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ABSTRACT

MEASUREMENT OF THE SPIN STRUCTURE FUNCTIONGD
1 OF

THE DEUTERON AND ITS MOMENTS AT LOWQ2

Krishna P. Adhikari
Old Dominion University, 2014
Director: Dr. Sebastian E. Kuhn

Double polarization cross section differences (∆σ‖) for proton and deuteron targets

have been measured in the EG4 experiment using the CLAS detector at Jefferson Lab.

Longitudinally polarized electron beams at relatively lowenergies of 1.056, 1.337, 1.989,

2.256 and 3.0 GeV from the CEBAF accelerator were scattered off longitudinally polar-

ized NH3 and ND3 targets. Scattered electrons were recorded at very low scattering angles

(down toθ = 6o) with the help of a new dedicated Cherenkov counter and a special mag-

netic field setting of the CLAS detector in order to measure the cross section differences

in the resonance region (1.08 GeV<W < 2.0 GeV) at very low momentum transfers (Q2

for the deuteron was as low as 0.02 GeV2). These measurements on the deuteron were

used to extract the deuteron’s spin structure functiong1 as well as the productA1F1 of the

virtual photon asymmetryA1 and the unpolarized structure functionF1. These extracted

quantities, in turn, were used to evaluate three important integrals for the deuteron - the

first moment (Γ1) of g1, the extended Gerasimov-Drell-Hearn (GDH) integral (ĪTT), and

the generalized forward spin polarizability (γ0). These measurements extend and improve

the world deuteron data ong1 to the previously unmeasured lowQ2 region. The data, in

combination with the corresponding proton data from the same experiment, will be valu-

able to extractg1 on the neutron in the same kinematics. They will shed more light on the

nucleon spin structure in the region of quark-confinement aswell in the transition region

between hadronic and partonic degrees of freedom. In addition, the three integrals evalu-

ated from the measured data are compared to predictions fromdifferent Chiral Perturbation

Theory (χPT) calculations and phenomenological models. Extrapolations of the integrals

(especially the GDH sum and the polarizability) to the real photon point (Q2=0) enable us

to test the validity of the predictions for their real photoncounterparts. The new results

have extended and improved the very lowQ2 data ong1 and the corresponding results

on moments compare very well with the latestχPT and phenomenological calculations

(especially near the photon point).



iii

Copyright, 2014, by Krishna P. Adhikari, All Rights Reserved.



iv

ACKNOWLEDGMENTS

This dissertation could not have come to fruition without the advice, help and support

of many people.

First and foremost, I would like to express my deepest gratitude to my advisor Dr.

Sebastian E. Kuhn for giving me the opportunity to work with him, providing constant

guidance, sage advice, and inspiration throughout the years spent doing this work. He had

faith in me, patience with me and was eager to help and supportme in every possible way.

I will always be indebted to him for the huge amount of time andenergy he invested in me

and for the knowledge and wisdom he shared.

My wife Anita and my parents Ishwori and Buddhi Maya deserve no less credit for

having the patience with me and constantly providing me withthe love, motivation and

support. I will remain equally indebted to them for my entirelife. I also want to thank my

sister Laxmi, and brothers Bharat and Bishnu for their love and support.

I would like to thank Professors Gail E. Dodge, J. Wallace VanOrden, Leposava

Vuskovic and John Adam for kindly serving on my thesis committee and providing me

helpful suggestions and support.

I am especially grateful to Dr. Gail E. Dodge for her words of encouragements, support

and research guidance from the very first days of my work on theproject as well as from

her past capacity as the Chair of the Physics Department.

I also want to express my special gratitude to Dr. J. Wallace Van Orden who gave me

an opportunity to work with him for more than a year, for serving on my thesis committee

and for teaching me courses on Classical and Quantum Mechanics.

I would also like to express my special gratitude to my Graduate Program Director

Dr. Leposava Vuskovic for her ever willingness and readiness to help on administrative,

academic and personal matters. I am particularly thankful to her for agreeing to be my

replacement advisor for the doctoral hooding ceremony.

I am very thankful to Dr. Lawrence Weinstein for his support and words of wisdom

from the first days since I joined ODU. He has been inspirational in many ways and has

been of great help on computational ideas, and physics concepts whenever I have needed

and asked for.

I am greatly indebted to Dr. Rocco Schiavilla, Dr. Ian Balitsky, Dr. Van Orden, Dr.

Anatoly Radyuskin, and Dr. Maskov Amarian Amarian who taught me various graduate



v

courses offered at ODU, helping build a strong foundation onthe subjects covered by the

courses. The skills and tools that I acquired by attending their classes prepared me and

helped me take on and complete this work.

I am also very thankful to Dr. Stephen Bueltmann for always being encouraging and

helpful. Thank you Tom Hartlove for your support and ever willingness to help. Thank

you Walt Hooks, Annette Guzman-Smith, Delicia Malin, Lisa Okun, and Justin Mason for

making me feel home with all kinds of support. And, I will never forget the kindness and

the support I got from the late Robert E. Evans.

My special thanks are also due to the EG4 spokespersons - Drs.Alexander Deur,

Marko Ripani and Karl Slifer - who has been of tremendous helpand encouragement

over the whole period of time ever since I joined this project. Other EG4 collaborators -

especially Dr. Raffaella De Vita, Hyekoo Kang, Sarah Phillips, Vadim Drozdov, Dr. Peter

Bosted, Dr. Xiaochao Zheng - have also been of great help whenever I needed. I want to

express a heartfelt gratitude to each of them.

My special thanks is also extended to Dr. Volker Burkert for supporting me by being

my Jlab sponsor.

I am also greatly indebted to Jixie Zhang and Mike Mayer on their frequent helps es-

pecially on computational and data analysis issues in addition to their many other friendly

helps and advices on several things. I also feel indebted to the helps I got from Nevzat

Guler, Chandra Nepali, and Megh Niroula.

Finally, I would like to thank all the friends especially Suman Koirala, Gambhir Ran-

jit, Rajendra Adhikari, Arpan Subedi, Binod Dhakal, SundarDhakal, Krishna H. Bhatta,

Bishnu Parajuli, Kishor Khanal, Bishnu Gyawali, Surya Mishra, Krishna H. Poudel, Bill

Ford, Kurnia Foe, Sharon Carecia, Donika Plyku, Ivan Koralt, Mike Kunkel, Eman Ahmed,

Asma Begum, Mustafa Canan, Marija Raskovic, Giovanni Chirilli, Jan Drake, Serkan

Golge, Anup Khanal, Sushil Poudel, Suman Neupane, Vinit Jha, Manoj Rajaure, Sanjaya

Shrestha, Pranjal Kalita, Rocky Shrestha, Ajaya Dhakal, Nikhil KChetry, Janesh Thapa,

S H Sathis Indika for their helps and friendships that made mylife at and around ODU

an enjoyable experience. I cannot express my gratitude enough to all of those named here

as well as others who have directly and indirectly touched and positively affected my life.

Last but not the least, a special thanks to Gabriel Franke forreviewing this dissertation.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1

2. THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 5
2.1 INCLUSIVE ELECTRON SCATTERING . . . . . . . . . . . . . . . . . . . . .. . . . . . 5
2.2 MOMENTS OFg1 AND SUM RULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 THEORETICAL TOOLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 33
2.4 THE DEUTERON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 42

3. EXPERIMENTAL TOOLS AND SET UP. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 47
3.1 CEBAF LINEAR ACCELERATOR . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 47
3.2 HALL-B BEAMLINE DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 52
3.3 EG4 TARGETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 55
3.4 CEBAF LARGE ACCEPTANCE SPECTROMETER (CLAS) . . . . . . . . . .. 59
3.5 TRIGGER AND DATA ACQUISITION SYSTEM (DAQ) . . . . . . . . . . . .. . 69

4. DATA ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 73
4.1 EG4 RUNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 74
4.2 RAW DATA PROCESSING - CALIBRATION AND RECONSTRUCTION 74
4.3 HELICITY STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 75
4.4 DATA QUALITY AND STABILITY CHECKS . . . . . . . . . . . . . . . . . . .. . . . 76
4.5 KINEMATIC CORRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 80
4.6 EVENT SELECTION CUTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 98
4.7 CERENKOV COUNTER (CC) EFFICIENCY . . . . . . . . . . . . . . . . . . .. . . . . 119
4.8 PION CONTAMINATION CORRECTIONS . . . . . . . . . . . . . . . . . . . .. . . . . 124
4.9 e+e−-PAIR SYMMETRIC CONTAMINATION CORRECTIONS . . . . . . . 127
4.10 STUDY OF NH3 CONTAMINATION OF EG4 ND3 TARGET . . . . . . . . . . 128
4.11 SIMULATION AND APPROACH TO ANALYSIS . . . . . . . . . . . . . . . .. . . . 133
4.12 RADIATIVE CORRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 137
4.13 “STANDARD” SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 137
4.14 COMPARISON OF DATA AND SIMULATION . . . . . . . . . . . . . . . . . .. . . . 148
4.15 METHOD TO EXTRACTg1 AND A1F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.16 SYSTEMATIC ERROR ESTIMATIONS INg1 AND A1F1 . . . . . . . . . . . . . 160

5. RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 177



vii

5.1 THE EXTRACTED VALUES OFg1 AND A1F1 . . . . . . . . . . . . . . . . . . . . . . 177
5.2 EXTRACTEDg1 AND A1F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3 MOMENTS OF DEUTERON SPIN STRUCTURE FUNCTIONS . . . . . . . 187

6. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 195

APPENDICES

A. DERIVATION OF THE GDH SUM RULE . . . . . . . . . . . . . . . . . . . . . . . .. . . 205
B. FFREAD CARDS USED BY GSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 208

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 209



viii

LIST OF TABLES

Table Page

1. DC-smearing scales determined for different beam energies. . . . . . . . . . . . . . . . . 148

2. FFread cards for GSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 208



ix

LIST OF FIGURES

Figure Page

1. Inclusive scattering (Born Approximation) . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6

2. gp
1 all data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 10

3. gp
1 DIS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 11

4. Helicity projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 14

5. Types of inclusive scattering . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 17

6. F p
2 showing the scaling behaviour in DIS . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 22

7. Predictions forΓd
1 and some data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8. Predictions for̄Id
TT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

9. Predictions forγd
0 and some data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10. CEBAF accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 48

11. CEBAF accelerator (components) . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 50

12. RF Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 52

13. CLAS in the Hall-B beamline . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 53

14. Moeller Polarimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 54

15. Polarized target system . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 56

16. Target stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 57

17. Electron energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 58

18. EG4 setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 60

19. CLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 61

20. Torus and Field Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 62

21. DC sectors and tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 63

22. TOF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 64



x

23. The Standard CLAS Cherenkov Counter . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 65

24. A Cherenkov Counter module . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 66

25. New Cherenkov counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 67

26. A new CC segment and light reflections . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 68

27. EC sandwich and readout . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 69

28. CLAS DAQ data flow schematic . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 71

29. Helicity Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 76

30. Normalized total yield (2.0 GeV (ND3)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

31. ∆N for elastic minus∆-resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

