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This fall I worked under Professor Zheng on several C++ and ROOT programs of hexagonally-

shaped scintillators with wavelength-shifting fibers (all of which have a circular cross-section and a 1mm 

diameter). The overarching objective of these programs is to simulate an arbitrarily high number of 

scintillating photon events (photons are generated with random position and direction vector) and 

acquire absorption efficiencies of the scintillators based on the reflectivity of their outer surfaces. 

There are two types of scintillators that I modeled: the preshower scintillator and the shower 

scintillator. Each has the profile of a regular hexagon with side-lengths of 6.25cm, and they both have 

heights which retain identical hexagonal dimensions at both the base and the ceiling; the preshower 

scintillator has a height of 2.0cm and the shower has a height of 0.15cm. 

The placements of the fibers in the two scintillator types differ significantly from one another, 

however. The preshower scintillator has one wavelength-shifting fiber spun around in a circle inside, in 

four loops, stacked atop one another. The stack of loops is spun at a radius of 4.5-4.6cm from the center 

of the hexagon, and the fiber tapers out of the scintillator from two points tangential to the loop. The 

shower scintillator, on the other hand, has 96 fibers that perforate it in straight lines from its floor to its 

ceiling, arranged symmetrically in a hex-pattern throughout. 

The figures on the following pages illustrate this. However, one point of interest for the image of 

the shower (Fig. 3) scintillator is that the fiber at the very center, the larger holes near the corners of the 

hexagon, and the small hole on the lower right are used for alignment purposes only, and do not have 

wavelength-shifting fibers running through them. 



 

My first task was to familiarize myself with hexagonal geometry, as the scintillators’ design 

made such knowledge essential. With that in mind, the first C++ program I wrote was one which had the 

side-lengths of the preshower scintillator written in with a coordinate system set up such that the very 

Fig. 1: Preshower cross-sections. 

 

center of the hexagon is defined as the origin of the coordinate system, and the base of the scintillator is 

defined as z=0 (the range of possible z-values is [0, height of scintillator]). Next, the user would input 

values for the x, y, and z coordinates from the command line and the program would display whether or 

not the point given is inside or outside the scintillator. 

Checking whether or not the z-value is inside the scintillator is a simple enough exercise as the 

value must be between 0 and the height of the scintillator. However, checking whether or not the x and 



 

y coordinates are within the bounds of the hexagon is a little more complicated, and knowledge of 

hexagonal geometry is crucial. With the hexagon’s orientation as shown in Fig. 2, it is clear 

 

Fig. 2 

Fig. 3: Shower scintillator cross-sections. 

 



 

that a regular hexagon has two major radii, which are generally dubbed the “outer radius” and the 

“inner radius”. The outer radius (the distance from the center to either of the corners along the 

horizontal axis) is equal to the side-length of the hexagon, and the inner radius (the distance from the 

center to either the base or ceiling along the vertical axis) is directly proportional to the outer radius: 

𝑅𝑜𝑢𝑡𝑒𝑟 = 6.25𝑐𝑚 

𝑅𝑖𝑛𝑛𝑒𝑟 = (
√3

2
) ∗ 𝑅𝑜𝑢𝑡𝑒𝑟  

In the case of both scintillators, 𝑅𝑜𝑢𝑡𝑒𝑟  = 6.25cm and 𝑅𝑖𝑛𝑛𝑒𝑟  =~ 5.413cm. With this in mind, it is 

clear that the range of the x-values is [-6.25, 6.25] and the range of the y-values is [-5.413, 5.413]. This is 

usually accurate, however there are points in this xy range where it is false: those that are near the 

corners of the rectangle with (x, y) coordinates (±𝑅𝑜𝑢𝑡𝑒𝑟 , ±𝑅𝑖𝑛𝑛𝑒𝑟 ) will be outside the hexagon. 

