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Abstract

A new mathematical model for the description of the photon detector response functions measured in conditions of low light
is presented, together with examples of the observed photomultiplier signal amplitude distributions, successfully described using
the parameterized model equation. As opposed to the previously known approximations, the new model describes the underlying
discrete statistical behavior of the photoelectron cascade multiplication processes in photon detectors. Important features of the
model include the ability to represent the true single-photoelectron spectra from di↵erent photomultipliers with a variety of param-
eterized shapes, reflecting the variability in the design and in the individual parameters of the detectors. The new software tool is
available for evaluation of the detectors’ performance, response, and e�ciency parameters that may be used in various applications
including the ultra low background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies,
optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the experiment simulations.
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1. Introduction

This work has been initiated by the new large-scale RICH de-
tector [1] development undertaken as a part of the CLAS12 de-
tector upgrade [2] at Je↵erson Lab, during which a large num-
ber (more than 27 thousand) of the ultra low light detector chan-
nels needed to be studied, selected, and characterized. Solving
this problem helped us to realize the importance of the new ap-
proach to a wider set of applications involving the multitude of
the ultra low light detection systems.

The study revisits the problem of description and parameter-
ization of the photomultiplier tube (PMT) response functions
measured in the conditions of low light when only a few pho-
toelectrons contribute to each measured signal. Correct evalua-
tion of the single photoelectron (SPE) response is of significant
interest for the photon detector science and metrology. It is also
critical for many applications in the particle detector field where
characterization of the detector response and e�ciency is re-
quired for data analysis, and in astrophysics where precise pho-
ton flux measurements are vital, see, for example, Refs. [3, 4].

Several approaches to this problem have been developed and
utilized, see Refs. [5, 6], and references therein. The common
feature of the previous work in this field is the use of a rather
rigid functional form for the description of the SPE spectra,
such as the Gaussian form in [5], or a more complicated form
of a Gaussian convoluted with an exponential in [6]. Certain
types of photon detectors exhibit, however, more complicated
behavior of the spectra, see Refs. [7]-[12]. Qualitatively it may
be understood, for example, if the properties of the first am-
plification cascade of the device (the first dynode of a PMT)
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are non-uniform. SPE spectra in such cases can be expected to
require a larger number of parameters for their description.

It is possible in principle to measure the SPE spectra exper-
imentally at very low light conditions, and then use the data to
predict the amplitude spectrum at any light [7]. The method is,
however, resource consuming as the measurements at a really
low light are di�cult. Attempts to extract such detailed SPE
spectra information from measurements in realistic conditions
require complicated deconvolution algorithms [9].

This study presents a new method of describing the SPE
spectra of virtually any reasonable complexity, therefore pro-
viding the tools for the understanding and characterization of
the photon detector response in general. Finding a suitable
structure of the SPE spectra and the set of parameters describ-
ing experimental signal amplitude distributions measured by
the PMT photon detectors is the challenge that this work ad-
dresses. A systematic approach and successful solution to this
problem opens better opportunities to characterize and calibrate
such photon detectors, make an educated selection of sample
devices that would work best for a particular purpose, create
new software tools simulating behavior of the photon detectors
in real installations.

2. General definitions

An amplitude response function of a photon detector in gen-
eral, PMT in particular, may be defined in terms of prob-
ability distributions as described, for example, in Ref. [13].
Following the notation and terminology of [13], the function
fPMT (s; parameters) represents the parameterized probability
density function (p.d.f.) of signal amplitude (or charge) s.

The parameterized p.d.f. describes and may be used to ap-
proximate the probability distribution of the observed value of
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s in experiments in which multiple repeatable measurements
are performed in stable conditions of constant low light deliv-
ered to the photon detector. A typical generalized setup for such
measurements assumes that large and stable pulses of light are
generated, short enough to be measured within the timing gates
of the signal measurement system (and the gates in turn are
selected as short as reasonably possible to minimize the noise
contributions). The light pulse is then subjected to a heavy and
stable filtering such that only a few photons per pulse reached
the detector. Photons reaching the photon detector have a prob-
ability of knocking out the photoelectrons at the detector’s first
stage (photocathode in the case of a PMT), in accordance with
its photoelectron emission e�ciency. The number of the photo-
electrons produced in one event is the integer random variable
m � 0. The average number of photoelectrons in one event
hmi ⌘ µ may be also defined as the ratio of the total number of
photoelectrons generated to the number of triggers.

Every measurement in such setup is triggered externally, the
resulting signal amplitude or charge is recorded, and thus the
experimentally measured distribution is accumulated as a nor-
malized function of s: W(s) = (1/Ntot)dN/ds, where Ntot is the
total number of triggers in the run, and dN/ds is the accumu-
lated experimental histogram with bin width ds. Function W(s)
(⌘ dN/ds p.d.f.) constitutes, therefore, the probability density
function of observed value of s during the measurements.

Such normalized experimental distributions can be compared
with fPMT (s; parameters), also normalized to unit area by defi-
nition. Then the set of parameters may be found, corresponding
to the best description of the data by the parameterized func-
tion, using, for example, the method of maximum likelihood as
described in [14].

The signal values smeas are generally measured by a signal
measurement system such as the Analog (or Charge) to Digi-
tal Converter (ADC, or QDC) devices, in units of their output
(channels). The average pedestal value of the measured signal
hspedi is obtained from the events with zero number of photo-
electrons observed: hspedi ⌘ hsmeasim=0. In a typical setup as
described above, a noticeable portion of the events may pro-
duce no photoelectrons, satisfying the condition m = 0. The
resulting measured random variable distribution on smeas will
exhibit corresponding peak at smeas = hspedi. The spread of the
pedestal peak corresponds to the experimental resolution of the
signal measurement system, and ideally is described by a Gaus-
sian with the standard deviation � (in channels). The pedestal
spread may be also measured in separate runs with the light
source turned o↵, or the light completely filtered out.

The true signal value is defined here as

s = smeas � hspedi, (1)

such that hsim=0 = 0 for events with m = 0. If m > 0, the
average signal amplitude hsi is expected to be above zero. By
definition, at m = 1 when only one photoelectron is produced,
the s random variable will be distributed according to the SPE
spectrum p1(s) p.d.f. Average s over the p1(s) p.d.f. spectrum
defines the scale parameter, corresponding to the average signal

value of the SPE signals:

scale = hsim=1. (2)

In linear systems the parameter scale is directly proportional
to the value of the photon detector gain, that is, the ratio of
the measured output current to the measured current from the
photocathode.

Another convenient variable for use in the further discussion
is the value of the normalized signal amplitude a = s/scale,
such that haim=1 = 1. The probability distribution of the a
random variable, f (a; parameters) p.d.f., can be linked to the
fPMT (s; parameters) p.d.f. through the relation

f (a) = scale · fPMT (a · scale; parameters), (3)

to satisfy the normalization requirement
1Z

�1

f (a)da = 1. (4)

The dependence on the vector of parameters is omitted for
brevity in the f (a) definition of Eq. (3), but assumed implic-
itly.

The probability distributions of the a random variable in the
events with fixed number of photoelectrons m � 0 are defined
as pm(a) p.d.f., with p0(a) characterizing the pedestal measure-
ment, and p1(a) being the SPE spectrum of the normalized sig-
nal amplitude, characteristic for a given photon detector.