32. RMS of raster ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 79

33. Raster correction geometry illustration (Figure courtesy of S. Kuhn) . . . . . . . . . 81

34. Raster correction geometry illustration (Figure courtesy - S. Kuhn) . . . . . . . . . . 82

35. Beam coordinates x and y calculated with the raster correction procedure. . . . . 83

36. Vz from Empty target run . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 84

37. An exaggerated figure showing the effect of multiple scattering. . . . . . . . . . . . . . 89

38. Background removal from∆E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

39. Effects of corrections ep-elastic events . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 95

40. Effects of corrections onp(e,e′π+π−)X events . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

41. Missing mass minus neutron mass . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 97

42. EC sampling fraction cut (2.0 GeV) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 100

43. EC sampling fraction cut (Exp.) . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 102

44. EC sampling fraction cut (Sim.) . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 103

45. EC inner energy cut (2.0 GeV) . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 104

46. EC inner energy cut (Exp.) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 105



xi

47. EC inner energy cut (Sim.) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 106

48. EC inner and outer energy cut (Exp.) . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 107

49. CC-photoelectron number cut . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 109

50. Maximum and minimum momentum cuts . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 110

51. vz cuts (Exp.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 112

52. vz cuts (Sim.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 114

53. Fiducial cuts (Experimental Data) . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 115

54. Fiducial cuts (Simulated Data) . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 116

55. Regular/EC-only plots . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 117

56. Angular Cuts shown in Exp(D)/Sim(D). . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 118

57. 2D map of Nphe in a p-bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 120

58. Calculated CC-inefficiency . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 122

59. CC-efficiency as a 2D map . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 123

60. Nph from pion and electron samples . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 125

61. Calculation of pion contamination and fits. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 126

62. Fits of pair-symmetric contamination . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 128

63. ∆ = pp · (sinθq−sinθp) for quasi-elastic events . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

64. A section of the kinematics grid . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 140

65. ∆E of reconstructed simulated events . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 142

66. DC-smearing effects on elastic peak . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 143

67. Background subtraction to get elastic peak . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 144

68. Cross-section difference . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 145

69. Ebeamdependence of DC smearing (Experimental) . . . . . . . . . . . . . . .. . . . . . . . 146

70. Ebeamdependence of DC smearing (Experimental) . . . . . . . . . . . . . . .. . . . . . . . 147



xii

71. ∆n for data and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 149

72. Count differences (2.0 GeV) . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 150

73. Data to simulation ratios vsQ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

74. Data to simulation ratios vsθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

75. Data to simulation ratios vsQ2 (2.0 GeV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

76. Data to simulation ratios vsθ (2.0 GeV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

77. ∆n in oneQ2 bin (1.3 GeV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 157

78. Optional caption for list of figures . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 158

79. Optional caption for list of figures . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 159

80. Optional caption for list of figures . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 160

81. Breakdown of systematic errors ong1 for 1.3 GeV . . . . . . . . . . . . . . . . . . . . . . . . 168

82. Breakdown of systematic errors ong1 for 1.3 GeV . . . . . . . . . . . . . . . . . . . . . . . . 169

83. Systematic errors in more bins (1.3 GeV) . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 170

84. Breakdown of systematic errors ong1 for 2.0 GeV . . . . . . . . . . . . . . . . . . . . . . . . 171

85. Systematic errors in more bins (2.0 GeV) . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 172

86. Combined systematic errors ing1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

87. Combined systematic errors ing1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

88. Combined systematic errors inA1F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

89. Combined systematic errors inA1F1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

90. Extractedg1 in the first 12Q2 bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

91. Extractedg1 in the next 9Q2 bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

92. ExtractedA1F1 in the first 12Q2 bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

93. ExtractedA1F1 in the next 9Q2 bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

94. Combinedg1 (in first 12Q2 bins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



xiii

95. Combinedg1 (in next 9Q2 bins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

96. CombinedA1F1 (in first 12Q2 bins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

97. CombinedA1F1 (in next 9Q2 bins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

98. Γd
1 (linear scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 189

99. Γd
1 (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 190
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CHAPTER 1

INTRODUCTION

The goal of the natural sciences as a whole is to understand the natural world - to

understand its structure and the underlying principles as much as possible. From centuries

of experimental and theoretical scientific effort, we have come to know a lot about nature,

and we have already been exploiting those scientific achievements whenever and wherever

we find them useful. From our own field of physics, for example,we know a lot about

the properties of bulk matter, about atomic structure and about the even lower sub-strata of

the world, i.e. the sub-microscopic world of nuclei, nucleons and many other sub-nuclear

particles. In spite of achieving an unprecedented level of understanding, there are still a

lot of questions that remain unanswered. One such subject that has drawn a great deal of

attention from the nuclear and particle physics community is the structure of the nucleons

(i.e., protons and neutrons) and their intrinsic property called “spin”.

According to modern physics, spin is an intrinsic form of angular momentum1 [1]

carried by elementary particles (electrons, quarks, photons) as well as composite particles

(hadrons, atomic nuclei, atoms as a whole, molecules etc) [2]. The concept of spin as

an intrinsic property of a particle was introduced by Uhlenbeck and Goudsmit in order

to explain the results of the Stern and Gerlach experiment [3] as well as other puzzling

observations from the early 1920s such as the hyperfine splitting in atomic spectral lines.

Later, in 1933, Stern also measured the proton’s much smaller (relative to the electron’s)

magnetic moment using his improved apparatus [4] and found that the measured value

did not agree with the value predicted by Dirac theory for particles with spin-1/2 and no

structure (i.e., point particles)2. This discovery of the anomalous magnetic moment was

the first concrete signature for the fact that the proton is not a simple point particle like

an electron, but rather had a substructure, thus heralding anew still ongoing era in the

1Classically, angular momentum is a vector quantity that represents the amount of rotation an object has,

taking into account its mass and shape.
2Dirac’s prediction for a point like particle of charge q, mass M and spin S isµD = qh̄S/M, but the mea-

surements showed thatµp = 2.79 µN andµn =−1.91µN, whereµN = eh̄/2Mp = 3.1525×10−14MeV/T =

5.05078324(13)−27J.T−1 is the Nuclear magneton.
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quest to understand the nucleon’s structure and the origin of its spin. Many decades later,

experiments at powerful accelerators have provided more independent confirmations of the

nucleon substructure.

A truly vast amount of data on the inelastic structure of the nucleons has been accumu-

lated since the late 1960s from both fixed target and colliding beam experiments with po-

larized as well as un-polarized incident photons, (anti)electrons, muons and (anti)neutrinos

as well as (anti)protons on a variety of targets (both polarized and unpolarized) from hydro-

gen through iron [5]. The initial measurements at SLAC confirmed the picture of the nu-

cleon as made up of partons (now identified with quarks and gluons). Since then more pre-

cise measurements have been conducted at several accelerators, improving our knowledge

and understanding about the nucleon structure (both spin-dependent and spin-averaged),

and, at the same time, continuing to give us new and sometimesvery surprising results

such as the original “European Muon Collaboration (EMC)-Effect” [6], the violation of

the Gottfried sum rule [7, 8], and the so-called ”Spin-Crisis” [9, 10] (see below).

With such a vast amount of experimental data available, a lotis now known about

the spin-averaged quark structure of the nucleon, but a lot less is known about the spin-

structure of the nucleon in terms of its constituents quarksand gluons [5]. In a simple

non-relativistic model one would expect the quarks to carrythe entire spin of the nucleon,

but one of the early more realistic theories that explained the partonic substructure of the

nucleon, the Naive Parton Model (NPM), predicted that 60% ofthe nucleon spin is carried

by the quarks [11].

The polarized beam and target technologies have greatly advanced during the last three

decades, and many subsequent experiments on nucleons and some nuclei have contributed

to the extraction of their spin structure functionsg1andg2, which carry information on how

the spin is distributed inside the target. One of the first experiments carried out at SLAC,

in a limited kinematic region, seemed to confirm the predictions of the NPM. However, a

subsequent, more precise measurements over a larger kinematic region performed by the

EMC experiment at CERN reported that, contrary to the NPM predictions, only 12±17%

(i.e., practically none) of the spin is carried by the quarks[9, 10]. This discovery of the

so-called “spin crisis” sparked a large interest in measuring the spin content of the nucleon,

giving birth to several experiments (completed, underway and proposed) around the globe.

The theoretical developments of Quantum Chromodynamcis (QCD) - the quantum field

theory that describes the nuclear interaction between the quarks and gluons - have clarified

our picture of the nucleon spin structure in great detail. With the discovery of a unique
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QCD property known as “asymptotic freedom”, quarks are known to be essentially free

and interact very weakly at higher energies (or shorter distances) allowing perturbative

QCD (PQCD) calculations of testable predictions for processes involving high energy or

high momentum transfers [12]. The so-called Bjorken sum rule, which relates results

from inclusive, polarized deep inelastic scattering (DIS)(a high energy process) to the

fundamental axial coupling constant (gA) of neutron beta decay, is a precise test of QCD.

The interpretation of existing DIS results has verified the Bjorken sum rule at the level of

10% accuracy and has shown that only about 30±10% of the nucleon spin is carried by the

quarks; the rest of the spin must reside either in gluons or orbital angular momentum of its

constituents. Experiments to measure the gluon contribution are underway at Brookhaven

National Laboratory (BNL) and CERN.

Probing nucleon structure on the other end of the energy scale (i.e. probing with low

momentum transfers) provides information about the long distance structure of the target,

which is also associated with static properties of the nucleon. In this low energy regime,

however, QCD calculations with the established perturbative methods become difficult or

even impossible because the coupling constant (αs) becomes very large, and so the pertur-

bative expansions (in powers ofαs) do not converge. In other words, in this energy regime,

the partons become very strongly coupled to the point of being confined into hadrons which

now emerge as the new (effective) degrees of freedom for the interaction. Therefore, other

methods must be relied on to make predictions in these non-perturbative energy scales. For

example, at very low energies, effective theories such as chiral perturbation theory (χPT)

are used. There is also an intermediate region where neitherof these approaches (PQCD

or χPT) is expected to work. In this region, it is expected that lattice QCD methods will

provide testable predictions in the near future. There are also some phenomenological

models aimed at describing the entire kinematic range. The description of the low energy

regime in terms of these theories and models is still a challenge and theories used here are

still fraught with several issues (see Chap. 2). There are already several predictions (for

both nucleons as well as some light nuclei such as the deuteron and Helium-3) from these

low energy theories and models on various observables whichcan tested using experimen-

tal data. Therefore, having high precision data at the lowest possible momentum transfer

is very important to test these already available predictions. In addition, new results will

also help constrain future calculations and provide input for detailed corrections to higher

energy data.
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With that perspective and motivation, the “EG4” experiment(E06-017) for a preci-

sion double polarization measurement at low momentum transfer using both proton and

deuteron targets and the Hall B CLAS detector was performed at Jefferson Lab. In ad-

dition to the usefulness of the measured deuteron data for testing theoretical predictions

calculated for the deuteron itself, the data are also usefulfor extracting neutron data3 in

combination with similar data from the proton target. An experiment with the similar goal

of probing the neutron at low momentum transfers but using3He was performed in Hall

A [13]. However, due to the not-fully-understood complexities of nuclear medium effects,

neutron information extracted from only one type of nucleartarget cannot give us enough

confidence in our measurements. So, having results from different types of targets is very

important for better confidence in the extracted neutron results, which will enable us to

test the theoretical and model predictions as is done for other targets (deuteron, proton).