It is at this point that recalling the point-slope form of the equation of a line is helpful. One can 

describe the 4 sides that are not parallel to the x-axis and determine whether or not a given set of (x,y) 

coordinates are within the hexagon. The lines describing the upper-right line, the lower-right line, the 

upper-left line, and the lower-left line are respectively: 

𝑦 = −2(𝑥 − 𝑅𝑜𝑢𝑡𝑒𝑟), 𝑦 = 2(𝑥 − 𝑅𝑜𝑢𝑡𝑒𝑟 ), 𝑦 = 2(𝑥 + 𝑅𝑜𝑢𝑡𝑒𝑟), 𝑦 = −2(𝑥 + 𝑅𝑜𝑢𝑡𝑒𝑟) 

Rearranging each of these shows that, for any x and y entered by the user, the point is OUTSIDE the 

hexagon if any of the below expressions are true: 

𝑦 + 2𝑥 > 2 ∗ 𝑅𝑜𝑢𝑡𝑒𝑟 , 𝑦 + 2𝑥 < −2 ∗ 𝑅𝑜𝑢𝑡𝑒𝑟 , 𝑦 − 2𝑥 > 2 ∗ 𝑅𝑜𝑢𝑡𝑒𝑟 , 𝑦 − 2𝑥 < −2 ∗ 𝑅𝑜𝑢𝑡𝑒𝑟  

 Next, I wrote a C++ program which was designed to simulate an arbitrarily high number of 

events where a photon, generated with a random position and direction vector in 3-space, would travel 

and reflect throughout the scintillator until it escaped. The main physical law that this program 

simulated was the Law of Reflection, which states that when reflected, a light beam will rebound from 

the surface at the same angle relative to the normal vector of the surface, while remaining within the 

plane of both the initial direction vector and the normal of the surface it reflected from. 



 

 Another physical property to consider is total internal reflection, which states when a photon is 

going from some medium to a medium with a lower refractive index, there is a critical angle where the 

chance of transmission is incredibly low for any angle relative to the normal of the surface that is greater 

than or equal to that critical angle. As the scintillator is composed of plastic material (which has a 

refractive index of roughly 1.5) and the medium it would escape into is air (which has a refractive index 

approximately equal to 1), the formula for the critical angle is:  

𝜑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  arcsin (
1

𝑛𝑠𝑐𝑖
) 

 Now, the scintillator has 8 planar surfaces that a photon might reflect off of: the six sides of the 

hexagon, the base, and the ceiling. Fortunately, there is a way to quickly determine which planar surface 

the photon will reflect off.  

This is done as follows: 

𝑑 ∗ 𝒍 + 𝒍𝟎 

describes the point of intersection between a line and a plane where 𝒍𝟎 is the initial point of the line, 𝒍 is 

the direction vector of the line, and 𝑑 is a scalar given by: 

𝑑 =
(𝒑𝒐 − 𝒍𝒐) ∙ 𝒏

𝒍 ∙ 𝒏
 

where 𝒑𝒐 and 𝒏 are a sample point lying on the plane of interest and the unit normal vector of the 

planar surface, respectively. These equations are derived from the algebraic definitions of lines and 

planes1. 

 Since a line will have one intersection with a plane (unless they are parallel), one can determine 

which surface the photon will impact by comparing the distances to collision for each. As a general rule, 

the surface with the shortest distance will be the surface that the photon impacts. The distance 

calculation, once the point of collision is known is, of course: 

                                                             
1
 These formulae were found at https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection 



 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + (𝑧′ − 𝑧)2  

 

However, one condition to consider is that this equation does not recognize which direction 

along the line the path leads. For example, if the photon is generated at the origin and center of the 

scintillator at an angle that leads to the ceiling, the calculation would give the distance to both the floor 

and ceiling as equal. This issue, however, can be circumvented by defining the angles where each 

surface is able to be impacted. 

  

Fig.’s 4, 5: cross-sections along the horizontal and vertical plane respectively; each side is assigned the same designation as in 

my code. 

