pi0 Photons
- All other photons
Tracks Incident on ECAL After 6+1 Trigger

Total no. of tracks incident on the ECAL sector are categorized in to,

- Pions (+/-)
- Pi0 Photons
- All other photons
ECAL : Wiser Background Rate

- Total background rates before and after applying the trigger
- With the photon blocker
- Photons are separated into two groups
 - From Pi0 and all other secondary photons
 - No high energy gammas after photon blocker
 - Photon rate is mostly dominated by very low energy tracks

<table>
<thead>
<tr>
<th>All Mom.</th>
<th>Before Trigger</th>
<th>After 6+1 Trigger</th>
<th>After 2+1 Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>MHz</td>
<td>MHz</td>
</tr>
<tr>
<td>Bkg. e±</td>
<td>1308.2</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>π±</td>
<td>842.5</td>
<td>5.3</td>
<td>2.0</td>
</tr>
<tr>
<td>γ(π0)</td>
<td>55346.5</td>
<td>49.9</td>
<td>14.3</td>
</tr>
<tr>
<td>all other γ</td>
<td>9104.3</td>
<td>11.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

P > 1 GeV

Bkg. e±	0.0	0.0	0.0
π±	140.1	4.3	1.0
γ(π0)	0.3	0.0	0.0
all other γ	0.0	0.0	0.0

P < 1 GeV

Bkg. e±	1308.2	0.9	0.4
π±	702.4	1.0	1.0
γ(π0)	55346.2	49.9	14.3
all other γ	9104.3	11.4	3.7
ECAL : Hall D Gen. Background Rate

- Total background rates before and after applying the trigger
- With the photon blocker
- Photons are separated into two groups
 - From Pi0 and all other secondary photons
 - No high energy gammas after photon blocker
 - Photon rate is mostly dominated by very low energy tracks

<table>
<thead>
<tr>
<th>All Mom.</th>
<th>Before Trigger 396.9 MHz</th>
<th>After 6+1 Trigger 0.3 MHz</th>
<th>After 2+1 Trigger 0.0 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bkg. e±</td>
<td>433.2 MHz</td>
<td>3.8 MHz</td>
<td>0.5 MHz</td>
</tr>
<tr>
<td>γ(π0)</td>
<td>23010.9 MHz</td>
<td>14.2 MHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>all other γ</td>
<td>4581.4 MHz</td>
<td>3.0 MHz</td>
<td>0.7 MHz</td>
</tr>
<tr>
<td>P > 1 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bkg. e±</td>
<td>0.1 MHz</td>
<td>0.0 MHz</td>
<td>0.0 MHz</td>
</tr>
<tr>
<td>π±</td>
<td>97.3 MHz</td>
<td>3.1 MHz</td>
<td>0.5 MHz</td>
</tr>
<tr>
<td>γ(π0)</td>
<td>0.2 MHz</td>
<td>0.0 MHz</td>
<td>0.0 MHz</td>
</tr>
<tr>
<td>all other γ</td>
<td>0.2 MHz</td>
<td>0.0 MHz</td>
<td>0.0 MHz</td>
</tr>
<tr>
<td>P < 1 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bkg. e±</td>
<td>396.7 MHz</td>
<td>0.3 MHz</td>
<td>0.0 MHz</td>
</tr>
<tr>
<td>π±</td>
<td>335.8 MHz</td>
<td>0.7 MHz</td>
<td>0.1 MHz</td>
</tr>
<tr>
<td>γ(π0)</td>
<td>23010.7 MHz</td>
<td>14.1 MHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>all other γ</td>
<td>4581.2 MHz</td>
<td>3.0 MHz</td>
<td>0.7 MHz</td>
</tr>
</tbody>
</table>
Trigger Rate Estimation
ECAL Shower Energy Deposit