The data on the deuteron (and eventually on the neutron) willnot only be useful to test

the theoretical predictions at low but finite momentum transfers but they can also be used

to extrapolate to the real photon absorption limit, thus providing tests of some long stand-

ing predictions such as the Gerasimov-Drell-Hearn (GDH) sum rule (derived not from the

aforementioned low energy effective theories but independently from general principles).

The analysis of the deuteron data is the subject of this thesis and the proton target data

collected by EG4 are being analyzed by another member of the collaboration.

In the future, we will extract information from the deuteronand proton data from the

EG4 experiment to provide a self-consistent determinationof the Bjorken sum, helping

us to understand the transition from the partonic to hadronic descriptions of the strong

interaction. The data will also be useful in studying the validity of quark-hadron duality

in the spin sector, thus helping further to understand the transition from the partonic to

hadronic pictures.

In this thesis, I will describe the work done to analyze the deuteron data from the EG4

experiment and will present and describe the preliminary results obtained for the deuteron

target. For that purpose, I will first describe the theoretical formalism in Chapter 2. Then,

in the third chapter, the experimental details are discussed. After that, the details of the data

analysis are described in Chapter 4. The preliminary results calculated for the deuteron are

presented in Chapter 5. Finally, Chapter 6 presents a summary and conclusions.

3Due to the relatively very short lifetime and various other complexities, no free neutron target has been

devised yet. All the relevant neutron information so far hascome from measurements on nuclear targets

(mostly very light nuclei such as2H and3He).
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CHAPTER 2

THEORY

2.1 INCLUSIVE ELECTRON SCATTERING

High energy particle scattering processes provide very powerful microscopes to exam-

ine objects such as nuclei and nucleons. Scattering of leptons (most commonly electrons)

is one of the most extensively used processes. For example, the scattering of high en-

ergy leptons off nucleons has played a key role in determining the partonic structure of

the nucleons. Following are some of the advantages of lepton(and in particular electron)

scattering:

• Leptons interact through the electroweak interaction which is very well understood.

• The interaction is relatively weak, thus enabling measurements with only small dis-

turbances to the target structure.

• In electron scattering, one can, moreover, control and varythe polarization of the

virtual photon (exchanged during the interaction) by changing the electron kinemat-

ics. This allows the separation of the charge and current interaction. Data from

the scattering of polarized electrons by polarized targetsallows one to examine the

target’s strong-interaction spin structure.

• A great advantage of electrons is that they can be copiously produced in the labora-

tory relatively easily and at low costs, and since they are charged, they can readily

be accelerated and detected. (It is not as easy and cheap to produce and handle the

other lepton types.

In this section, we discuss the process of inclusive electron scattering (in which only

the scattered electron is detected ignoring the rest of the components of the final state

after the interaction). In doing so, the relevant kinematicvariables and related physical

quantities to be measured or calculated from the process will be introduced and some of

their relations with one another will be deduced and discussed.
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2.1.1 KINEMATIC VARIABLES

A lepton scattering process, in which an incoming lepton represented byl(p) of four

momentump = pµ = (E,~k) scatters off a targetN(P) which is usually a nucleon or a

nucleus at rest and with four momentumP= Pµ = (M,~0), can simply be represented by

l(p)+N(P)→ l(p′)+X(P′) (1)

wherel(p′) andX(P′) represent the scattered lepton and the rest of the final state(which

can have any number of particles) with four momentap′µ = (E′,~k′) andP′µ = (EX, ~kX)

respectively. The scattering angle which is the angle between the incident and outgoing

path/direction of the electron is denoted byθ . The final (hadronic) state denoted byx is

not measured, with only the scattered electron detected andmeasured by the detector(s).

In the first order (Born) approximation of the process, a virtual photon is exchanged (as

depicted in Fig (1)) whose four momentum is equal to the difference between that of the

incident and the scattered electron and is given by(p− p′)µ = (ν,~q), whereν = (P.q)/M

and~q represent the energy and 3-momentum transferred by the incident electron to the

targetN(P).

p = (E,~k) θ

P = (M,~0)

q = (ν, ~q)

p′ = (E ′, ~k′)

To Detector(s)

FIG. 1. Lowest order (Born approximation) Feynmann diagramrepresenting the process

of inclusive lepton scattering

The kinematics of the scattering process can be completely described in terms of two
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of the following Lorentz invariant variables.

ν = E−E′ (2)

Q2 = −q2 ≃ 4EE′sin2θ
2

(3)

W =
√

(P+q)2 =
√

M2+2Mν −Q2 (4)

x =
Q2

2P ·q =
Q2

2Mν
(5)

y =
q ·P
p ·P =

ν
E

(6)

whereQ2 =−q2 is the negative of the squared four-momentum transferred (with electron

mass neglected in the expression forQ2), which defines the resolution of the electron

probe;W is the invariant mass of the unmeasured final state (x); x is known as the Bjorken

scaling variable, which is also interpreted as the momentumfraction carried by the struck

quark (parton) in the infinite momentum frame;M is the nucleon mass≈ 0.939 GeV, and

lastly,y is the fraction of the energy that is lost by the lepton duringthe process.

2.1.2 DIFFERENTIAL CROSS SECTION AND STRUCTURE FUNCTIONS

The differential cross section for the process of inclusive(polarized) electron scattering

on (polarized) targets can be expressed, in the Born approximation, in terms of the product

of leptonic tensorLµν and the hadronic tensorWµν as follows :

d2σ
dΩdE′ =

α2

Q4

E′

E
LµνWµν (7)

whereα = e2

4π ≃ 1/137 is the electromagnetic fine structure constant.

The lepton tensor, which is calculable from QED, is given by:

Lµν = ∑
s′

ūs(p)γµus′(p
′)ūs′(p

′)γνus(p) (8)

+ 2[pµ p′ν + p′µ pν −gµν p · p′+ iεµναβ sαqβ ] (9)

whereu(p) are the Dirac spinors,sµ = ūγµγ5u is the lepton spin vector,ε0123= +1 is

the Levi-Civita tensor (using the special convention of [14]) and the sum is over all the

unobserved final lepton spin states. This tensor can be can beconsidered as having two

parts - symmetric (consisting of the first three terms) and antisymmetric (the last term)

under the interchange of the indicesµ,ν. The antisymmetric part vanishes if one uses an

unpolarized lepton beam due to the averaging over the spins [15].
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On the other hand, the hadron tensor characterizing the hadronic target is not calculable

yet, due to the difficulties1 of fully solving the established theory (called QCD) for strong

interacting objects. In this case, one needs to consider allthe possible transitions that can

happen from the target ground state|N(P)〉 to any of its excited states|X(P′)〉. Using the

completeness of the excited states, the hadronic tensor is given by:

Wµν =
1

4πM

∫

d4ζeiq·ζ 〈N(s,P)|Jµ(ζ )Jν(0)|N(s,P)〉 (10)

wheresdenotes the target spin,Jµ(ζ ) is the electromagnetic current operator withζ being

the spatial four vector.

As with the lepton tensor, the hadronic tensor can also be further split into a sym-

metric and an anti-symmetric partsWµν = WS
µν +WA

µν , with the two parts given by the

following most general forms (as obtained from Lorentz and gauge invariance and parity

conservation of the electromagnetic interaction):

WS
µν = W1(ν,Q2)

(

qµqν

q2 −gµν

)

+
W2(ν,Q2)

M2

(

Pµ − P ·q
q2 qµ

)(

Pν −
P·q
q2 qν

)

(11)

and

WA
µν = iεµναβ qα

[

G1(ν,Q2)Sβ +
G2(ν,Q2)

M2

(

Sβ P·q−Pβ S·q
)

]

(12)

whereSµ = ū(P)γµγ5u(P)/2M is the spin vector for the hadron. This effectively param-

eterizes the the internal hadronic structure information into four response functions - two

spin independent (W1,2) and two spin dependent (G1,2) functions, which are usually re-

placed by the following dimensionless structure functions:

F1(x,Q
2) = M W1(ν,Q2) (13)

F2(x,Q
2) = νW2(ν,Q2) (14)

g1(x,Q
2) = MνG1(ν,Q2) (15)

g2(x,Q
2) = ν2G2(ν,Q2) (16)

1Due to the running of the coupling constant (a consequence ofthe unique QCD property known as

the asymptotic freedom), the coupling between partonic constituents of the hadrons become very large, not

allowing the perturbative method (the only ”exact” method available so far) of solving QCD in the hadronic

energy scale [12].
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The structure functions can be measured experimentally by using different combinations

of beam and target polarizations. For example, one can extract the first two from the un-

polarized scattering experiments because the total spin averaged differential cross section

in the lab frame is related to the these unpolarized structure functions as follows:

d2σ
dΩdE′ =

(

dσ
dΩ

)

Point

(

2
M

F1(x,Q
2)tan2θ

2
+

1
ν

F2(x,Q
2)

)

(17)

with the Point cross section (for the lepton scattering froma Dirac particle - a spin-1/2

point particle of charge +e) given by

(

dσ
dΩ

)

Point
=

α2cos2θ
2

4E2sin4θ
2

E′

E
(18)

with E′
E being the recoil factor.

The polarized structure functionsg1 andg2 can, in principle, be separated by using

different target spin orientations with respect to the beamdirection and measuring two

independent observables - the polarized cross-section differences∆σ‖ and∆σ⊥ as given

by the following equations. In the first case, the target spinis aligned along the beam

direction and the cross-section difference is measured between anti-parallel and parallel

target and electron spins.

∆σ‖ =
4α2

MνQ2

E′

E

[

(E+E′cosθ)g1(x,Q
2)−2Mxg2(x,Q

2)
]

(19)

where

∆σ‖ =
d2σ↓⇑

dΩdE′ −
d2σ↑⇑

dΩdE′ (20)

In the second case, a transversely polarized target with respect to the beam polarization

is used, and the corresponding cross section difference (under the reversal of the target or

beam spin direction) is related with the two spin structure functions as follows:

∆σ⊥ =
4α2

MνQ2

E′2

E

[

g1(x,Q
2)+

2E
ν

g2(x,Q
2)

]

sinθ (21)

where

∆σ⊥ =
d2σ↓⇒

dΩdE′ −
d2σ↑⇒

dΩdE′ (22)

Figures 2 and 3 show some of the past measurements ofg1 for proton.
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FIG. 2.gp
1 data from various measurments (plot courtesy of A. Deur).
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FIG. 3. gp
1 data from various measurments (in the DIS region only) (plotcourtesy of A.