Let’s define the angle that the blue line makes with the horizontal axis in Fig. 4 as “φ1”, (can be 

related to the azimuthal angle from spherical coordinates (r,θ,φ)). If the photon’s path is along the blue 

line shown (beginning at the origin), the calculation I used would give equal distances to collision with 

both the uppermost boundary and the lowermost boundary. However, no matter what the point of 

origin is (provided it is inside the hexagon, of course), if φ1 is greater than 0 and less than π radians, it is 

incapable of hitting the lowermost boundary. Likewise, the uppermost boundary cannot be impacted if 

φ1 is greater than π and less than 2π radians. All of the other boundary lines have a similar constraint, 

making the calculations for which boundary the photon reflects feasible from a coding standpoint. 



 

Angles in 3-space may be expressed in their totality as a set of two 2-dimensional angles (φ1 and 

φ2) or as a direction vector (cos(φ1)*cos(φ2), sin(φ1)*cos(φ2), sin(φ2)), where φ1 can have any value 

within [0,2π] and φ2 can have any value [0, π/2]U[3π/2, 2π] (I defined φ2 as the angle between the path 

of the photon and a plane that is parallel to the floor and ceiling of the scintillator; this is 
𝜋

2
 minus the 

usual polar angle in spherical coordinates and can be seen in Fig. 5). Using φ1 and φ2 is simpler in some 

calculations, namely when a photon reflects off a boundary. 

The scintillator has eight planar boundaries that a photon might reflect off; in my C++ programs I 

defined the boundaries thusly: the six sides of the hexagon are boundaries 0,1,…5, the floor is boundary 

6, and the ceiling is boundary 7 (I began at 0 to make coding its calculations a little simpler; I defined an 

array with 2 dimensions, where the boundary number was the first and its sample point was the second. 

Recall that calculating the intersection of a line in 3-space and a plane requires the sample point and a 

normal vector for the plane). The coordinates in 3-space for a point on each planar boundary are (in the 

order boundary 0,1,…7 respectively): 

(0, 𝑅𝑖𝑛𝑛𝑒𝑟 , 0) [uppermost boundary of hexagon], 

(0, -𝑅𝑖𝑛𝑛𝑒𝑟 , 0) [lowermost boundary of hexagon], 

(
𝑅𝑜𝑢𝑡𝑒𝑟

2
, 𝑅𝑖𝑛𝑛𝑒𝑟 , 0) [upper-right side of the hexagon], 

(−
𝑅𝑜𝑢𝑡𝑒𝑟

2
, 𝑅𝑖𝑛𝑛𝑒𝑟 , 0) [upper-left side], 

(
𝑅𝑜𝑢𝑡𝑒𝑟

2
,− 𝑅𝑖𝑛𝑛𝑒𝑟  , 0) [lower-right side], 

(−
𝑅𝑜𝑢𝑡𝑒𝑟

2
, −𝑅𝑖𝑛𝑛𝑒𝑟 , 0) [lower-left side], 

(0, 0, 0) [floor], 

(0, 0, height) [ceiling] 

 In addition, the normal vectors of these planes are (in the same order as above): 

(0, -1, 0), (0, 1, 0), 



 

(−√3/2, -1/2, 0), (√3/2, -1/2, 0), 

(−√3/2, 1/2, 0), (√3/2, 1/2, 0), 

(0, 0, 1), (0, 0, -1) 

 If the photon reflects from any of the hexagonal boundaries, the angle defined earlier as φ1 will 

change, and if it reflects off either the ceiling or the floor, the angle defined and φ2 will change. While 

the Law of Reflection seems very straightforward (the reflected angle is the same size as the incident 

angle), keeping φ1 and φ2 internally consistent in the code makes this a little more complicated. φ1 and 

φ2 need to remain within the ranges [0,2π] and [0,π/2]U[3π/2,2π] respectively, but the reflections from 

the boundaries are such that, if calculated without the precaution that the new φ1 and φ2 remain 

within their respective ranges, the new angles would make future calculations incorrect. 