3. Photomultiplier response model

In the typical experimental setups as explained above, the
random variable m is distributed according to the Binomial
p.d.f. [13]. The two model assumptions of

(a) stable and extremely small probability of an initial photon
to knock out a photoelectron during one event, and

(b) the absence of inter-dependency between the photoelec-
trons

– guarantee that the probabilities of observing m photoelec-
trons in one event will be distributed according to the Poisson
distribution (see Refs. [7, 13]):

P(m; µ) =
µme�µ

m!
. (5)

The conditions (a) and (b) above, along with the model as-
sumptions of

(c) negligible noise contribution, and
(d) linearity of the signal measurement system
– allow us to unambiguously establish the relation between

the value of the scale parameter, the average signal amplitude
measured hsi, and the average number of photoelectrons per
one event µ:

scale = hsi/µ, (6)

which follows from the property of the Poisson distribution
to have its mean value equal to µ and the assumptions of in-
dependence, negligible noise, and linearity. Correspondingly,
hai = µ.
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The four model assumptions (a) through (d), which seem to
be realistic in many practical cases, are used in all further dis-
cussions and model descriptions.

From these conditions it also follows that the p.d.f. p2(a),
being the distribution of the sum of two random variables each
corresponding to the SPE spectrum p1(a) p.d.f., can be explic-
itly expressed as their convolution

p2(a) = p1 ⇤ p1 ⌘ p1
⇤2(a), (7)

and, generally, for m � 1 photoelectrons the explicit expression

pm(a) = p1
⇤m(a) (8)

is the convolution of m SPE functions.
Thus, the expression for the model p.d.f. f (a) becomes

f (a) =
1X

m=0

P(m; µ)pm(a) = e�µp0(a)+
1X

m=1

P(m; µ)p1
⇤m(a). (9)

The function f (a) satisfies the normalization requirement (4)
following the normalization of the Poisson p.d.f. and the nor-
malization properties of the convolution algebra. A general
textbooks on Probability and Mathematical Statistics such as
Refs. [15] and [16] may be consulted for the definitions and for
the discussion of the convolution properties.

To find an appropriate functional form for the possible
parametrization of the function p1(a), we consider the process
of electron multiplication at the second stage of the photode-
tector (at the first dynode of a PMT). Every photoelectron hit-
ting the first dynode has a probability of knocking one or more
second-stage electrons, which in turn will be amplified at the
following dynodes. The average number of the second-stage
electrons per one photoelectron, ⌫ (⌘ ⌫average), can be consid-
ered a characteristic parameter of the detector. In every event,
the number of the second-stage electrons n is a random variable
which characterizes the eventually measured signal s. Thus, we
may characterize the SPE spectrum function p1(a) internally in
the model by the discrete probability distribution of the integer
random variable n with its p.d.f. being the function of n: q1(n).
Similarly, the discrete functions qm(n) may be introduced, cor-
responding to the continuous signal distributions pm(a).

We may also build the discrete second stage amplitude dis-
tribution f2(n) similar to Eq. (9):

f2(n) =
1X

m=0

P(m; µ)qm(n) = e�µq0(n) +
1X

m=1

P(m; µ)q1
⇤m(n),

(10)
where q0(n) = 0 for all n, except n = 0, where q0(0) = 1. The
rules and properties of the convolutions of the discrete functions
are similar to the convolutions of the continuous functions, with
integration being replaced by summation.

The connection of the discrete f2(n) p.d.f. to the continuous
function f (a) may be derived as follows. If we assume that the
signal measurement system measures the number of second-
stage electrons n directly, then the measured discrete signal
distribution can be represented as a function of the normalized

amplitude a in the form of the infinite sum of correspondingly
weighted delta-functions, one per each value of n � 0:

D(a) =
1X

n=0

�
✓
a � n
⌫

◆ 1X

m=0

P(m; µ)qm(n), (11)

where n in the argument of the delta-function is normalized to
the average multiplicity ⌫ of electrons produced by a single pho-
toelectron at the first dynode, to provide the proper scale for the
a variable, that is, to make average a to be equal to one in events
with only one photoelectron.

The output of the signal measurement system, corresponding
to the resulting model function f (a), constitutes the convolution
of the discrete input spectrum of Eq. (11) with a realistic signal
measurement resolution function (often it is a Gaussian with
the standard deviation parameter �a). The convolution may be
performed by integrating the equation

f (a) =
1Z

�1

dx
1p

2⇡ �a
exp

 
� x2

2�2
a

!
D(a � x). (12)

The result of the integration may be presented in the form

f (a) =
1X

n=0

G(a, n;�a)
1X

m=0

P(m; µ)qm(n), (13)

in which the probability of observing n electrons exiting the
first dynode (the inner sum over m as defined in Eq. (10)) is
multiplied by the function

G(a, n;�a) =
1p

2⇡ �a
exp

"
� (a � n/⌫)2

2 �2
a

#
. (14)

The connection between the continuous and discrete signal
distributions for events at fixed m may be written correspond-
ingly:

pm(a) =
1X

n=0

G(a, n;�a)qm(n). (15)

Eq. (13) with G(a, n;�a) in the form of Eq. (14) corresponds
to the model of a hypothetical photon detector consisting of
only two stages of multiplication. For a PMT, it would be
the photocathode and the first dynode. Such a device would
be connected to a signal measurement system with a linear re-
sponse and the Gaussian measurement function, measuring sig-
nals from any number of secondary electrons with the same
resolution (standard deviation parameter of the Gaussian) � in
channels ADC. The standard deviation � can be determined
from the experimental data by fitting the pedestal amplitude dis-
tribution with a parameterized Gaussian, and the �a parameter
in Eq. (14) would then be determined as

�a = �/scale. (16)

Realistic PMTs generally have more stages. The third one,
and the stages that follow, may introduce extra statistical spread
in the charge collected by the ADC at any given n. This can be
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modeled in the way similar to Eq. (10) by choosing the num-
ber of the third-stage electrons k as the integer random variable
characterizing the signal s. The new discrete third stage ampli-
tude distribution f3(k) will look as follows:

f3(k) =
1X

m=0

P(m; µ)
1X

n=0

qm(n)rn(k), (17)

where rn(k) is the p.d.f. for the probability of observing k elec-
trons at the third stage of the PMT if the number of electrons at
the second stage is n. Further stages can in principle be consid-
ered by building corresponding functions f4(l) (l being the num-
ber of electrons at the fourth stage), etc. Practically, however,
they would be of interest only if the signal measurement system
was capable of resolving extremely small signals corresponding
to a single electron from the corresponding stage. In this work
we limit the model at the second stage, corresponding to the n
random variable. Further stages help to define and model the
additional statistical spread in conversion of the integer scale n
into continuous scale s of the measured signal amplitude.

We approximate the extra statistical spread in the measured
value of n, assuming there is another variable in the model, pa-
rameter ⇠, corresponding roughly to the average number of the
electrons knocked o↵ at the third stage (from the second dyn-
ode of the PMT) by the electrons coming from the second stage
(first dynode). The spread in the number of these third stage
electrons is assumed to be purely statistical when the number of
third-stage electrons is reasonably high (n⇠ > 10), and is sim-
ulated using Eq. (17) otherwise, assuming that the gain at the
fourth stage is equal to ⇠ also, and the statistical spread there is
purely statistical. Such approximation cannot be used at a very
small ⇠ < 1. In practice the PMT cascade multiplication factors
at the second and third dynodes are generally well above 1.