Deur).
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2.1.3 VIRTUAL PHOTOABSORPTION CROSS SECTIONS

We have seen in Sec. 2.1 that the lepton scattering can be viewed as the two step inter-

action process of the lepton with the target - first the emission of a virtual photon described

by the Lepton tensor and then the absorption of the photon by the target as described by

the hadronic tensor. The complete description is then obtained by the contraction of these

tensors resulting in the inclusive differential cross-section, which can be expressed and

described in terms of four structure functions. Equivalently, the process can be viewed as

absorption of a virtual photon on the target and, therefore,the cross-section can also be

expressed as virtual photo-absorption cross section in terms of four partial cross-sections

σL, σT , σLT , andσTT as follows:

d2σ
dΩdE′ = Γ

[

σT + εσL −hPx

√

2ε(1− ε)σLT −hPz

√

1− ε2σTT

]

(23)

where h is the helicity of the polarized beam electron (h=±1 for longitudinally polarized

electrons) defined as

ĥ=
~σ ·~p
|~p| (24)

with ~σ and~p being Pauli spin matrices and particle momentum respectively. Likewise,Pz

andPx are the target polarizations parallel and perpendicular tothe virtual photon momen-

tum~q. ε is the longitudinal to transverse ratio of the exchanged virtual photon polarization

ε =

[

1+2

(

1+
ν2

Q2

)

tan2θ
2

]−1

(25)

andΓ is the photon flux factor which is proportional to the photon flux K

Γ =
α

2π2Q2

E′

E
K

1− ε
(26)

Different conventions are used for virtual photon fluxK. One given by Anselminoet al.

[16] is:

KA = ν (27)

In the Hand convention, the virtual photon spectrum is normalized using the equivalent

photon energy [17]:

KH =
W2−M2

2M
= ν(1−x) (28)
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Alternatively, Gilman’s choice of the definition is [17]

KG = |~qlab|=
√

ν2+Q2 (29)

In the first convention, the flux is simply equal to the photon energy. In the Hand conven-

tion the flux is chosen to be equal to the equivalent photon energy in the center-of-mass

frame and in Gilman’s convention it is given by the photon momentum in the lab frame.

In all cases, they become equal toν at the photon point, and they also give numerically

similar results in DIS but they are strongly convention dependent in the intermediateQ2

region [15].

The partial cross-sectionsσL, σT , σLT , andσTT are functions ofν andQ2 among which

the first two are cross sections for the absorption of longitudinally and transversely polar-

ized photons respectively, while the latter two are the interference cross-sections which

involve spin flips and can only be measured experimentally bydouble polarization meth-

ods. In the real photon limit (Q2=0), σL andσLT vanish and the total photo-absorption

cross-section becomes equal toσT i.e. σ(ν) = σT(ν).
The partial cross sectionsσT andσTT can, in turn, be expressed in terms of the helicity

dependent photoabsorption cross sectionsσT
1
2

andσT
3
2

:

2σT = σT
1
2
+σT

3
2
, 2σTT = σT

1
2
−σT

3
2
, σLT = σTL = σLT

1
2

(30)

where the subscripts 1/2 and 3/2 indicate the total helicityprojections of the photon and

the target as illustrutated in the Fig. 4, whereas the superscript ’T’ implies that the photons

are transversely polarized (i.e., spin±1).

As indicated at the beginning of this section, these photoabsorption cross sections are

related to the four structure functions (F1, F2, g1 andg2) of the target as follows:

σT =
4π2α
MK

F1 (31)

σL =
4π2α

K

[

F2

ν
(1+ γ2)− F1

M

]

(32)

σLT =
4π2α
MK

γ(g1+g2) (33)
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FIG. 4. Helicity of virtual photons (h) and target spin projections (S) corresponding to the

helicity dependent photoabsorption cross sectionsσT
3
2

andσT
1
2

respectively

σTT =
4π2α
MK

(g1− γ2g2) (34)

and, equivalently, the structure functions can be expressed in terms of the helicity ampli-

tudes. For example, the relation forg1 becomes as follows:

g1 =
MK

8π2α(1+ γ2)
(σT

1
2
−σT

3
2
+2γσLT) (35)

whereγ = Q/ν. Due to the earlier indicated convention dependent nature of the photon

flux K, these relationships are also convention dependent and theinterference terms can

also be defined such thatσLT(TT) =−σ ′
LT(TT).

2.1.4 VIRTUAL PHOTON ASYMMETRIES

Most of the past measurements of the spin structure functions come from measure-

ments of asymmetries (defined below) rather than from directmeasurements of cross sec-

tions because the asymmetries, being calculated from the ratios of measured counts, do

not rely on the knowledge of detector acceptance, target thickness etc. The two experi-

mental asymmetries measured in the electroproduction experiments are the ”longitudinal”
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and ”transverse” asymmetries defined as follows:

A‖(x,Q
2) =

∆σ↑⇑−∆σ↑⇓

∆σ↑⇑+∆σ↑⇓ (36)

A⊥(x,Q
2) =

∆σ↑⇒−∆σ↑⇐

∆σ↑⇒+∆σ↑⇐ (37)

It is a common practice, for historical and practical reasons, to express these electro-

production asymmetries and structure functions in terms ofthe virtual photon asymmetries

A1 andA2 given by:

A1(x,Q
2) =

σT
1
2
−σT

3
2

σT
1
2
+σT

3
2

=
g1(x,Q2)− γ2g2(x,Q2)

F1(x,Q2)
(38)

A2(x,Q
2) =

2σTL
1
2

σT
1
2
+σT

3
2

=
γ[g1(x,Q2)+g2(x,Q2)]

F1(x,Q2)
(39)

By using equations (30) through (34), we get the following expressions for the spin

structure functions in terms of the two asymmetries and the unpolarized structure function

F1:

g1(x,Q
2) =

F1(x,Q2)

1+ γ2 (A1+ γA2) (40)

g2(x,Q
2) =

F1(x,Q2)

1+ γ2 (−A1+
A2

γ
) (41)

As their definitions indicate, the virtual photon asymmetriesA1 andA2 have simple physi-

cal interpretations andA1 can be directly measured, in principle, from real photon absorp-

tion measurements. But they are not directly accessible in the electroproduction data[5].

However, they can be extracted indirectly from the measuredexperimental asymmetries

because the two types of asymmetries are related as follows:

A‖ = D(A1+ηA2) (42)

A⊥ = d(A2−ξA1) (43)
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where

D =
y[(1+ γ2y/2)(2−y)−2y2m2/Q2]

y2(1−2m2/Q2)(1+ γ2)+2(1+R)(1−y− γ2y2/4)
(44)

d =

[

[1+ γ2y/2(1+2m2y/Q2)]
√

1−y− γ2y2/4
(1−y/2)(1+ γ2y/2)−y2m2/Q2

]

D (45)

η = γ
[1−y−y2(γ2/4+m2/Q2)]

(1−y/2)(1+ γ2y/2)−y2m2/Q2 (46)

ξ = γ
1−y/2−y2m2/Q2

1+ γ2y/2(1+2m2y/Q2)
(47)

Thus, the directly measurable quantitiesA‖ andA⊥ are related to the spin structure

functions through the virtual photon asymmetries, and hence provide a method to extract

the spin structure functions. In practice, however, several of the past experiments have

extractedg1 by only measuringA‖, with g2 related part (which is small) either ignored or

giving some parameterization input with an upper bound [18].

2.1.5 TYPES OF INCLUSIVE SCATTERING

While studying and discussing inclusive measurements, it is sometimes very useful

to make distinctions between different kinematic regions defined in terms of the invariant

mass (W) of the final state. Most often, three regions are recognized - elastic, quasi-elastic

and inelastic. The inelastic region is further considered to have two kinematic regions - that

of resonance production and the deep inelastic scattering (DIS) which is typically defined

by Q2 > 1− 2 GeV2 andW > 2 GeV. These different regions are depicted in a typical

cross section spectrum for inclusive scattering from a light nuclear target as shown in Fig

5. As one varies the transferred energyν and momentumQ2, different nucleon resonance

peaks such as∆, N∗
1 andN∗

2 show up in the final state at specific values of invariant mass

W. At low Q2 values, a prominently tall but narrow peak shows up atν = Q2/2MT (or

equivalently atW = WQE =
√

M2+Q2(1−M/MT), whereM is the nucleon mass) due

to the elastic scattering from the given target, and if it is anuclear target, one more rather

smeared out peak appears in between the elastic and resonance region due to the quasi-

elastic scattering from the constituent nucleons of the target. In addition, excited nuclear

states also show up in between the nuclear elastic and quasi-elastic peaks.

Elastic Scattering

Elastic scattering occurs when the target remains intact after the scattering, in other words

it remains in the ground state and the transfered energy and momentum goes into supplying
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FIG. 5. Cross section (in arbitrary units) for the process ofinclusive lepton scattering off

a nuclear target (figure from [19]).

the kinetic energy of the target recoil. Because the final state entity represented byX(P′)

above is simply the recoiling target, its invariant mass equals the target rest mass . This

means, energy transferν = Q2

2MT
, and the conservation of energy and momentum constrains

the energy of the scattered electron (E′) to be directly correlated with the scattering angle

θ :

E′ =
E

1+ 2E
MT

sin2θ
2

(48)

In other words, given the target mass and the beam energy, thekinematics of an elastic

process can be completely described in terms of a single variable such asθ or E′.

Because unpolarized elastic scattering is a special case ofgeneric inclusive scattering,
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the differential cross section for the elastic process mustalso be a special case of the cross

section (see Eq. (11)). Therefore, in the elastic limit, theresponse functions reduce to the

combinations of the following Sachs form factors (GE(Q2) andGM(Q2)), also popularly

known as the electric and magnetic form factors) as follows:

W1 ⇒ Q2

4M2G2
M(Q2) (49)

W2 ⇒
G2

E(Q
2)+ Q2

4M2G2
M(Q2)

1+ Q2

4M2

(50)

and the generic double differential cross section reduces to the following single differential

cross section (because now, we have one independent variable) known as the Rosenbluth

cross section:

dσ
dΩ

=

(

dσ
dΩ

)

Point





G2
E(Q

2)+ Q2

4M2G2
M(Q2)

1+ Q2

4M2

+
Q2

4M2G2
M(Q2)tan2θ

2



 (51)

The two Sachs form factors encode the information on the electric and magnetic charge

(or equivalently electric current) distributions inside the target as seen through the scatter-

ing “probe” of resolutionQ2. These form factors for the nucleons must be normalized

at Q2 = 0 to their respective total charge and magnetic moments . Therefore, we get the

following limiting values of the form factors in the units ofthe charge ’e’ and the nuclear

magnetonµN = eh̄
2Mp

.

Gp
E(0) = e and Gp

M(0) = µp =+2.793µN for proton (52)

Gn
E(0) = 0 and Gn

M(0) = µn =−1.913µN for neutron (53)

It has been observed from the available measurements that magnetic form factors for

both proton and neutron follow a dipole form over a significantly wide range ofQ2 (with

deviations below 10% forGp
M in theQ2 ≤ 5GeV2 region) as given by

Gp
M(Q2)

µp
=

Gn
M(Q2)

µn
= GD(Q

2) (54)

whereGD is the dipole form as given by

GD(Q
2) =

(

Λ2

Λ2+Q2

)2

(55)

with Λ = 0.84GeV.
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On the other hand, the proton electric form factor also follows the same form but only

in the shorterQ2 ≤ 1GeV2 region, with significant deviation at higherQ2. In other words,

significant differences have been observed between the electric and magnetic form factors

of the proton. The study of theQ2 evolution of these form factors between the high and

low Q2 regions provides us information on the non-perturbative structure of the nucleon as

well as some hints on the point in the energy scale from which the perturbative behavior

begins to manifest.