 I’ll elucidate this with two examples: the ceiling of the scintillator and the wall on the top-right 

of the hexagon. The ceiling’s (as well as the floor’s) incident angle is dependent solely on what I’ve 

defined as φ2. After a reflection, the angle φ2 simply changes to –φ2, but to keep all angles positive I’d 

also add 2π, giving a final expression of: 

𝜑2′ = 2𝜋 − 𝜑2 

 The top-right wall of the hexagon, however, is a bit more complicated. The possibility for a 

photon to reflect off that boundary is geometrically constrained by φ1 є [0,2π/3]U[5π/3,2π]. The normal 

vector of this surface makes an angle of π/6 radians with the horizontal axis. Therefore, if φ1 is less than 

2π/3,  

𝜑1′ =
4𝜋

3
− 𝜑1 

and if φ1 is greater than 2π/3, 

𝜑1′ =
10𝜋

3
− 𝜑1 



 

 In this instance, the incident angle is not φ1 as it has been previously defined, and each of the 

other 4 diagonal sides of the hexagon share similar reflection calculations (the uppermost and 

lowermost sides of the hexagon do, however, have the simple φ1’=-φ1). The angle along the vertical axis 

(φ2) will not be changed during a reflection along this boundary as there is no slope along that axis, just 

as the ceiling and floor do not change the angle along the horizontal axis (φ1). 

 After coding the model for the boundary reflections, I did a study on how often photons with 

randomly-generated initial positions and directions would impact each boundary using ROOT; the 

following pages will display the results of this. Fig. 6 will show the shower scintillator’s results boundary-

by-boundary, Fig. 7 will show the shower scintillator’s results with all boundaries taken together, and 

Fig. 8 will show the preshower’s results, boundary-by-boundary. The histograms are organized thusly: 

the horizontal axis states the number of times a photon impacts the given boundary, and the vertical 

axis states the number of photon events which impacted the boundary said number of times (e.g., if the 

bar above the horizontal axis value of 4 reaches up to 20, it means that 20 photons struck that boundary 

4 times in the simulation). The data in these graphs are for 1000-event simulations, where a photon’s 

chance to escape the scintillator during a collision is defined to be 20% if the incident angle is less than 

the critical angle, and 1% if the incident angle is greater in the simulation.  The preshower graphs omit 

the 0-bin (where the photon does not impact a given boundary for a given event), while the shower 

graphs do not. 

 



 

Fig. 6: Number of reflections on each of the 8 boundaries for the shower scintillator. These were obtained in a simulation with 

1000 events. 



 

 

Fig. 7: Composite shower boundary reflections. This was obtained in a simulation with 1000 events. 



 

Fig. 8: Number of reflections on each of the 8 boundaries for the preshower scintillator. These were obtained in a simulation 

with 1000 events. 

 As expected, the six boundaries that represent the sides of the hexagon are impacted less often 

on average than the floor and the ceiling, and the disparity is more pronounced in the shower 

scintillator (whose height is far smaller than that of its preshower counterpart). Another expected value 

is 90 out of the 1000 photons escaping in the first collision in the shower scintillator: when the initial 

position and direction are random and unweighted, most of the photons will first collide with either the 

floor or ceiling. Since the critical angle for escaping the glass is just under 45°, just under 500 of the 

photons will impact at an angle less than the critical angle and thus have a 20% chance of escaping 

during the first boundary collision, while the remaining photons will impact at an angle greater than the 

critical angle and have a 1% chance of escaping; the value from the simulation is well within the 

expected ballpark. 

 Moving on, it’s about time I explained how the wavelength-shifting fibers operate physically. 