The statistical spread is implemented in the model by substi-
tuting the �a parameter in Eq. (14) with the new parameter �e↵
which may depend on n,

�e↵(n) =
q
�2

a + �
2
⇠ =

s✓ �
scale

◆2
+

n
⌫2⇠
, (18)

which is the result of adding in quadrature the normalized sigma
as defined in Eq. (16), and the parameterized spread of the mea-
sured amplitude by the third and further amplification stages of
the detector. The relative statistical error for the value of the
scaling term n/⌫ in Eq. (14) is assumed to be

�⇠(n/⌫)
n/⌫

=
1p
n⇠
. (19)

Correspondingly, the quadrature contribution of this uncer-
tainty to the overall standard deviation becomes

�2
⇠(n/⌫) =

n
⌫2⇠
. (20)

We note here that this approach will result in the pedestal
peak in the spectrum (at n = 0) being described by the Gaus-
sian with �e↵(0) = �a. In experiments at low light where a

significant portion of events results in no photoelectrons (cor-
responding to the values of m = 0 and n = 0), say, at µ less
than 2-3, the pedestal peak can be used in the independent fit
procedure to determine the value of �.

So far we have introduced five parameters in the attempt
to link the measured experimental signal amplitude distribu-
tion dN/ds p.d.f. and the parameterized function f (a), namely,
scale, �, µ, ⌫, and ⇠. The problem will fully be solved when we
find appropriate parameterized form for the function q1(n) for
use in Eq. (10) such that the resulting parameterized function
f (a) of Eq. (13) could approximate experimental data success-
fully.

The simplest practical model for the production of the
second-stage electrons is the model of independent Poissonian
production with average ⌫, assuming that every photoelectron
produces the secondary electrons independently and uniformly.
The explicit form for the function q1(n) in such case is the Pois-
son distribution

q1(n) = P(n; ⌫) ⌘ ⌫
ne�⌫

n!
. (21)

Rules for adding random Poissonian variables and convolution
algebra (see, for example, Refs. [15, 16]) result also in the ex-
plicit form for the functions qm(n) at any m � 1:

qm(n; ⌫) =
(m⌫)ne�m⌫

n!
⌘ P(n; m⌫), (22)

and the expression for the function f (a) of Eq. (13) becomes
the double sum on n and m:

f (a) =
1X

n=0

8>><
>>:G(a, n;�e↵)

2
666664e
�µq0(n) +

1X

m=1

P(m; µ)P(n; m⌫)
3
777775

9>>=
>>; .

(23)
For a given set of parameters and at any a the sum (23) may

be evaluated numerically. Resulting function f (a; parameters)
could be a reasonable approximation for the dN/da(a) p.d.f. for
some photodetectors. In the case of PMTs we have found that
we need more flexibility and more than one parameter to de-
scribe the second-stage production function q1(n) satisfactorily.

Building on the above approach, we may increase the com-
plexity and variability of the model approximation for the func-
tion q1(n) by assuming that several Poisson distributions with
di↵erent averages can contribute to it. Qualitatively, such pat-
tern could be observed, for example, in the case of a photomul-
tiplier having a non-uniform first dynode with distinct areas of
di↵erent first dynode gain. Generally, more parameters allow to
investigate more complicated shapes of the function q1(n). Ar-
guably, given enough gain components and corresponding extra
free parameters, we could claim ultimately good description of
any measured spectrum by decomposing it into a series of con-
stituent Poisson distributions.

Assume that the discrete SPE distribution function q1 is com-
posed of L � 1 elementary Poissonian components such that it
can be presented in the form

q1(n; v

L

) =
LX

u=1

↵uP(n; ⌫u), (24)
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wherein the corresponding partial gains, or average multiplic-
ities of the Poissonian components are ⌫1, ..., ⌫L, their relative
contributions to the SPE function are ↵1, ...,↵L, satisfying the
equation

LX

u=1

↵u = 1, (25)

and v

L

= (⌫1,↵2, ⌫2, ...,↵L, ⌫L) is the vector of parameters, with
v

1

⌘ (⌫1), v

2

⌘ (⌫1,↵2, ⌫2), v

3

⌘ (⌫1,↵2, ⌫2,↵3, ⌫3), etc.
In general, at any m � 1, qm(n; v

L

) may be written as

qm(n; v

L

) = q1
⇤m(n; v

L

) ⌘ ML(n,m; v

L

). (26)

The equation for the multinomial ML(n,m; v

L

) function then
follows from the properties of convolution powers (see
Ref. [16]) applied to q1(n; v

L

):

ML(n,m; v

L

) =
2
666664

LX

u=1

↵uP(n; ⌫u)
3
777775

⇤m

=

=
X

i1+...+iL=m
i1,...,iL�0

m!
LY

u=1

 
1

iu!
↵ iu

u

!
P(n; ⌫cL), (27)

wherein

⌫cL =

LX

u=1

⌫uiu (28)

is the average multiplicity of the secondary electrons in each of
the (i1, ..., iL) combinatorial elements contributing to the sum
in Eq. (27). The combinatorial sum is performed for all
L-dimensional combinatorial elements (i1, ..., iL) satisfying the

conditions iu � 0 for each u, and
LP

u=1
iu = m. See Ref. [17] for

the definitions and for the discussion of the multinomial coe�-
cients in the sum.

The number L of elementary Poisson distributions in the de-
composition of Eq. (24) can be chosen to accommodate ex-
pected or observed complexity in the SPE spectra. Larger L
values would provide for more complicated spectral shapes, but
require more computing resources, as well as increase the num-
ber of variable parameters, making the approximation process
more di�cult.

The explicit form for the function M1(n,m; v

1

) at L = 1 is
similar to that of Eq. (22):

M1(n,m; v

1

) = P(n; ⌫1m), (29)

at L = 2 it can be represented as the binomial sum:

M2(n,m; v

2

) ⌘ B(n,m; b) =

=

mX

i=0

m!
i!(m � i)!

(1 � ↵2)i(↵2)m�iP(n; ⌫1i + ⌫2m � ⌫2i), (30)

and at L = 3 it corresponds to the trinomial sum:

M3(n,m; v

3

) ⌘

⌘ T (n,m; t) =
X

i1+i2+i3=m
i1,i2,i3�0

m!
i1! i2! i3!

↵ i1
1 ↵

i2
2 ↵

i3
3 P(n; ⌫c), (31)

wherein
⌫c = ⌫1i1 + ⌫2i2 + ⌫3i3 (32)

is the average multiplicity of the secondary electrons in each of
the (i1, i2, i3) combinatorial elements, and

P(n; ⌫c) =
(⌫c)n exp(�⌫c)

n!
. (33)

The trinomial sum of Eq. (31) proved to be su�cient in
characterizing the measured SPE amplitude distributions in this
study.

Thus, for the purpose of the approximation of the amplitude
distributions experimentally measured in PMT photon detectors
we use the following equation:

f (a; d) =
1X

n=0

8>><
>>:G(a, n;�e↵)

2
666664e
�µq0(n) +

1X

m=1

P(m; µ)T (n,m; t)
3
777775

9>>=
>>; .

(34)
The set of parameters d includes scale, �, µ, ⇠, and the vec-

tor t = (⌫1,↵2, ⌫2,↵3, ⌫3). The average multiplicity of the sec-
ondary electrons produced by one photoelectron (average sec-
ond stage gain) in this case will be

⌫ = ⌫1(1 � ↵2 � ↵3) + ⌫2↵2 + ⌫3↵3. (35)

The list of parameters taking full advantage of the PMT spec-
tra approximation by Eq. (34) is given in Table 1. Parameter
forms ⌫2/⌫1, ↵3/(1 � ↵2), and ⌫3/⌫1 are used in the computa-
tions to simplify the fit procedure as the limits on these param-
eter forms can be set universally. The original equation’s sym-
metry between parameters ⌫1, ⌫2, and ⌫3, and between ↵1,↵2,
and ↵3 is broken in the fitting procedure to make it more stable.
The model parameters may be extracted from their table forms
unambiguously.