Because the processes of polarized elastic and quasi-elastic scattering are well under-

stood and their theoretical asymmetries are well determined, the polarized data collected

for the processes can be used to reliably determine the luminosity times the product of

beam and target polarizations (PbPt).

Quasi-elastic Scattering

When the target is a nucleus with more than one nucleons, thenthere is some kinematic

region where the electron penetrates the nucleus and scatters off one of the nucleons rather

than off the whole nucleus. In such a process, the struck nucleon initially behaves as a

nearly (quasi) free nucleon and gets knocked out of the nucleus after the interaction. In

this case, the effective target mass as seen by the lepton becomes different from the overall

target mass, and, because of the nuclear binding energy the effective nucleon (target) mass

is also not exactly the same as the free nucleon mass either, thus changing the kinematics

of the process to the effect of shifting the position of the quasi-elastic peak from the usual

free nucleon elastic peak. In addition, the nucleons also have Fermi motion inside the

nucleus, which has the effect of smearing out the energy and momentum distributions

which is manifested in the broadening of the quasi-elastic peak.

For such processes, the Rosenbluth cross section is given by

d2σ
dΩdE′ =

(

dσ
dΩ

)

Mott

{

(

Q2

~q2

)2

RL +

[

1
2

(

Q2

~q2

)2

+ tan2θ
2

]

RT

}

(56)

whereRL(ν,Q2) andRT(ν,Q2) are the response functions corresponding to the scatter-

ing/absorption of longitudinal and transverse virtual photon respectively.

Resonances

When the energy transfer in the scattering process increases beyond the point correspond-

ing to the pion production threshold (i.e. when the combinedinvariant mass of the ex-

changed virtual photon and the target exceeds the valueWπ = Mp+mπ ≈ 1.072 GeV),
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we leave the region of elastic or quasi-elastic scattering and enter the region of inelastic

scattering. The region starts with a rich spectrum of nucleon excitations known as reso-

nances. The existence of such excitation states provides further evidence that the nucleons

are composite objects [20]. These resonances show up as different isolated or overlapping

peaks in the measured scattering cross sections between thepion production threshold and

the onset of deep inelastic scattering (about 2 GeV inW), therefore this region is also

sometimes known simply as the resonance region.

These resonances have been observed not only through the lens of lepton scattering

but also through the absorption of photon and the scatteringof hadron beams at different

energies and so their properties have been studied using allof these types of experiments. It

has now been well established that unlike the artificial width observed for the elastic peak

as a result of the finite detector resolution and radiative effects, each of the resonances

has a finite natural width (denoted byΓ) in its mass distribution (typically of over 100

MeV), indicating (according to the uncertainty principle)that they are very short lived (the

broader the widths, the shorter the lifetimes) [20]. As a result, these unstable particles

quickly decay into other lighter particles (hadrons) such as pions and nucleons. Another

consequence of this fact is that signals of some of the closely spaced resonances overlap,

making it very difficult for them to be identified and investigated.

Right after the elastic or quasi-elastic peak in theW spectrum of the cross sections,

three prominent resonance related peaks are observed. The first peak corresponds to the

∆(1232) resonance with the number 1232 representing its rest mass (W) in units of MeV.

Next comes the peak denoted byN∗
1 , which consists of two closely spaced resonances

N∗(1520) andN∗(1535). The third prominent peak denoted byN∗
2 is due to many reso-

nances but at lowQ2, it is mainly due toN∗(1680) which is the strongest in this kinematics.

There also exists one resonanceN∗(1440) (also known as Roper resonance) between the∆
and theN∗

1 peaks.

In addition to these low lying resonances, several other higher resonances exist that can

contribute to the cross sections measured but they cannot beisolated and measured using

inclusive lepton scattering. These higher resonances havebeen observed and studied using

different experimental and data analysis techniques, withvarying levels of confidence in

the experimental evidence for their existence. For example, [21] shows a complete list

of the resonances observed or suggested so far, classified into two broad categories of

N-resonances and∆-resonances, where the main distinction is that the each of the N-

resonances has isospin 1/2 (just like a nucleon), whereas the latter type of resonances all
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have isospins of 3/2 (just as the prominent delta resonance).

By studying polarized scattering in the resonance region, one can learn about internal

structure of nucleon resonances and their excitations. Forexample, the electromagnetic ex-

citation of spin-3/2 resonances such as Delta occur mostly via M1 transitions and therefore

the asymmetryA1 ≈ −0.5, while the spin-1/2 resonances such as S11 have asymmetries

of A1 = 1 because the spin-flip helicity amplitudeAT
3
2

cannot contribute. By studying the

Q2-dependence of the structure functions and the asymmetriesin different parts of the

resonance region, one can learn about the relative strengths of overlapping resonances,

non-resonant background.

Deep Inelastic Scattering (DIS)

Looking at Fig (5), one can observe that as we go to higher energy transferν or the higher

momentum transferQ2, the strengths of the resonances get weaker and after some point

they get completely washed out. This “no-resonance” inelastic region, which is typically

defined byQ2>1−2 GeV2 andW>2 GeV, is known as the deep inelastic scattering (DIS)

region. In this case, the resolution of the virtual photon gets so sharp, it gets deep inside the

nucleon and that it scatters off its constituents rather than from the whole target. In other

words, the scattering cross section becomes an incoherent sum of the cross sections from

different target constituents (partons). In this region, the cross sections and the structure

functions depend only weakly onQ2 [20] and depend mosly on the dimensionless variable

x= Q2/2Mν. This behaviour of DIS is known as “scaling” phenomenon and the variable

x on which the DIS properties depend is known as the Bjorken scaling variable or simply

as “Bjorkenx” (because the variable was introduced by James Bjorken in 1968). For

example, Fig. (6) shows theQ2-evolution of theF2 structure function for the proton for

different values of x.

The scaling phenomenon for the structure function was previously predicted by Bjorken.

The confirmation of the prediction by the DIS data from SLAC prompted Feynman to ex-

plain the behavior by proposing a partonic picture/model for the nucleons. In the model the

nucleon (proton) is made up of point-like objects called partons (now identified as quarks

and gluons). Because, in the DIS process, the lepton gets scattered off the point like par-

tons rather than the finite sized target as a whole, theQ2dependence disappears because it

is the finite size of the target which causes it to have have a form factor, thus introducing

theQ2-dependence in the measured cross sections (note the earlier discussed dipole form

for theQ2 dependence of the form factors).
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FIG. 6. TheF p
2 structure function showing the approximate scaling behaviour in DIS).
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Another important observation from the DIS results was thatthe ratio of the two unpo-

larized structure functionsF1 andF2 satisfy the followingCallan-Gross relation[20]:

F2(x) = 2xF1(x) (57)

These two important observations led to the following profoundly important conclu-

sions about the nucleon strucuture:

• The fact that the scaling behaviour is observed experimentally gives a strong ev-

idence forthe nucleon as being made up of point like charged particles(now

identified with the quarks).

• Because, it is expected theoretically that theCallan-Gross relationholds true only

for the scattering of spin-1/2 Dirac particles, the experimental observation of this

behaviour confirms thatthe point-like constituents of the nucleon must be spin-

1/2 particles.

To simplify the interpretation of the DIS results, a carefully chosen frame of reference

(dubbed the infinite momentum frame), in whichν andQ2go to infinity, is used to formu-

late the the parton model2. If the proton is observed from such a fast moving system, then

one can ignore the transverse momenta and the rest masses of the constituents, allowing

the target structure to be expressed, to a first approximation 3, by the longitudinal momenta

of its constituents. This gives a direct interpretation of the Bjorken scaling variable as the

fraction of the proton’s four-momentum which is carried by the struck parton. In other

words, the virtual photon of four momentumq = (ν/c,~q) (measured in lab frame) inter-

acts with a parton of four momentumxP, whereP is the proton’s overall four momentum.

(One caveat about this is that, strictly speaking, this interpretation is valid only in the limit

Q2 → ∞) [20]. The nucleon cross section then becomes the simple incoherent sum of the

individual parton cross sections with the latter weighted by their respective parton number

densities as well as by the squares of their charges (becausethe process occurs through

2It should be remembered that the physics of any process doesn’t change with the choice of the reference

frame. Any frame can be chosen for the convenience of the description without affecting the Physics process
3This approximation is known as the impulse approximation (IA), because in the interaction time between

the photon and the struck parton is so short that, in this fastmoving frame the interaction between the partons

themselves seem safely negligible, thus allowing the DIS process to be viewed as an incoherent sum of the

elastic scatering from its non-interacting constituents.The validity of the impulse approximation in DIS is

also helped by the fact that the parton-parton interaction at short distances is weak due to the property of the

interaction known as the “asymptotic freedom”.
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the electromagnetic interaction (the weak interaction ignored all along)). As a result, the

structure functions take the following forms:

F1(x) =
1
2∑

f

e2
f qf (x) =

1
2∑

f

e2
f

[

q↑f (x)+q↓f (x)
]

(58)

g1(x) =
1
2∑

f

e2
f ∆qf (x) =

1
2∑

f

e2
f

[

q↑f (x)−q↓f (x)
]

(59)

whereqf (x) and∆qf (x) are known as the unpolarized and polarized parton distribution

functions for a parton of flavor f, with the the functionqf (x) representing the probability

of finding a certain numberqf (x) of partons of flavor ’f’ at a given value ofx [5] (in other

words, the integral ofqf (x) andxqf (x) over the complete range ofx gives us the total

number of quarks and the total momentum carried by the quarksof the particular flavor

’f’ (i.e. up, down, strange etc)). Likewise,∆qf (x) being the difference between the distri-

butions ofq↑f (x) andq↓f (x), it gives the probability of finding the number of partons with

net spin aligned along the nucleon helicities minus the antialigned. SinceF1(x) andF2(x)

are related via the Callan-Gross relation,F2(x) can similarly expressed and interpreted in

terms of the parton distribution functions, but because of the lack of similar simple re-

lation betweeng1(x) andg2(x), there is no simple intuitive interpretation ofg2(x) in the

quark-parton model. But from the study of operator product expansion (OPE) method

(see the next chapter), it is revealed that in addition to ag1 related part, theg2 structure

function also has so-called “higher-twist” part which carries information on quark-gluon

interactions that occur inside the nuclon [18].

Q2 Dependence of Structure Functions

Finally, it is worthwhile to note that the Bjorken scaling observed in the DIS data is only an

approximation, and the scaling law is obeyed in the strict sense only in the asymptotically

free kinematics ofQ2→ ∞. In the DIS region, the structure functions show a slow loga-

rithmic Q2 dependence, and the dependence gets stronger at lowerQ2. There are, in total,

four sources for the scaling violation or theQ2 dependence: 1) gluon radiation, 2) scale

dependence of the parton distribution functions due to DGLAP evolution, 3) higher twist

contributions, and 4)Q2 dependence of the amplitudes for different resonant excitations.