The fibers themselves are developed by Kuraray Co., a Japanese company who’s provided the following 



 

information regarding their absorption capabilities. The absorption chance of the fiber used in this 

project is determined by how far in 3-space the photon’s path travels through the fiber before exiting: 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑐𝑒 = 1 − 10−1.276∗𝑑 

where 𝑑 is the distance traveled through the fiber (in millimeters). 

 For the shower scintillator, the method used to calculate collisions and distance traveled 

through the fibers was to reduce the first step to a two-dimensional problem, and use the formula to 

calculate the intersection points between a line and a circle in 2-space. The formula employs the forms 

of a line and a circle, respectively: 

𝑦 = 𝑚𝑥 + 𝐷, (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 

 The nature of the simulation requires that no line be perfectly tangential to any circle, and using 

randomly- generated doubles in C++, the chance of generating a line perfectly tangential to a given circle 

is miniscule. The shower scintillator has 96 fibers, all symmetric about the vertical axis and with a 

circular cross-section and a diameter of 1mm (each of the 96 fibers will have a different 𝑎 and 𝑏 in the 

formula above, but all will have 𝑟 = 0.5𝑚𝑚). The 𝑚 from the equation of the line is equal to what I’ve 

already defined as 𝑡𝑎𝑛(𝜑1) due to geometric convention (𝑠𝑙𝑜𝑝𝑒 =   
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
), and the 𝐷 is  

𝐷 = 𝑦0 − tan(𝜑1) ∗ 𝑥0 

where 𝑦0 and 𝑥0 are taken from the initial point on the photon’s path. 

Another value of interest is 𝛥, defined as: 

𝛥 = 𝑟2(1 + 𝑚)2 − (𝑏 − 𝑚 ∗ 𝑎 − 𝐷)2 

When 𝛥 > 0, a 2-dimensional line intersects the circle in 2-dimensional space at the points 

𝑥1,2 =
(𝑎 + 𝑏 ∗ 𝑚 − 𝐷 ∗ 𝑚 ± 𝑠𝑞𝑟𝑡(𝛥))

1 + 𝑚2
2 

with corresponding 

𝑦1,2 = 𝑚 ∗ 𝑥1,2 + 𝐷 

                                                             
2
 These formulas were found at http://www.ambrsoft.com/TrigoCalc/Circles2/circlrLine_.htm 



 

At this point, it is necessary to again account for all three special dimensions. The z-coordinates 

corresponding to each collision point with the fiber’s circular cross-section are: 

𝑧1,2 = tan(𝜑2) ∗ 𝑠𝑞𝑟𝑡((𝑥1,2 − 𝑥0)
2

+ (𝑦1,2 − 𝑦0)
2

) 

Finally, we have the distance the photon travels through a given fiber: 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

This will be used to calculate the absorption chance when a photon passes through a fiber. When I 

coded it into my C++ program, I would calculate absorption chance and then generate a random double 

between 0 and 1; if the random double was less than or equal to the absorption chance, the photon 

would be absorbed and the event would end. As there are 96 fibers, 96 of these calculations must be 

made for each photon, every time before it impacts a boundary; I assigned the center-point for each 

fiber to two arrays (one for the x-coordinates, another for the y) and then ran the previous calculations 

through a loop, checking each fiber, before each boundary reflection. 

 Again, there are a couple of constraints to consider. One is that the line may intersect the cross-

section of one of the fibers in 3-space, but do so outside the scintillator (at a negative z or a z greater 

than the height of the scintillator). There are two conditions of this that I considered: when both z-

coordinates are outside the scintillator, and when one is inside and the other outside. In the former 

condition, the photon simply doesn’t collide with the fiber, striking a boundary first. In the latter, 

however, it is necessary to know that, when fully assembled into the experimental apparatus, the 

shower scintillator would in fact be many showers stacked one atop the other and separated by a 

reflective metal. With this in mind, I would exploit the symmetry of the apparatus and treat the 

photon’s path through the fiber as a free reflection (chance of escape = 0) and still use the prior 

formulas to calculate its absorption chance. Fig. 8 demonstrates this condition: 



 

Fig. 9: The cylinder represents the fiber, rays represent a possible path of the photon. 