Trigger threshold _______

1. Sh. S+1 energy deposit in 30 μs (R: 1.1 - 1.3 m, No. Trig)
 - Mean: 0.02 ± 0.594
 - RMS: 72.54

2. Sh. S+1 energy deposit in 30 μs (R: 1.3 - 1.5 m, No. Trig)
 - Mean: 0.02 ± 0.7987
 - RMS: 75.63

3. Sh. S+1 energy deposit in 30 μs (R: 1.5 - 1.7 m, No. Trig)
 - Mean: 0.02 ± 0.8953
 - RMS: 78.54

4. Sh. S+1 energy deposit in 30 μs (R: 1.7 - 1.9 m, No. Trig)
 - Mean: 0.033
 - RMS: 82.64

5. Sh. S+1 energy deposit in 30 μs (R: 1.9 - 2.1 m, No. Trig)
 - Mean: 0.02 ± 1.063
 - RMS: 86.18

6. Sh. S+1 energy deposit in 30 μs (R: 2.1 - 2.3 m, No. Trig)
 - Mean: 0.02 ± 1.115
 - RMS: 88.64

7. Sh. S+1 energy deposit in 30 μs (R: 2.3 - 2.5 m, No. Trig)
 - Mean: 0.02 ± 1.213
 - RMS: 92.74

8. Sh. S+1 energy deposit in 30 μs (R: 2.5 - 2.7 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

9. Sh. S+1 energy deposit in 30 μs (R: 2.7 - 2.9 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

10. Sh. S+1 energy deposit in 30 μs (R: 1.1 - 1.3 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

11. Sh. S+1 energy deposit in 30 μs (R: 1.3 - 1.5 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

12. Sh. S+1 energy deposit in 30 μs (R: 1.5 - 1.7 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

13. Sh. S+1 energy deposit in 30 μs (R: 1.7 - 1.9 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

14. Sh. S+1 energy deposit in 30 μs (R: 1.9 - 2.1 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

15. Sh. S+1 energy deposit in 30 μs (R: 2.1 - 2.3 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

16. Sh. S+1 energy deposit in 30 μs (R: 2.3 - 2.5 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

17. Sh. S+1 energy deposit in 30 μs (R: 2.5 - 2.7 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28

18. Sh. S+1 energy deposit in 30 μs (R: 2.7 - 2.9 m, No. Trig)
 - Mean: 0.02 ± 2.064
 - RMS: 94.28
ECAL Pre-Shower Energy Deposit
Trigger Rate Estimation

• Total time windows 1169
 – In each window there are 30 individual sectors → 1169*30

• Maximum trigger rate is 1/30 ns → 33.33 MHz
 – This is when all time windows are triggered

• Total time windows after applying the trigger 162

• Total trigger rate only from pion bkg. 4.612 MHz
 – 154 kHz per sector

• This estimation does not include EM background
Trigger Rate Estimation with Wiser

- Total time windows 233
 - In each window there are 30 individual sectors → 233*30
- Maximum trigger rate is 1/30 ns → 33.33 MHz
 - This is when all time windows are triggered
- Total time windows after applying the trigger 53
- Total trigger rate only from pion bkg. 7.58 MHz
 - 253 kHz per sector
- This estimation does not include EM background
Trigger Rate Estimation in preCDR

<table>
<thead>
<tr>
<th>region</th>
<th>full</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rate entering the EC (kHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e^-</td>
<td>413</td>
<td>148</td>
<td>265</td>
</tr>
<tr>
<td>π^-</td>
<td>5.1×10^5</td>
<td>2.7×10^5</td>
<td>2.4×10^5</td>
</tr>
<tr>
<td>π^+</td>
<td>2.1×10^5</td>
<td>1.0×10^5</td>
<td>1.2×10^5</td>
</tr>
<tr>
<td>$\gamma(\pi^0)$</td>
<td>8.4×10^7</td>
<td>4.2×10^7</td>
<td>4.3×10^7</td>
</tr>
<tr>
<td>p</td>
<td>5.5×10^4</td>
<td>2.4×10^4</td>
<td>3.1×10^4</td>
</tr>
<tr>
<td>sum</td>
<td>8.5×10^7</td>
<td>4.2×10^7</td>
<td>4.3×10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trigger rate for $p > 1$ GeV (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^-</td>
</tr>
<tr>
<td>π^-</td>
</tr>
<tr>
<td>π^+</td>
</tr>
<tr>
<td>$\gamma(\pi^0)$</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>sum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trigger rate for $p < 1$ GeV (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total trigger rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

- Total trigger rate 8.7 MHz
 - 290 kHz per sector