4. Implementation of the model

The fitting procedure was written in KUIP [18] macro lan-
guage and in FORTRAN within the framework of the Physics
Analysis Workstation (PAW) [19] package from CERN, with
the use of the multiparametric functional minimization routine
MINUIT [20]. The software development tools chosen are a bit
outdated. However, the choice of KUIP as the high-level pro-
gramming language, operating e↵ectively with the data analysis
objects, both interactively and in the batch mode, helped signif-
icantly in the relatively quick development of the fit algorithm
and procedure. The FORTRAN code for the fitting function and
the KUIP macro language routines with the implementation ex-
amples are available upon request. Currently, plans to export
the code into the Root [21] environment are under considera-
tion.

Numerical evaluation of the function f (a; d) in Eq. (34) is
performed by setting finite limits of summation over n and m.
The upper limit on m in this study, at relatively low average pho-
toelectron multiplicities µ / 3, is set at 16. The contribution of
higher values of m to the sum is negligible at such conditions.
The limits of summation over n are selected dependent on the
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Table 1: List of PMT model fit parameters

Name Limits Brief Description

scale > 0 – average amplitude of SPE
signals (channels ADC)

� > 0 – standard deviation of the
pedestal fit (channels ADC)

µ > 0 – average multiplicity
of photoelectrons

⌫1 > 0 – average multiplicity of the
first gain component in (24)

↵2 [0, 1] – portion of second gain
component in (24)

⌫2/⌫1 [0, 1] – relative multiplicity of the
second gain component in (24)

↵3/(1 � ↵2) [0, 1] – relative portion of third gain
component in (24)

⌫3/⌫1 [0, 1] – relative multiplicity of the
third gain component in (24)

⇠ > 1 – average multiplicity at the
second dynode

value of a such that |a � n/⌫| < 8�e↵ , neglecting the value of
the Gaussian G(a, n;�e↵) of Eq. (14) beyond 8 standard devi-
ations. If the lower limit obtained from the above condition is
below zero, it is set at n = 0. The values of the model limiting
parameters can be adjusted if needed for di↵erent conditions,
for example, higher values of µ may require using higher upper
limit on m.

No formal proof of the convergence of the summation
method has been developed; however, an indirect verification
is done every time by checking that the calculated function is
normalized to unit area in accordance with Eq. (4), with accu-
racy much better than 1%.

As an independent verification of the implementation of the
method, we observe that the mean a value for the pm(a) p.d.f.
calculated using Eq. (15) is hai = m as expected for all m � 0.

In the fitting procedure, a raw measured amplitude distribu-
tion dN/ds is normalized to have the integral (the sum of all
channels in the histogram) to be equal to one, representing the
measured probability distribution dN/ds p.d.f., to be approx-
imated by the model probability density function fPMT (s; d).
The first guess of the values of hspedi and � is made based on
the Gaussian fit of the left side and top of the first peak in the
distribution, representing events with n = 0. The average am-
plitude hsi is then calculated together with the initial estimate
of µ parameter to obtain the initial value of the scale parame-
ter, which allows us to present the probability distribution as a
function of normalized signal amplitude a. After that, the data
set is used in the process of finding the best set of parameters
describing it in the form of Eq. (34), using MINUIT.

The stability of the multiparametric fitting procedure
strongly depends on the right choice of the parameters’ initial
values. In the following examples, di↵erent strategies were im-

plemented to achieve such stability, generally by splitting the
process into several stages, starting with the separate fit of the
pedestal Gaussian to determine the pedestal position and stan-
dard deviation, then setting the initial value of µ by evaluat-
ing the portion of events in the pedestal region and using the
assumption that it is equal to exp (�µ), and then gradually in-
creasing the number of variable parameters in the consequent
fits.

In the examples that included measurements of amplitude
distributions from the same photodetector in identical condi-
tions, only varying the amount of light delivered to the detec-
tor per one measurement, the procedure included the next layer
of a “global fit”. After the best set of parameters describing
each individual measurement was found, the parameters related
to the SPE amplitude distribution were averaged across the set
and fixed at those values. The remaining “external” parameters
(such as scale, µ, and �) were set free for the subsequent fit.
The quality of the resulting approximation is an indication that
the parameters of the SPE distribution were found correctly and
may serve as values characterizing the device. These data sets
illustrate the “predictive power” of the model, that is, its ability
to predict how the amplitude distributions would look in di↵er-
ent experiments with the same PMT (at di↵erent light condi-
tions, and with di↵erent resolution of the signal measurement,
for example).

5. Examples

This section provides examples of practical applications of
the model used for parameterizations of real signal amplitude
spectra measured in various conditions and with di↵erent types
of photomultipliers.

5.1. Tests of Hamamatsu H8500C-03 Multianode PMT

Figures 1, 2, and 3 illustrate the general quality of the model
description of the amplitude distributions measured on three
di↵erent anodes of the position sensitive multianode Hama-
matsu PMT (MAPMT) H8500C-03, a 52 mm square 12-stage
photomultiplier tube with 64 (matrix 8 by 8) pixels [22]. The
measurement was a part of the dedicated study of the SPE de-
tection capabilities of this PMT and its performance in a high
magnetic field [23]. The spectra from each anode were accu-
mulated in several irradiation conditions, corresponding to the
range of µ from about 0.3 to 3. The raw data sets were kindly
presented to us by the Authors of Ref. [23] for the analysis.
Every spectrum was subjected to the two-level “global fit” pro-
cedure as described in the previous section. The fitting function
is visibly following the data points nicely above the pedestal.
The values of �2/NDF, or �2/nd as per [14], corresponding to
the formal goodness-of-fit statistical evaluators, are mostly de-
termined by the quality of the Gaussian approximation for the
signal measurement system resolution function in this experi-
ment. At low-light setups, where the pedestal events dominate,
the non-Gaussian contributions to the shape of the resolution
functions increase the values of �2/nd, but do not disturb sig-
nificantly the SPE spectra parameterizations in this example.
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(a) H8500 MAPMT, anode #39, test setup at low light conditions corre-
sponding to µ = 0.306
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(b) H8500 MAPMT, anode #39, test setup at lower-medium light condi-
tions corresponding to µ = 0.869
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(c) H8500 MAPMT, anode #39, test setup at upper-medium light condi-
tions corresponding to µ = 1.653

s = Amplitude - Pedestal (channels ADC)

dN
/d

s 
p.

d.
f. 