 When dealing with the preshower scintillator, the method employed is similar to that of the 

shower; however, this time when looking at the 2-dimensional cross-section, one sees two fiber rings, 

one of radius 𝑟 = 4.5𝑐𝑚 and the other of radius 𝑟 = 4.6𝑐𝑚. In the interest of time, I treated the cross-

section of the fiber ring as rectangular rather than 4 fibers of 1mm diameter each stacked atop one 

another. This approximation will over-estimate the number of photons absorbed. The x- and y-

intersections will have to be calculated for each ring separately. Fig. 10 is a display of the cross-section 

used in my approximation and the ring’s actual cross-section, respectively: 

    

 

 

  Fig. 10 

This time, I used the equation for a line 𝑎𝑥 + 𝑏𝑦 = 𝑐 while retaining the equation for a circle used 

before, yielding the x- and y-coordinates (assuming sum under the square-root is positive): 

𝑥1,2 =
𝑎∗𝑐±𝑏∗√(𝑟2(𝑎2+𝑏2)−𝑐2)

𝑎2+𝑏2 , 𝑦1,2 =
𝑏∗𝑐∓𝑎∗√(𝑟2(𝑎2+𝑏2)−𝑐2)

𝑎2+𝑏2
3 

The z-coordinates are found, again, by 

𝑧1,2 = tan(𝜑2) √(𝑥1,2 − 𝑥0)
2

+ (𝑦1,2 − 𝑦0)
2

 

And the distance is found by 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

                                                             
3 These formulas were found at 
https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry)#A_line_and_a_circle 



 

 These calculations must be made twice, once for 𝑟 = 4.5𝑐𝑚, and once for 𝑟 = 4.6𝑐𝑚. Like the 

shower-scintillator, there is more than one way the photon path can pass through the fibers; the 

simplest is passing through both rings without incident, another is similar to the dilemma explored with 

the shower scintillator (and has a similar solution) where the photon’s path exits the scintillator before it 

exits the fiber, and yet another is the case where the photon’s path is nearly tangential to the fiber ring 

such that it passes though the outer radius (4.6cm) but not the inner radius (4.5cm). In this case, there 

will be no real solution to the line-circle intersection formula for the smaller radius and only the entry 

and exit points along the outer radii are to be considered. 

 With that, the foundations of the simulation programs for both the preshower and shower 

scintillators are completed; they are capable of generating an arbitrarily high number of photon events 

and calculating the number absorbed. My final task this fall was to study how the reflectivity of the 

boundaries influences the absorption efficiencies of the scintillators. The default reflectivity for the 

boundaries for both scintillators up until now was 80% when the incident angle is less than the critical 

angle, and 99% if the incident angle (non-total internal reflection) is greater than or equal to the critical 

angle. 

For the preshower scintillator, I then varied both of these values: the reflectivity for smaller 

incident angles (non-total internal reflection) beginning at 70%, increasing by increments of 5% 

(75%,…100%), and the reflectivity when the incident angle is greater than the critical angle (total 

internal reflection) beginning at 90% and increasing by increments of 2% up to 100%. For the shower I 

followed a similar process; however, I added another dimension of values as I changed the reflectivity of 

the floor and ceiling separately from that of the six hexagonal sides. When varying the values of one 

aspect of its reflectivity, I held the others constant at their defaults (99% for critical angle, 80% for 

smaller angles). The values presented were, unless stated otherwise, calculated by simulations of 10000 

randomly-generated photon events. The value “Absorption efficiency” is defined as: 



 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑖𝑏𝑒𝑟𝑠

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)
 

 

Table 1 and Fig. 11 describe the preshower scintillator varying the boundaries’ normal reflectivity while 

keeping the reflectivity of the total internal reflection constant at 99%: 