The first two sources are dominant in the DIS region and the other two are negligible,

whereas the latter two become dominant when one moves away from the DIS region.
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(Anti)quarks can radiate gluons (similar to QED radiative effects) before and after

the scattering (and these gluons, in turn, can turn into quark-antiquark or gluon-gluon

pairs), thus resulting in a logarithmicQ2 dependence of structure functions. In addition,

the coupling constant (αs), which is used as the expansion parameter to get the pQCD

corrections, is alsoQ2 dependent (also known as the “running” ofαs). ThisQ2 variation of

the structure functions is referred to as QCD evolution, which is described by the DGLAP

equations as developed by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [22, 23, 24] in

the form of theQ2-evolution of the parton distribution functions. The significance of such

evolution equations is that once the parton distributions are known at one scale or at point

in kinematics, then these equations can be used to calculatethe distributions at any other

scale where the perturbative QCD is applicable.

In addition to the logarithmic scaling violations due to thetwo sources which are dom-

inant in the DIS regime, corrections also arise due to multi-parton correlations in the nu-

cleon which gives rise to terms that are proportional to different powers of 1/Q2. These

corrections are relatively small at largeQ2 but are expected to be large and non-negligible

in the low Q2 region. These contributions are represented by all the non-leading order

terms in the power series expansion in terms of 1/Q2 and are known as the higher twist

corrections in the language of Operator Product Expansion (discussed later in Sec. 2.3.2).

Finally, the resonance excitations themselves have differentQ2 dependent excitaion ampli-

tudes due to the different kinematics dependent excitationmechanisms (electric, magnetic,

Columb/scalar) and their contributions to the structure functions make the latterQ2 depen-

dent as well.

2.2 MOMENTS OF g1 AND SUM RULES

Moments of structure functions are their integrals (over the complete x range) weighted

by various powers of the variable x. Thenth moment ofg1 , for example, is given by

Γn(Q
2) =

∫ 1

0
g1(x,Q

2)x(n−1)dx (60)

The moments allow the studies of the (Q2 dependence of) fundamental properties of

nucleon structure. For example, the first moment ofxF1 of a nucleon gives the total mo-

mentum or mass fraction carried by quarks and the first momentof g1 gives the fraction

of the nucleon spin contributed by the quark helicities. These integrals get their particular

significance from the fact that they can be predicted from rigorous theoretical methods,
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such as in the sum rules derived from general assumptions or from the method of Operator

Product Expansion, lattice QCD calculations andχPT calculations4 (see Sec. 2.3). Their

importance can be highlighted from the fact that it was the experimental tests of the sum

rules involving the first moments of nucleon that led to the discovery of the original “spin

crisis” and provided a significant test of QCD in the spin sector [18].

In this section, three integrals are considered which have been calculated from the EG4

data on deuteron - the first moment ofg1 (Γ1), the generalized GDH integral (ĪTT), and the

generalized forward spin polarizability (γ0).

2.2.1 FIRST MOMENT Γ1 OF g1

The first moment ofg1 is the integral ofg1 over the complete range of the Bjorken

scaling variable x.

Γ1(Q
2) =

∫ 1

0
g1(x,Q

2)dx (61)

This moment gives, in the quark-parton model, the fraction of the nucleon spin con-

tributed by the quark helicities and enters directly into two historically important sum rules

- Ellis-Jaffe sum rule and Bjorken sum rule. Measurements ofthe moment on the proton by

the European Muon Collaboration (EMC) in 1988 showed that the Ellis-Jaffe sum rule is

violated, which meant that the long held belief that all the proton spin is carried by quarks

is not true, thus, sparking the well known “spin crisis”. On the other hand, measurements

from SLAC, CERN, Fermilab, DESY, and more recently, from JLab, have confirmed the

Bjorken sum rule (which relates the difference of the first moments of the proton and the

neutron to the fundamental axial coupling constant (gA) of neutron beta decay) at the level

of 10% accuracy, thus helping establish the QCD as the correct theory of the strong inter-

actions. The moment also enters into the virtual photon extension of another famous sum

rule - the GDH sum rule (see below).

In addition, the moment is studied on its own right because itprovides a powerful tool

to test the validity of various theories and models in which it is calculable. In the past,

it has been measured on proton, deuteron and neutron (3He) at SLAC, CERN and DESY

in the DIS region in order to understand the quark spin contribution as well as to test the

validity of the Bjorken sum rule and hence QCD as a result [18]. Recently, it has also been

4In contrast, the same is not true about the structure functions because presently their complete descrip-

tion based on QCD first principles has not been possible yet (especially in the low to intermediate momen-

tum transfer regions due to the strong coupling property of QCD).
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measured at JLab from DIS down to a fairly lowQ2 region. In the intermediate and low

momentum transfers, some phenomenological model predictions are available, whereas in

the very lowQ2 region, many chiral perturbation theory (χPT) calculations are available.

Fig. 7 shows some of these calculations along with the past measurements from SLAC

and from the EG1b experiment at JLab.
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FIG. 7. Some theoretical predictions forΓd
1 and some data from past measurements. The

theories and models which make these predictions are described in Sec. 2.3.
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2.2.2 GENERALIZED GDH INTEGRAL

GDH Sum Rule

The Gerasimov-Drell-Hearn (GDH) sum rule [25, 26] relates the energy weighted sum of

a particle’s photo-absorption cross sections to its anomalous magnetic momentκ . For a

target of arbitrary spin S, the sum rule is:

∫ ∞

νth

σP(ν)−σA(ν)
ν

=−4π2αS(
κ
M
)2 (62)

whereσP andσA are the photoabsorption cross sections with photon helicity parallel and

anti-parallel to the target spin respectively. M andκ represent the target mass and anoma-

lous magnetic moment respectively and S represents the target spin. The integration ex-

tends from the onsetνth of the inelastic region5 through the entire kinematic range and is

weighted by the inverse of the photon energyν.

The sum rule was derived (see App. A) in the late 1960s based onsome very general

assumptions as follows:

1. Lorentz and gauge invariance in the form of thelow energy theorem of Low,

Goldman and Goldberger

2. Unitarity in the form of theoptical theorem

3. Causality in the form of anunsubtracted dispersion relation for forward Comp-

ton scattering.

The sum rule for the proton has been measured (at various places such as Mainz, Bonn,

BNL and others) and verified to within 10% [27, 28, 29, 30], whereas there is little data on

neutron and other targets.

Implications of the sum rule The sum rule relates the static propertyκ of a particle’s

ground state with the sum of the dynamic properties of all theexcited states. One deeper

significance of this sum rule is that if a particle has a non-zero anomalous magnetic mo-

ment, then it must have some internal structure, and, therefore, a finite size, in order to

have the excited states (a point-like particle cannot have excited states). Because of the

5The pion production threshold given byνth = mπ(1+mπ/2M) ≈ 150MeV marks the onset of the in-

elastic region for the nucleons, but for nuclei, the summation starts from the first nuclear excitation level
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same reason, the discovery of nucleon anomalous magnetic moments provided one of the

first strong indications that the nucleons had some intrinsic internal structure.

In addition to the benefit of that implication, the sum rule and its extension toQ2 > 0

provides an important testing ground for various theoretical predictions based on QCD and

its effective theories/models.

Generalization of the GDH Sum (Rule)

In order to investigate the “spin crisis” of the 1980’s, Anselmino et al. [31] proposed that

the real photon (Q2=0) GDH integral could be extended to electroproduction cross sec-

tions (finiteQ2) and that the experimental determination of the extended integral would

shed light on the transition from the perturbative to non-perturbative QCD. The idea was

to use the virtual photoabsorption cross sections in place of the real photoabsorption cross

sections and proceed in exactly the same way as when derivingthe real photon GDH sum

rule. This extension depends somewhat on the choice of the virtual photon flux (see Sec.

2.1.3), and on how the spin structure functiong2 is considered [32]. In one extension the

virtual photon flux given byK = ν (see Eq. 27) is chosen and the real photoabsorption

cross section difference in Eq. 62 are replaced by the corresponding virtual photoabsorp-

tion cross section difference 2σTT as given by Eq. 30. With the use of Eq. 34, and some

algebraic manipulation, we get the following extended GDH integral (considering only the

inelastic contribution starting from the pion production threshold) [18]

ĪTT =
2M2

Q2

∫ x0(Q2)

0
dx[g1(x,Q

2)− 4M2x2

Q2 g2(x,Q
2)] (63)

wherex0(Q2) = Q2/(Q2+mπ(2M+mπ)) is the pion production threshold that defines

the onset of the inelastic region.

Using Eq. 38, the integral can also be expressed in terms of the first moment of the

productA1F1 as follows:

ĪTT =
2M2

Q2

∫ x0(Q2)

0
dxA1(x,Q

2)F1(x,Q
2) (64)

Fig. 8 shows aχPT prediction along with the integral calculated from the model used

in the EG4 data analysis covered by this thesis (see below). As is evident from the figure,

the limiting value of the integral asQ2 goes to zero is̄ITT(0) =−1.5897
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FIG. 8. A χPT theoretical predictions for̄Id
TT along with the integral calculated from the

model used in the simulation for the data analysis.

2.2.3 GENERALIZED FORWARD SPIN POLARIZABILITY γ0

Polarizabilities are fundamental observables (quantities) that characterize the structure

of composite objects such as nucleons or deuteron. They reflect the response to external

perturbations such as external electromagnetic fields. Like the GDH sum, they are also

integrals over the excitation spectrum of the target and their derivations rely on the same

basic assumptions. At the real photon point, for example, the electric and magnetic polar-

izabilitiesα andβ represent the target’s response to external electric and magnetic fields

respectively. The generalized polarizabilities represent the extensions of these quantities

to the case of virtual photon Compton scattering. Because the integrals defining the po-

larizabilities involve weighting by some powers of 1/ν or x, they converge faster than the
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first moments and thus are more easily determined from low energy measurements. In

other words, they have reduced dependence on the extrapolations to the unmeasured re-

gions at largeν, and higher sensitivity to the low energy behavior of the cross sections

(particularly the threshold behavior), thus providing better testing grounds for theoretical

predictions such as fromχPT and phenomenological models [32].

The GDH sum rule comes from (see App. A) the first term of the lowenergy expan-

sion of the forward Compton amplitude [33]. Likewise, we getanother sum rule from the

second, i.e., the next-to-leading term (which is in the third power ofν). The second coef-

ficient of the expansion is known as the forward spin polarizability γ0 and by comparing

the coefficients of theν2 terms on both sides (coming from the dispersion relations on

the left side and from the low energy expansion on the right side) gives us the following

expression for the polarizability [34]:

γ0 =− 1
4π2

∫ ∞

thr

σ 1
2
−σ 3

2

ν3 dν (65)

Now, by considering the case of forward scattering of a virtual photon and using the

same general approach as for getting the generalized GDH sumrule, theO(ν3) (NLO)

term in the low energy expansion of VVCS (doubly virtual Compton scattering) amplitude

gTT(x,Q2) gives the following generalization of the forward spin polarizability [17] [18]:

γ0(Q
2)≡ γTT(Q

2) =
16αM2

Q6

∫ x0

0

[

g1(x,Q
2)− 4M2x2

Q2 g2(x,Q
2)

]

x2dx (66)

=
16αM2

Q6

∫ x0

0
A1(x,Q

2)F1(x,Q
2) x2dx (67)

whereα = e2

4π is the fine structure constant. At largeQ2, the g2 dependent term in the

integrand becomes negligible andγ0 reduces to the third moment ofg1[17].