(a
rb

. u
ni

ts
)    1.21χ2/NDF   =

scale (channels per 1 ph.e.) =  23.66 ±     0.00
σ (channels) =  4.361 ±    0.032

µ  = 2.7336 ±   0.0016
ν1 =  16.97 ±     0.00
α2 =  0.278 ±    0.000

ν2/ν1 =  0.250 ±    0.000
α3/(1-α2) =  0.597 ±    0.000

ν3/ν1 =  0.626 ±    0.000
ξ  =   5.00 ±     0.00

νaverage  =   10.70

Solid line: dN/ds = fPMT(s; parameters)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 50 100 150 200 250

(d) H8500 MAPMT, anode #39, test setup at higher light conditions cor-
responding to µ = 2.734

Figure 1: A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, anode #39, at ten light conditions,
four of which are shown. The experimental data [23] are shown as open circles with error bars, the fit function fPMT (s; parameters)
is shown as a solid line, and the contributions to fPMT coming from events with zero, one, and more photoelectrons are shown as
areas under dashed lines with di↵erent types of hatch. The area corresponding to the SPE contribution uses horizontal lines as hatch
type, and is highlighted. Only two parameters, � and µ, are left variable in all final fits.
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(a) H8500 MAPMT, anode #45, test setup at low light conditions corre-
sponding to µ = 0.256
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(b) H8500 MAPMT, anode #45, test setup at lower-medium light condi-
tions corresponding to µ = 0.728
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(c) H8500 MAPMT, anode #45, test setup at upper-medium light condi-
tions corresponding to µ = 1.383
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(d) H8500 MAPMT, anode #45, test setup at higher light conditions cor-
responding to µ = 2.285

Figure 2: A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, similar to the set shown in Fig. 1,
but on di↵erent anode #45. Ten measured distributions participated in the “global fit” procedure; four of them are shown.
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(a) H8500 MAPMT, anode #61, test setup at low light conditions corre-
sponding to µ = 0.388
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(b) H8500 MAPMT, anode #61, test setup at lower-medium light condi-
tions corresponding to µ = 0.827
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(c) H8500 MAPMT, anode #61, test setup at upper-medium light condi-
tions corresponding to µ = 1.636
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(d) H8500 MAPMT, anode #61, test setup at higher light conditions cor-
responding to µ = 2.742

Figure 3: A set of amplitude distributions measured with a Hamamatsu H8500 photomultiplier, similar to the set shown in Fig. 1,
but on di↵erent anode #61. Nine measured distributions participated in the “global fit” procedure; four of them are shown.
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(a) H8500 MAPMT, anode #45, test setup at low light conditions corre-
sponding to µ = 0.256
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(b) H8500 MAPMT, anode #45, test setup at lower-medium light condi-
tions corresponding to µ = 0.728
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(c) H8500 MAPMT, anode #45, test setup at upper-medium light condi-
tions corresponding to µ = 1.383
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(d) H8500 MAPMT, anode #45, test setup at higher light conditions cor-
responding to µ = 2.285

Figure 4: Same as in Fig. 2, but using logarithmic scale in ordinate to illustrate the contribution of higher m components in the
spectra.
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We found that the best-fit parameters of the SPE ampli-
tude distributions, while di↵erent for di↵erent anodes, are close
within statistical errors for di↵erent irradiation conditions of
one pixel (anode) of the PMT. The data are described well in
di↵erent light setups with the same fixed set of parameters ⌫1,
↵2, ⌫2, ↵3, ⌫3, ⇠ of the SPE spectrum p1(a), keeping variable
only the parameter specifying the light (µ), and one of the signal
measurement parameters, �. The values of the fixed parameters
are shown in the plots with zero standard deviations. The data
sets allowed us also to keep the scale parameter fixed in all fits,
indicating to a good stability of the signal measurement sys-
tem during the measurements. To illustrate these observations
better, the plots are normalized such that the SPE contribution
to the full spectra is shown (as the dashed line above the high-
lighted and horizontally hatched area) visually identical in each
plot of the set. The SPE spectrum approximation extracted from
the data in such a procedure may therefore be considered as a
characteristic of the photon detector (one of the anodes of the
MAPMT in this case).

This result demonstrates the predictive functionality of the
model, meaning that the SPE spectrum approximation mea-
sured in some conditions may be used to evaluate the amplitude
distributions from this detector in di↵erent light conditions, and
with di↵erent signal measurement resolution.

Logarithmic scales in ordinate in Fig. 4 illustrate the quality
of the model description of the whole spectra as the sum of the
partial terms with m from 0 to about 7-10.

5.2. Tests of ET Enterprises 9823B PMT

Fig. 5 shows similar exercise with the amplitude spectra mea-
sured on a very di↵erent PMT, ET Enterprises 5-inch 9823B
tube; the data were kindly provided to us by Hakob Voskanyan,
Andrey Kim and Will Phelps [24]. The statistical errors in the
data set are small enough for a stable and accurate multipara-
metric fitting procedure. The excellent quality of the data made
it possible to observe and measure the non-Gaussian compo-
nents in the pedestal distributions, and adjust the model by in-
troducing and parameterizing these components of the experi-
mental signal measurement distribution function, to achieve ac-
ceptable model description of the full data set.

We did observe the slight asymmetry in the pedestal func-
tion that could be modeled by introducing an exponential noise
component in addition to the standard Gaussian form. Such
noise may be modeled ad hoc as an independent random value
anoise contributing with a certain probability to the signal value
a in any event, and distributed according to the exponential

fnoise(a; ⌧) =
1
⌧

exp
✓
�a
⌧

◆
, (36)

with the parameter ⌧ describing the exponential (temperature-
like) noise spectrum.

Adding such a random noise contribution to the model in-
volves the convolution between the model function (34) and
the exponential (36). Using the properties of the convolution
algebra, it can be implemented by the substitution of the Gaus-
sian form G(a, n;�e↵) in Eq. (34) with its convolution with the

exponential noise in the form

(1 � �)G(a, n;�e↵) + �Gem(a, n;�e↵ , ⌧), (37)

wherein the parameter � is the probability for the noise
event to happen in every measurement, and the function
Gem(a, n;�e↵ , ⌧) is the convolution of the Gaussian with the ex-
ponential (known also as exponentially modified Gaussian dis-
tribution, see Ref. [25]):

Gem(a, n;�e↵ , ⌧) =

=
1
2⌧

exp
0
BBBB@
�2

e↵

2⌧2 �
a � n/⌫
⌧

1
CCCCA · erfc

2
66664
�2

e↵/⌧ � (a � n/⌫)
p

2�e↵

3
77775 , (38)

where

erfc(x) ⌘ 1 � erf(x) =
2p
⇡

Z 1

x
exp

⇣
�t2

⌘
dt. (39)

Adding random exponential noise contributions to every
measurement in this extension of the model also modifies the
relation of Eq. (6) between the values of the scale, hsi, and µ
parameters that should be applied in the minimization proce-
dure in this case:

scale�⌧ = (hsi � �⌧)/µ. (40)

The results of application of such approach to the data are
illustrated in Fig. 5. The set of 18 measurements at di↵erent
light intensities in the range of µ values from about 0.5 to about
4.0 was approximated using the identical SPE spectrum defined
by the parameters ⌫1, ↵2, ⌫2, ↵3, ⌫3 and ⇠. The signal measure-
ment system parameters scale, �, � and ⌧ were left variable in
the global fit procedure to allow for their slight modification
between di↵erent measurements, but their variations are quite
small, showing the stability of the test setup. The only major
variable parameter in the fitting procedure is µ, characterizing
average number of photoelectrons in each test. The goodness-
of-fit evaluator �2/nd is in the range between 1.0 and 1.1 in all
18 approximations, indicating to a model description of the data
close to a theoretically perfect.

5.3. Extracted SPE spectra
Fig. 6 further illustrates the inner structure of the SPE spectra

extracted from the data sets shown in Figs. 1-3 and Fig. 5. The
p1(a) p.d.f. are drawn as functions of the normalized signal
amplitude a, together with their three Poissonian components
defined by the vectors of parameters t. The p1(a) functions are
shown convoluted with the corresponding e↵ective signal mea-
surement Gaussians G(a, n;�e↵) in Figs. 6a-6c, and convoluted
with the modified signal measurement function of Eq. (37) in
Fig. 6d. The parameters for the signal measurement functions
used were averaged over the test light conditions.