Table 1: Absorption efficiency of preshower with variable reflectivity (non-total internal reflection) 

Reflectivity 70% 75% 80% 85% 90% 95% 100%4 

Absorption 
efficiency 

68.13% 70.19% 73.16% 75.69% 79.69% 85.94% 97.25% 

 

 

Fig. 11 

Table 2 and Fig. 12 describe the preshower scintillator varying reflectivity when dealing with the critical 

angle, while keeping the reflectivity of the non-total internal reflection constant at 80%: 

 

 

                                                             
4 The percentage value used 2000 photon events and reflectivity of 99.9999% due to the limitations of the .dat file 
size. However, the absorption efficiency is less than 100% primarily because the reflectivity of the total internal 
reflection is held constant at 99%. 



 

Table 2: Absorption efficiency of preshower with variable reflectivity (total internal reflection) 

Reflectivity 90% 92% 94% 96% 98% 100%5 

Absorption 
efficiency 

69.66% 70.20% 71.30% 71.81% 72.92% 73.20% 

 

 

Fig. 12 

Table 3 and Fig. 13 describe the shower scintillator varying the floor and ceiling’s reflectivity, while 

keeping the 6 hexagonal sides’ reflectivity constant at 80% and the reflectivity of total internal reflection 

constant at 99%: 

Table 3: Absorption efficiency of shower with variable reflectivity (non-total internal reflection, floor and ceiling only) 

Reflectivity 70% 75% 80% 85% 90% 95% 100%6 

Absorption 
efficiency 

70.51% 71.32% 72.19% 72.82% 74.25% 76.25% 88.00% 

                                                             
5
 For this value I used 2000 photon events rather than 10000, and the value 99.9999% rather than 100% for the 

same reason as above. However, the absorption efficiency is less than 100% primarily because the reflectivity of 
the non-total internal reflection is held constant at 80%. 
6 For this value I used 2000 photon events rather than 10000 for the same reason as the note just above. However, 
the absorption efficiency is less than 100% primarily because the 6 hexagonal sides’ reflectivity is held constant at 
80% and the reflectivity of the total internal reflection is held constant at 99%. 



 

 

Fig. 13 

Table 4 and Fig. 14 describe the shower scintillator varying the hexagonal sides’ reflectivity, while 

keeping the floor and ceiling’s reflectivity constant at 80%, and the reflectivity of the total internal 

reflection constant at 99%: 

Table 4: Absorption efficiency of shower with variable reflectivity (non-total internal reflection, hexagonal sides only) 

Reflectivity 70% 75% 80% 85% 90% 95% 100% 

Absorption 
efficiency 

70.87% 71.81% 72.62% 72.84% 73.56% 74.08% 74.55% 

 

Fig. 14 



 

Table 5 and Fig. 15 describe the shower scintillator varying the reflectivity when dealing with the critical 

angle, while keeping the reflectivity of the non-total internal reflection constant at 80%: 

Table 5: Absorption efficiency of shower with variable reflectivity (total internal reflection) 

Reflectivity 90% 92% 94% 96% 98% 100%7 

Absorption 
efficiency 

63.23% 64.50% 65.86% 67.51% 70.09% 75.85% 

 

 

Fig. 15 

 When viewing the graphs, one aspect to consider is the apparent visual differences in the widths 

of the error-bars. These differences can be attributed to the vertical axes covering differing ranges, thus 

the scale is different in each. Error-bar widths were calculated from efficiency (e) and the number of 

events for a given efficiency calculation (N): 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
√𝑁∗𝑒∗(1−𝑒)

𝑁
 

                                                             
7 For this value I used the value 99.999% rather than 100% and 2000 photons instead of 10000 for the same reason 
as the notes above. However, the absorption efficiency is less than 100% primarily because the reflectivity of the 
non-total internal reflection is held constant at 80%. 
 