In exactly the same manner, from theO(ν2) term of the low energy expansion of the

VVCS amplitudegLT(x,Q2) one gets another polarizability - the generalized longitudinal-

transverse polarizability as follows:

δ0(Q
2)≡ δLT(Q

2) =
16αM2

Q6

∫ x0

0

[

g1(x,Q
2)+g2(x,Q

2)
]

x2dx (68)

But, this latter polarizability is not considered in this thesis.

Because the generalized polarizabilities can be expressedwith the moments of the

structure functions, it is possible to measure them using measurements of the structure

functions. As stated earlier, because of the weighting by some powers ofν or x, these
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integrals converges more rapidly in energy than the GDH integral and therefore can more

easily be determined by low beam energy measurements. Theseintegrals are valuable

because they shed light on the long distance (soft), non-perturbative aspects of the target

structure. The integrals are possible to be calculated using effective or approximate theo-

ries such asχPT and lattice methods. Thus the measurements of these quantities provide

benchmark tests of such theories.

The first measurement of this quantity for a proton target at the real photon point was

done by the GDH experiment at Mainz [34]. Recently the JLab EG1b experiment has

provided some finiteQ2 results for both deuteron (see Fig. 9) as well as nucleon targets

[35]. SomeχPT calculations [36] [37] as well as phenomenological predictions [38] are

also available and have been used to compare with the available measurments.
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FIG. 9. Some theoretical predictions forγd
1 together with the recently measured EG1b

data.
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2.3 THEORETICAL TOOLS

In this section we will take a closer a look at a few common theoretical methods that

are used to describe and predict the lowQ2 behavior/evolution of the structure functions.

In addition, some phenomenological models which are also useful in describing theQ2

behavior will be reviewed as well.

2.3.1 CHIRAL PERTURBATION THEORY ( χPT)

Chiral Symmetry

QCD is the non-abelian gauge theory of colored quarks and gluons. The complete QCD

Lagrangian is:

LQCD =− 1
4g2Gα

µνGµν
α + q̄iγµDµq− q̄M q (69)

where G is the gluon field strength, q is the quark spinor field,andM is the diagonal quark

mass matrix.

For low energy interactions, the quark-gluon degrees of freedom become impractical

due to confinement property of QCD. So, effective theories interms of composite particles

such as hadrons as the approximate degrees of freedom are employed to describe such

processes and make relevant predictions. To do so, an effective Lagrangian is formed

that retains all or most of the symmetries and symmetry breaking patterns as the more

fundamental parent theory.

In the effective theory, the quark masses are generally considered to be zero because

they are very small (a few MeVs) compared to typical hadronicmass scales (such as proton

mass or the mass of the first non-Goldstone resonanceMρ ) and the Lagrangian takes the

form

LQCD = L
0
QCD+L

′
QCD (70)

with

L
′
QCD=−q̄M q (71)

regarded as a perturbation toL 0
QCD.

For a massless fermion,chirality is identical to helicity and is a constant of motion.

The central idea of theχPT is that the massless left- and right-handed quarks definedby:

qL,R=
1
2
(1± γ5)q (72)



34

do not interact with each other so that the theory allows aU(3)L×U(3)R symmetry. Ex-

plicit breaking of this symmetry is then treated as a perturbation. As with any other effec-

tive theory, the theory will fail at some point in the energy scale and it has to be superseded

by a more fundamental approach.

Chiral Symmetry Breaking and Perturbation Theory

At very low energy scales, well below the chiral symmetry scale (of the order of 1 GeV),

nucleon dynamics can be described in rigorous terms usingχPT, because the chiral sym-

metry of QCD dominates in this region. At low photon virtualities (i.e. smallQ2), the

theory can make rigorous predictions on the spin dependent observables by employing

a systematic expansion in powers of low momenta and masses ofthe Goldstone bosons

(which are pions when only two ”up” and ”down” flavors of QCD degrees of freedom are

considered) [37].

Baryon Chiral Perturbation Theory

Over past two decades, a lot of theoretical work has been doneonχPT calculations. In this

section, we highlight some of the calculations that are relevant to the extracted/measured

quantities that are covered in this thesis. The calculations are limited to the two flavor case

of up and down quarks and they typically examine theQ2 evolution of the Compton am-

plitudesS1(ν,Q2) andS2(ν,Q2) in the low energy and momentum scales. Earlier we saw

that the integrals of spin structure functions and the Compton amplitudes are connected

through the dispersion relations.

As indicated above the low-energy expansion is made in powers of small momenta

(p) and quark (pion) masses, which involves pion loops of theeffective theory. Since,

the baryon mass in the chiral limit is not negligible, their addition to the theory adds a

new scale to it, thus creating a complication - now there is noguarantee that all next-

to-leading-order (NLO) corrections at orderp4 are given completely by one-loop graphs.

To get around this added difficulty, two approaches are considered - Heavy BaryonχPT

(HBχPT) and Relativistic BaryonχPT (RBχPT).
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Heavy Baryon Chiral Perturbation Theory

In this approach [36, 39], the baryon masses are considered very large and the chiral ex-

pansion is done in powers of the inverse baryon mass or in powers of the pion to nucleon

massesmπ/MN, which gives a consistent counting scheme. However, Bernard and others

warn that the expansion may not converge very fast. In line with that warning, a signif-

icantQ2-variation was observed in the extended GDH sum when the NLO (O(p4) order

was calculated inχPT.

χPT with Resonance and Vector Meson Contribution

The chiral models discussed so far include only the pion-nucleon contributions, with

no resonance considerations which are expected to have significant contributions to the

Compton amplitudes, especially from the∆ (1232) resonance. The best approach to adding

the∆ contribution would be to include the resonance as a new dynamical degree of free-

dom in the effective Lagrangian, but such an effective theory of 3-body pion-nucleon-delta

system has not been tried or published yet. Rather, as a way around, a systematic addition

of the∆ contribution in the heavy baryon framework has been attempted, with the nucleon-

delta mass difference treated as an additional parameter. The∆ resonance contribution is

estimated by calculating relativistic Born cross-sections that are functions of a number of

”not-well-known” experimental parameters. Due to the uncertainties in these parameters,

the model predictions are in the form of a band of values. Someauthors [40] have also

added vector meson contributions.

One possibility in getting around the resonance contributions in order to make mean-

ingful predictions over a wider range of distance scales (thus providing good tests of the

theoretical model) is to calculate and examine quantities involving the difference between

proton and neutron observables (such as the Bjorken sum rule). In such a difference, the

resonance contribution mostly cancels out leaving a more reliable χPT prediction that has

a reducedQ2 dependence [41].

2.3.2 METHOD OF OPERATOR PRODUCT EXPANSION (OPE)

The Wilson [42] introduced method of Operator Product Expansion provides a way to

evaluate the non-perturbative part of QCD calculations making it possible to make direct

predictions for moments of structure functions in the form of sum rules..The method allows

evaluation of the product of two operators (representing, for example, some observables
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such as the electromagnetic currentsJµ(ξ )Jν(0)) in the asymptotic limit of spatial vectors

becoming infinitesimal (by expanding it into a series of terms with the Wilson coefficients

containing pQCD calculable spatial dependence, and only a few terms significant for large

enoughQ2 (equivalently small enough spatial 4-vector) compared to the relevant mass

scaleΛ2
QCD)).

lim
ξ→0

Oa(ξ )Ob(0) = ∑
i

Cabk(ξ )Oi(0) (73)

The remaining factorOi(0) of each expansion term is a quark-gluon operator of dimension

d and spin n, representing the fundamental fields in QCD. The concept of twistτ = d−n

is introduced for the contribution of any operator toLµνWµν i.e. the differential cross

section is of the order:

ωn
(

M
Q

)τ−2

(74)

The lowest possible twist is “twist-2”. At largeQ2, the leading twist term dominates

because the higher twists are suppressed by increasing powers of M/Q, and obviously, one

can expect the higher terms to be important in the lowQ2 region. The reliable parts of

the parton model map onto the leading twist part of the OPE, while the twist-3 and higher

arise from quark-gluon interactions and non-zero quark mass effects. By connecting the

matrix element for virtual Compton scattering to the hadronic tensorWµν through the

Optical theorem, the twist expansion leads to an infinite setof sum rules for the structure

functions, both polarized and unpolarized. For example, considering only up to twist-3,

we get the following expressions for various moments:
∫ 1

0
xn−1g1(x,Q

2)dx=
1
2

an−1 n= 1,3,5, ... (75)

∫ 1

0
xn−1g2(x,Q

2)dx=
n−1
2n

(dn−1−an−1) n= 1,3,5, ... (76)

wherean−1 anddn−1 are the twist-2 and twist-3 matrix elements of the renormalized quark

and gluon operators respectively. Notice that only odd values of n contribute due to the

symmetry properties of the structure functions under the charge conjugation.

These sum rules provide the tools to extract the higher twistmatrix elements of parton

interactions by measuring the spin structure functions at moderate to highQ2 over the

complete x range. Because the parton interactions in these kinematic conditions give rise

to confinement, these higher twist measurements offer toolsto examine the fundamental
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properties of QCD. Due to the 1/Q dependence, one can expect that higher twist effects

becoming more and more significant at lowQ2 until the whole twist expansion approach

no longer works at some point.

Higher Twists Effects in g1

When all the higher twist terms are also included, one gets the following full expression

for the first moment ofg1 instead of the one given by Eq. 75:

Γ1(Q
2) = ∑

τ=2,4,..

µτ(Q2)

Qτ−2 (77)

with Γ1(Q2) =
∫

dxg1(x,Q2). Here OPE requires that contributions from all possible states

including that from elastic scattering must be summed over.

The difference between the leading (τ = 2) twist termµ2(Q2) and the experimentally

measured value of the first moment gives us a tool to gain access to the higher twist con-

tributions toΓ1 . Up toO(α3
s) in the strong coupling constant for three quark flavors, the

result for the leading twist terms ofΓ1 is given by [43, 44, 45, 46]:

µ p(n)
2 =

[

1−
(αs

π

)

−3.58
(αs

π

)2
−20.22

(αs

π

)3
](

± 1
12

gA+
1
36

a8

)

+

[

1− 1
3

(αs

π

)

−0.55
(αs

π

)2
−4.45

(αs

π

)3
]

1
9

∆Σ (78)

=

(

± 1
12

gA+
1
36

a8

)

+
1
9

∆Σ+O(αs(Q
2)) (79)

with,

• ±: for proton and neutron respectively

• αs: the strong coupling constant

• gA: the non-singlet triplet axial charge measured precisely from neutronβ decay

• a8: the octet axial charge, extracted from weak hyperon decaysassuming SU(3)

symmetry

• ∆Σ: the singlet axial current. (In the parton model, it is the amount of spin carried

by quarks, which has been extracted from global analysis of world DIS data.)