The three components of the p1(a) functions originate from
the three elementary Poissonian constituents of the discrete
q1(n) distributions, as defined in Eq. (24), and are converted
to the continuous a scale by the same convolutions applied to
each component separately, similar to how it’s done in Eq. (15).
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(a) ET Enterprises 9823B PMT, test setup at low light conditions corre-
sponding to µ = 0.496
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(b) ET Enterprises 9823B PMT, test setup at lower-medium light condi-
tions corresponding to µ = 0.991
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(c) ET Enterprises 9823B PMT, test setup at upper-medium light condi-
tions corresponding to µ = 1.916
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(d) ET Enterprises 9823B PMT, test setup at higher light conditions cor-
responding to µ = 3.992

Figure 5: A set of amplitude distributions measured with an ET Enterprises 9823B photomultiplier at eighteen light conditions,
four of which are shown. The experimental data [24] are shown as open circles with error bars, other notation and the features in
the plots are the same as in Fig. 1. The values of ⌧ parameter in the plots are dimensionless and given in the units of �. Only the
parameters related to the performance of the signal analysis system (scale, �, �, and ⌧), and also the light intensity parameter µ are
left variable in the final fits.
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(b) H8500 MAPMT, anode #45
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(c) H8500 MAPMT, anode #61
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(d) ET Enterprises 9823B PMT

Figure 6: Solid lines show the p1(a) p.d.f. corresponding to the amplitude spectra of a single photoelectron as determined in the
plots shown in Figs. 1-3 (panels a-c), and Fig. 5 (panel d). The trinomial components of the functions are shown by the dash-dotted
lines.
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The components add up to fit the complicated SPE amplitude
distribution functions that would be di�cult to approximate us-
ing a smaller number of parameters.

Good normalized signal amplitude resolution of the measure-
ment system for the data shown in Fig. 6d allowed us to clearly
distinguish between the events with n = 0 and events with n > 0
in the SPE spectrum, that is, to evaluate according to the model
the portion of events when a photoelectron fails to generate any
response from the PMT. Portion of such events in the p1(a)
function may be linked to the “collection e�ciency” charac-
teristic reported by the PMT manufacturers, see, for example,
Ref. [12], page 45.

5.4. Tests of Hamamatsu H8500 and H12700 MAPMTs
The following example illustrates some of the results of the

study of large number (430) of the Hamamatsu H8500 and
H12700 MAPMTs, obtained in the process of PMT selection
for the new RICH detector, which is presently underway at JLab
[1, 26]. As opposed to H8500, the new 10-stage H12700 series
of MAPMTs from Hamamatsu [22] is designed specifically to
suit better for the applications requiring reliable single photo-
electron detection, such as RICH detectors.

All the MAPMTs were tested in the conditions of a relatively
low light (three illumination conditions identified as “OD54”,
“OD50” and “OD46”, corresponding to the parameters of aver-
age µ of about 0.06, 0.13, and 0.20, and at four values (1000,
1050, 1075 and 1100 volts) of the operational high voltage
(HV) applied.

The total number of measured amplitude distributions
recorded and analyzed is about 340 thousand. The signal mea-
surement system did not provide perfect Gaussian pedestal am-
plitude distributions during these tests. While the pedestal
shapes were very close to Gaussian form, the small statistical
errors in the peak made the fitting procedure very sensitive to
the small distortions, and thus unstable. To avoid parameteriza-
tion instabilities caused by the discrepancies between the ideal
Gaussian pedestal shape and the measured pedestal peaks, in
every spectrum the statistical errors in the data points constitut-
ing the pedestal peaks were increased and re-normalized such
that the peaks could be approximated by the Gaussian func-
tions with the new modified (�2/nd)Gaussian equal to one. That
way during the multiparameter fitting procedure the disturbed
pedestal peak shapes did not influence the main �2 of the full
spectrum minimization. Essentially only pedestal position and
e↵ective Gaussian width were used in the main fitting proce-
dure, not details of the shape.

The parameters of the SPE spectrum for each of the 27,520
anodes were obtained using the “global fit” procedure. The SPE
parameters were averaged over the runs with di↵erent illumina-
tion conditions and fixed in final fits.

Fig. 7 shows the characteristic examples of the spectra mea-
sured on one of the central anodes belonging to a MAPMT
H12700 (left panels) and to a MAPMT H8500 (right panels)
at four di↵erent applied high voltages from 1000 V to 1100 V,
together with the model approximations.

Each plot shows the quality of the overall fit of the data by
the model function, mostly defined by the SPE contribution at

such low-light test conditions. The significant increase of the
scale parameter with the increase of the applied high voltage
may be seen clearly, corresponding to the well-known depen-
dence of PMT gains on the applied high voltage. Notice that
the extracted values of µ parameter are quite stable and practi-
cally do not depend on HV. The H12700 MAPMTs generally
exhibit a more prominent high-⌫ component of the SPE spec-
trum compared with the H8500 tubes.

The model-approximated SPE spectra measured for several
anodes of the sample MAPMTs, including those corresponding
to the set of plots from Fig. 7, are shown in Fig. 8, function
of the normalized amplitude a. Despite the strong dependence
of the scale parameter on the applied high voltage observed
earlier, the shapes of the SPE spectra function of a are sta-
ble and only slightly depend on the HV, possibly due to the
changes in the average multiplicity ⌫ of the second-stage elec-
trons knocked from the first dynode. Qualitatively this result
may be understood such that as energy of the photoelectron ac-
celeration from the photocathode to the first dynode increases
at higher voltages, the average number of the knocked-out elec-
trons increases slightly. Such pattern is observed in all anodes
and all photomultipliers in the study.

The variability of the SPE parameters between di↵erent an-
odes in each MAPMT is found to be quite significant. Also
significant is the di↵erence between average SPE parameters
for H8500 and H12700 MAPMT types. Fig. 9 illustrates this
statement by showing some of the “PMT Passport” plots for
the above two MAPMT example devices. Model approxima-
tion parameters were obtained for every anode independently
using the “global fit” procedure, and plotted as a function of
the anode number for every photomultiplier. Model parame-
ters scale, µ, and the derived values of ⌫average and " on the left
panels in Fig. 9 are obtained for the H12700 example MAPMT,
and corresponding right panels show the results for the H8500
MAPMT. The SPE e�ciency evaluation parameter " will be
discussed further in the text.

The top panels (a) and (b) in Fig. 9 illustrate typical variable
patterns of the scale parameters as a function of anode num-
ber. The plots show all twelve test conditions that the MAPMTs
were subjected to in this study, namely, four HV values times
three light conditions. Quite striking feature of the model ap-
proximation is that the extracted scale parameters do not de-
pend on the light conditions to a very high degree of accuracy,
such that those di↵erences practically cannot be resolved on the
plots. The dependence of the scale parameter on HV is on the
other hand quite clear and corresponds to the well-known char-
acteristic exponential dependence of output amplitudes (PMT
gain) on high voltage. The data sets, measured at di↵erent high
voltages and plotted as a function of the anode number, look es-
sentially parallel in logarithmic scale in the plots, meaning that
their di↵erence may be approximately attributed to multiplica-
tion by a factor.
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(a) Hamamatsu H12700 MAPMT GA0133, HV = 1000 V
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(b) Hamamatsu H8500 MAPMT CA7782, HV = 1000 V
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(c) Hamamatsu H12700 MAPMT GA0133, HV = 1050 V
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(d) Hamamatsu H8500 MAPMT CA7782, HV = 1050 V
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(e) Hamamatsu H12700 MAPMT GA0133, HV = 1075 V
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(f) Hamamatsu H8500 MAPMT CA7782, HV = 1075 V
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(g) Hamamatsu H12700 MAPMT GA0133, HV = 1100 V
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(h) Hamamatsu H8500 MAPMT CA7782, HV = 1100 V

Figure 7: A set of amplitude distributions measured at four high voltages on one Hamamatsu H12700 MAPMT (left panels), and
one Hamamatsu H8500 MAPMT (right panels), shown for one of the central anodes (#28) in each MAPMT at the meduim “OD50”
light condition. The notation and other features in the plots are the same as in Fig. 1. Only the set of parameters related to the
performance of the signal analysis system (scale and �), and also the light intensity parameter µ are left variable in the final fits.
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(a) Hamamatsu H12700 MAPMT GA0133, anode #28
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(b) Hamamatsu H8500 MAPMT CA7782, anode #28
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(c) Hamamatsu H12700 MAPMT GA0133, anode #32
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(d) Hamamatsu H8500 MAPMT CA7782, anode #32
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(e) Hamamatsu H12700 MAPMT GA0133, anode #57
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(f) Hamamatsu H8500 MAPMT CA7782, anode #57
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(g) Hamamatsu H12700 MAPMT GA0133, anode #64
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(h) Hamamatsu H8500 MAPMT CA7782, anode #64

Figure 8: Each panel shows the SPE p.d.f., measured using the “global fit” procedure at four high voltage values. Four anodes
are shown for both types of MAPMTs, corresponding to the anode positions at the center, at the center of the edge, and at the two
corners of the MAPMT’s face. All plots show the p1(a) p.d.f. assuming artificially small normalized experimental measurement
resolution �/scale = 0.02.
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(a) Parameter scale, proportional to the overall PMT gain at each anode.
H12700 MAPMT “GA0133”
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(b) Same as in (a), but for the H8500 MAPMT “CA7782”
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(c) Parameter µ, proportional to the light intensity at each anode. H12700
MAPMT “GA0133”
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(d) Same as in (c), but for the H8500 MAPMT “CA7782”
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(e) Average number of the second-stage electrons knocked out by one photo-
electron, for each anode. H12700 MAPMT “GA0133”
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(f) Same as in (e), but for the H8500 MAPMT “CA7782”

Anode Number

S
P

E
 e

ff
 a

t 
2
0
 c

h
a
n
n
e
ls

 (
p
e
rc

e
n
t)

HV=1000, dotted HV=1050, dashed HV=1075, dash-dotted HV=1100, solid

50

60

70

80

90

100

0 10 20 30 40 50 60

(g) E�ciency " of one photoelectron detection at each anode. H12700 MAPMT
“GA0133”
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(h) Same as in (g), but for the H8500 MAPMT “CA7782”

Figure 9: MAPMT passport plots: a selection of the model parameters scale, µ, and the derived values of ⌫ and ", evaluated using
the “global fit” procedure for the two sample devices, Hamamatsu H12700 MAPMT “GA0133” (left panels), and H8500 MAPMT
“CA7782” (right panels), plotted as functions of the anode numbers of these MAPMTs. All twelve data sets are shown in each plot,
corresponding to the three illumination conditions measured at each of four di↵erent applied high voltages.
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Panels (c) and (d) in Fig. 9 are complementary to the pre-
vious two in a sense that they show the stability of the model
in determining the model parameter µ during the varying test
conditions. Naturally µ must be proportional to the average
light delivered during the test, and ideally it wouldn’t depend
on the HV applied. These regularities are generally observed in
the data. As the irradiation of the MAPMT face was uniform, µ
measured in each of the 64 channels change in sync with chang-
ing light conditions. The dependence of the µ parameter on the
high voltage applied is very minimal, and possibly could be
explained by tiny increase in the probability of photoelectron
emission in higher gradients of electric fields in the photocath-
ode region at higher voltages. However, this hypothesis wasn’t
further investigated.

Panels (e) and (f) in Fig. 9 show the ⌫ derived value as de-
fined in Eq. (35), function of the anode number for the sample
MAPMTs. The values of ⌫ are averaged over the three light
conditions at each of the HV settings using the “global fit” pro-
cedure. The di↵erence in ⌫ values between the H12700 and
H8500 MAPMT models is quite significant and is observed in
other MAPMTs through the whole data set. Most likely expla-
nation of this observation is the di↵erence in the design of these
MAPMTs. Other typical feature that could be seen in these two
panels is the relatively weak, but noticeable, dependence of ⌫
on the high voltage applied. Such dependence of ⌫ on HV may
be qualitatively understood as increasing probability of knock-
ing out electrons from the first dynode at higher voltages due to
higher energy that a photoelectron acquires when accelerating
from the photocathode to the first dynode.

Panels (g) and (h) in Fig. 9 illustrate one of the possible final
goals of such studies: evaluate e�ciency " of the photoelectron
detection by the photodetectors. Here " is defined as the proba-
bility of events distributed according to the evaluated SPE am-
plitude distributions p1(s) to have their signal amplitude s above
20 channels ADC or QDC as recorded by the signal measure-
ment system during these tests. The value of " generally varies
from anode to anode, as shown in the plots in correlation with
the anode gain, which in turn depends on the high voltage ap-
plied. The e�ciency is systematically higher for the H12700
MAPMT series, despite generally higher scale parameters ob-
served for the H8500 MAPMTs.

The overall features of the massive analyzed MAPMT data
set are presented in the following plots.

Fig. 10 shows the distributions of the goodness-of-fit eval-
uator �2/nd for about 60000 parameterizations for the H8500
MAPMTs in this study, and about 275000 parameterizations for
the H12700 MAPMT series. The �2/nd value is taken from the
last stage of the “global fit” procedure in which the six param-
eters characterizing the SPE spectra were averaged and fixed
for the 3 setups at di↵erent light conditions, and other variables
were optimized to minimize the �2. As it was explained above,
the values of statistical errors in the bins around the pedestal in
the raw spectra were artificially adjusted to make the fit insen-
sitive to the slightly non-Gaussian shape of the measured peak
and avoid fit instabilities. The �2/nd distributions are normal-
ized to equal areas under the curves. While both distributions
indicate to a reasonably good quality of the fits, the H8500 se-

χ
2/nd, fits of the spectra with pedestal peak statistical errors adjusted

d
N

/d
(χ

2
/n

d
) 

(a
rb

itr
a
ry

 u
n
its

)

solid line: H12700 PMT set, 274817 entries

dashed line: H8500 PMT set, 59129 entries

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

Figure 10: Distribution of the goodness-of-the-fit evaluator
�2/nd on the number of model parameterizations. Dashed line
shows the H8500 set, solid line - the set of fits for the H12700
MAPMTs. The distributions are normalized to equal areas in
the plot.

ries is closer to being “theoretically perfect”, and the H12700
series distribution has more instances of the fits with a some-
what less than perfect quality.

Fig. 11 presents distributions of scale and µ model parame-
ters, and the derived values of ⌫ and µ" for the analyzed data
sets. Dashed lines show the H8500, and solid lines - the set
of parameters for the H12700 MAPMTs. The distributions are
normalized to equal areas in the plots. The selections of the pa-
rameter sets included in the distributions are indicated on top of
the panels.

Fig. 11a shows the distributions of scale parameter measured
for all anodes of H8500 and H12700 MAPMTs at 1050 V. As
it has already been illustrated in the panels (a) and (b) of Fig. 9,
the extracted scale parameters do not depend on the light condi-
tions to a very high degree of accuracy. The distributions of the
scale parameter in Fig. 11a accumulated for the di↵erent light
conditions are practically identical and are superimposed on top
of each other in the plot. While the spread of the values is quite
broad, the H8500 set exhibits scale values on average about
20% larger than the H12700 set at the same HV. Apparently,
as compared to the H8500 MAPMT, the lower number of the
amplification stages in the H12700 devices is almost compen-
sated by the new design features allowing greater amplification
at each stage. This is further illustrated in Fig. 11b where the
scale parameter distributions are shown for HV = 1000 V and
HV = 1100 V, averaged over the light conditions, and plotted
using the logarithmic scale in abscissa to better see the similar-
ities between the distributions at di↵erent applied voltages.
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(a) Distributions of scale parameter for the two MAPMT data sets
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(b) Light-averaged distributions of scale parameter for the two MAPMT data
sets, in the two HV settings
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(c) Distributions of µ parameter for the two MAPMT data sets
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(d) HV-averaged distributions of µ parameter for the two MAPMT data sets, in
the two light conditions
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(e) Distributions of ⌫ value for the two MAPMT data sets
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(f) Light-averaged distributions of ⌫ value for the two MAPMT data sets, in the
two HV settings
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(g) Distributions of the light detection e�ciency value µ" for the two MAPMT
data sets at HV = 1050 V
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Figure 11: Distributions of scale and µ parameters, and ⌫ and µ" derived values on the number of model parameterizations. Dashed
lines show the H8500 data set, solid lines - the set of parameters for the H12700 MAPMTs. The distributions are normalized to
equal areas in each plot. The selections of the evaluated parameter sets included in the distributions are indicated on top of the
panels.
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Fig. 11c shows the distributions of µ parameter measured for
all anodes of H8500 and H12700 MAPMTs at the intermediate
light condition “OD50”, and all high voltages. The distributions
indicate on a rather small (< 10%) di↵erence in the photoe�-
ciency and/or photoelectron collection ability between the two
types of MAPMT, showing the slight advantage for the H12700
devices. It may also be seen in the plot, that the evaluated pa-
rameters µ practically do not depend on HV applied. This ob-
servation illustrates the good level of factorization between the
scale and µ parameters of the model. The values of these pa-
rameters evaluated in one set of the test conditions are applica-
ble to the tests at di↵erent HV and light. While the stability of
the extracted scale parameter is observed to be within the small
statistical errors of under 1%, the distributions on µ may indi-
cate on the presence of a slight (1-2%) dependence of µ on the
applied HV. However, this small e↵ect was di�cult to evalu-
ate and analyze in more detail. Averaging over the sets of tests
at di↵erent HV allowed us to further illustrate the di↵erences
between the H8500 and H12700 data in the distributions on µ
measured at di↵erent light conditions, presented in Fig. 11d.

Fig. 11, panels (e) and (f) are similar to panels (a) and (b) in
the same figure, but showing the derived value of the ⌫ parame-
ter for the same sets of conditions. According to the model, the
set of the SPE parameters of the photon detector do not depend
on the light conditions during the tests. This condition is taken
into account during the “global fit” procedure, leading to the ⌫
independence of the light conditions. Thus, Figs. 11(e,f) illus-
trate the di↵erence of the derived ⌫ values between the H8500
and H12700 MAPMTs, and also its dependence on the HV ap-
plied. While the HV-dependence is relatively week, the di↵er-
ence between the two types of MAPMTs is quite dramatic, in-
dicating that the average number of the second-stage electrons
knocked out of the first dynode is almost twice as large in a
H12700 MAPMT compared to H8500 in the same conditions.

Panels (g) and (h) in Fig. 11 illustrate the comparison be-
tween the H8500 and H12700 sets of MAPMTs in terms of
their ultimate e�ciencies of detecting light. At the same sig-
nal thresholds in channels ADC, H12700 MAPMTs have some
advantage in the probability of detecting light, in spite of gener-
ally smaller SPE signals (the scale parameter). The advantage
is due to a somewhat larger photon conversion e�ciency (the
µ parameter), and better shapes of the SPE spectra with much
larger ⌫ value for H12700 devices, corresponding also to a bet-
ter collection e�ciency for them.

Fig. 12 and Fig. 13 illustrate the levels of relative stability
achieved in the evaluation of the major SPE parameters scale
and µ, by plotting the ratios of individually evaluated param-
eters to the values of the same parameters averaged over the
measurements in di↵erent conditions, in which the model ide-
ally should give the same values (scale measured in the three
light conditions in the case of Fig. 12, and µ measured at
four values of applied HV in the case of Fig. 13). While the
distribution of the stability evaluator for the scale parameter
Rs = scale/hscaleiOD�averaged is indeed ultimately good (the
spread is about 0.5% FWHM), the corresponding spread in the
distribution of Rµ = µ/hµiHV�averaged is about 4% FWHM. The
latter observation may indicate, apart from the statistical dif-
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Figure 12: Distributions of the evaluator of the relative sta-
tistical error in the value of the scale parameter for the two
MAPMT data sets.
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Figure 13: Distributions of the evaluator of the relative statisti-
cal error in the value of the µ parameter for the two MAPMT
data sets.

ferences between the parameters, to an additional weak depen-
dence of the average number of photoelectrons µ on the applied
high voltage.

The extracted SPE characteristics for each anode in the the
whole studied set of multianode photomultipliers were stored
in a general MAPMT parameter database. The accumulated
data will facilitate and improve the detector selection process,
and will help to model the detector response and e�ciency. The
SPE spectral functions extracted in such analysis may serve as
objective internal characteristics of each photon detector (each
anode of a MAPMT in this case) at an abstract level, inde-
pendent of the test conditions. For an extended experimental
setup, the set of such functions describing each detector may be
used to evaluate overall detector performance in current work-
ing conditions that could be di↵erent from the test environment.

6. Conclusion

The new mathematical model for description of the pho-
tomultiplier response functions has been developed, imple-
mented, and tested in real applications. Important features of
the model include the ability to approximate the true single-
photoelectron spectra from di↵erent photomultiplier tubes with
a variety of parameterized spectral shapes, reflecting the vari-
ability in the design and in the individual parameters of the
detectors. The new techniques were developed in the process
of building the model, such as the method of decomposition
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of the SPE spectra into a series of elementary Poisson proba-
bility density functions, and the use of convolution algebra to
build the multi-photoelectron amplitude distributions describ-
ing measured spectra.

The “predictive power” of the model has been tested by
demonstrating that the SPE spectral parameters, obtained in
the real measurements, may describe well the amplitude dis-
tributions measured at di↵erent levels of irradiation of the same
photodetector. Thus, the model allowed us to extract the char-
acteristic parameters of the devices independently of the test
measurement conditions. In that way the set of parameters ob-
tained in one or several test runs at certain running conditions
could serve to obtain predicted detector response and e�ciency
for a wider set of running conditions, for a varying level of light
during the real runs, and/or for a di↵erent amplitude resolution
of the measurement system.

The SPE spectral parameterization information in experi-
mental physics or industrial photon detector setups may be uti-
lized to make an educated selection of the devices that would
work best for a particular purpose, make choices for the char-
acteristics of the readout electronics necessary for a particular
setup, and create new software tools simulating expected be-
havior of the photon detectors in real installations for use in the
data analysis procedures.
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