• O(αs): Q2 evolution due to QCD radiative effects (calculable from PQCD)
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The next-to-leading order contribution to theΓ1 is the 1
Q2 term:

µ4(Q
2) =

1
9

M2[a2(Q
2)+4d2(Q

2)−4 f2(Q
2)
]

(80)

wherea2 - the pure twist-2 part related to the second moment ofg1 - arises from the target

mass correction,d2, as revealed above, is primarily twist-3, andf2 is the only pure twist-4

contribution toµ4. All the interaction information is carried by the twist-3 and -4 operators

which collectively describe how the color electric and magnetic fields interact with the

nucleon spin. This behavior is carried into the color electric and magnetic polarizabilities

(χE andχB), which are related with the matrix elements as follows:

χE =
2
3
(2d2+ f2) (81)

χB =
1
3
(4d2− f2) (82)

The difference between the first moments of the proton and neutron g1 (using Eq. 78)

gives rise to the well known Bjorken sum rule asQ2 → ∞:

Γp
1(Q

2)−Γn
1(Q

2) =
1
6

gA+O(αs(Q
2))+O(1/Q2) (83)

Bjorken first derived this sum rule using the current algebramethod, so it provides a fun-

damental test of the structure of QCD. With the PQCD corrections included, the sum rule

has been tested and verified to the level of 10%.

2.3.3 PHENOMENOLOGICAL MODEL PREDICTIONS

There exist several phenomenological models that parameterize existing world data. In

this subsection, we will examine some of those which are usedfor predictions and analysis

of the observables in the kinematic region covered by our experimental data.

MAID

The Mainz-Dubna (MAID) parameterization is a unitary isobar model relying on phe-

nomenological fits to the world experimental data in the formof cross sections and po-

larization asymmetries from pion photo- and electro-production in the resonance region

(traditionally defined as the range from the pion productionthreshold up to W=2 GeV

and photon virtualitiesQ2 <5 GeV2). The model is used for partial wave analysis of

pion photo- and electro-production data in the resonance region, with predictions possible

for multipoles, amplitudes, cross sections and polarization observables [47]. The model
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contains both the non-resonant background and many resonance terms (13 of the four-

star6 resonances with masses below 2 GeV), unitarized according to the prescription of

K-matrix theory and using appropriately unitarized Breit-Wigner functions to construct

the various resonance production channels [38]. For example, the contribution of a partic-

ular resonance to the transverse cross section is given by:

σ 1
2(

3
2)
=

4M
W0Γ0

A2
1
2(

3
2)

B(ν,Q2) (84)

where,B(ν,Q2) is the Breit-Wigner distribution function generalized to electroproduction,

M is the nucleon mass,W0 is the resonance mass,Γ0 is the resonance width andA2
3
2

is the

corresponding helicity dependent photo-coupling amplitude. In addition to these resonant

terms, contribution terms for the non-resonant backgroundas well as t-channel vector

meson exchanges are also included [15][47].

The predictions from this model are in good agreement with both polarized and un-

polarized data on pion photo- and electro-production from the nucleon. The model also

agrees with the GDH sum rule on the proton (at the real photon point) but does not predict

the rule for the neutron at lowQ2. The discrepancy between the data and the neutron pre-

diction could be due either to the fact that final state interactions for pion production from

”effective-neutron” nuclear targets (deuteron or3He) are neglected (not well-accounted

for) or two-pion contribution are larger than assumed or possible modification of multi-

pole expansion due to the nuclear binding effects [19].

Burkert and Ioffe

Burkert and Ioffe proposed a phenomenological model [48][49] to describe theQ2 evolu-

tion of sum rules for real and virtual photon scattering off nucleons. This model is built on

an earlier proposed vector meson dominance model for the GDHintegral by Anselmino,

Ioffe and Leader [31].

The older model interpolated the measured highQ2 (asymptotic) value of the integral

down toQ2=0 point of the real-photon GDH sum rule, by using a two parameter function

6The star system is used by the PDG to indicate the strength of the evidence for a given resonance.

• **** - Existence convincingly established with propertiesat least fairly well-explored [21]

• *** - Existence very likely but further confirmations required.

• ** - Evidence of existence only fair.

• * - Evidence of existence poor.
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as follows:

IVDM
1 (Q2) = 2M2

[

1
Q2+µ2 −c

µ2

Q2+µ2

]

Γ1(∞) (85)

where the mass parameterµ (taken atρ or ω mass) sets the scale of theQ2 evolution

and the other parameter c is chosen such that the integral (I)at Q2=0 coincides with the

GDH sum rule. The authors of the model contended that the two terms of the interpolation

function represented two dominant diagrams in the VDM picture of the photon-nucleon

interaction.

The older model, which ignored the large contribution of thelow W resonant states,

was improved by Burkert and Ioffe by explicitly adding the contributions for individual

resonances (upto W=1.8 GeV) extracted from pion electroproduction data. Now, in the

refined model, the GDH integral has two parts - one given by eq.85 and another being that

for the resonance contributions as follows:

I1(Q
2) = IVDM

1 (Q2)+ IRes
1 (Q2) (86)

where the parameter c in for the first term as represented by eq.85 is given by:

c= 1+
1
2

µ
M

1
Γ1(∞)

[

κ2

4
+ IRes

1 (0)

]

(87)

with M, κ being the mass and the magnetic moment of the nucleon. And, the second term

is approximated by the amplitudes for the pion electroproduction (γ∗N → N∗ → Nπ) data

which are reasonably well known from phase shift analysis.

This model predicts thatΓ1(Q2) changes sign at aboutQ2 = 0.4GeV2, which is at-

tributed to a large negative contribution of∆(1232)-resonance.

Soffer and Teryaev

Soffer and Teryaev proposed [50] another model suggesting that the strongQ2-dependence

of the GDH integralI1(Q2) should be studied in combination with theg2-counterpart i.e.

I2(Q2) = 2M2

Q2

∫

g2(x,Q2)dx (which is also known as Schwinger integral for the namesake

sum rule). Assuming that the evolution ofIT = I1+2

(

= 2M2

Q2

∫

(g1+g2)(x,Q2)dx
)

from

DIS to low Q2 is smooth, the authors first express the GDH integral asI1 = I1+2− I2. It

is also assumed that the Burkhard-Cottingham (BC) sum rule (i.e.
∫ 1

0 g2(x,Q2)dx= 0)
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is valid (with the elastic contribution included in the integral) generating the strongQ2-

dependence ofI2. The constraint of BC sum rule implies that the inelastic contribution to

I2 (all of these integrals are defined for the interval x[0,1]) is given by

I2(Q
2) =

µGM(Q2)

4

[

µGM(Q2)−GE(Q2)

1+ Q2

4M2

]

(88)

which givesI2(0) = κ2+eκ
4 with e being the nucleon charge. For the proton a smooth

interpolation is made between asymptotic limits forIT for which the lower limit is provided

by the combination of “GDH sum rule” (=g1 integral at photon point) and “Schwinger sum

rule” (=g2integral atQ2=0) and upper limit is provided by the fact thatQ2 → ∞, IT →
2M2

Q2 Γ1(x). And, the largeQ2 behavior of the interpolation is set to match the existing

world data. A similar procedure is implemented for the neutron, however, the interpolating

function is used to represent the isovector differenceI p−n
T (Q2).

Most recently, Pasechnik, Soffer and Teryaev [51] have improved their previous QCD-

inspired model for theQ2 evolution of the extended GDH integral by adding the latest

results extracted from Jefferson lab data, particularly the results on the higher order ra-

diative and higher-twist power corrections to the first moment Γp
1(Q

2) of the proton’sg1

structure function and the sumΓp−n
1 (Q2) of the Bjorken sum rule.

2.3.4 LATTICE QCD

Lattice QCD is a Lattice Gauge Theory which is defined on a spacetime that is dis-

cretized into a lattice. Gauge theories describing the interactions of elementary particles

(such as for QED, QCD) can sometimes be solved perturbatively. When one has to use

a non-perturbative apporoach, then the related calculations become computationally in-

tractable if this is done in the continuous spacetime, because that would require evaluating

an infinite-dimensional path integral. But, in a discrete spacetime grid of finite size, the

path integral becomes finite dimensional and can be evaluated using powerful computers

by implementing stochastic simulation techniques such as Monte Carlo methods. The ex-

act continuum gauge theory is then recovered by extrapolating the LQCD results to the

limiting case of infinitely large lattice and infinitesimally close grid points [52].

Lattice QCD provides a framework for a non-perturbative approach to solving QCD

in order to calculate the structure and properties of strongly interacting particles and pro-

cesses. Being non-perturbative in nature, the theory, in principle, is useful in making

predictions at all kinematic scales. However, the calculations are numerically extremely
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intensive and computationally very costly warranting the use of very powerful supercom-

puters or big LQCD dedicated clusters of powerful computers. The method becomes even

more intensive and costlier computationally as one uses larger lattices and smaller lattice

spacings to ensure reliable predictions for the desired observables. To reduce the com-

putational burden, certain approximations (e.g., quenched field approximation used in the

early lattice calculations, with the quark fields treated asnon-dynamic ”frozen” variables)

are used [53].

The LQCD is a rapidly developing field with significant progress made in algorithms,

together with a steady increase in the computational technologies and capabilities leading

to better calculations and enabling theorists to make a number of predictions that match

well with the experimental data. For example, the proton mass has been calculated within

the 2 percent error of the well known value [54]. It is hoped that the lattice calculations

will bridge the gap in the intermediateQ2 regime, where no other method (neither PQCD,

nor OPE orχPT) is precise enough to make predictions. A strong connection between

lattice andχPT calculations developed recently. One approach has been to use theχPT

predictions to make LQCD extrapolations, thus, tying the LQCD results withχPT and

making the experimental verification ofχPT calculations essential to the test of LQCD

results [55, 56].

2.4 THE DEUTERON

The structure functions, their moments and polarizabilities defined for the nucleons

are also valid for the deuteron and the work of this thesis focuses solely on the deuteron

results. So, it is worthwhile to have a closer look at this particular nucleus.

The deuteron is the bare nucleus of the heavier and less abundant isotope7 of hydrogen

known as deuterium. It is made up of two nucleons - a proton anda neutron bound together

with nuclear forces amounting to a binding energy of about 2.22 MeV[57]. It has a mass

of 1875.6 - nearly double the mass of a proton. It is the only stable bound system of two

nucleons found in nature.

The deuteron in its ground state is in an isospin singlet state which is antisymmetric

7The natural abundance relative to the ordinary hydrogen is about one atom in 6,700 of hydrogen [57].
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under the exchange of the proton and the neutron8. In addition to the isospin, the nucleons

also have spins and spatial distributions. The symmetry forthe latter is known as parity

(denoted by P) which dictates how the wave functions change under the exchange of the

locations of the constituent nucleons (the symmetric and antisymmetric exchanges are said

to have even or positive and odd or negative parities respectively and are fully determined

by the total orbital angular momentum L as given byP= (−1)L).

Since the deuteron (wave function) is antisymmetric in the isospin representation , it

must be symmetric under the double exchange of constituent nucleon spins and locations.

This means that the deuteron can either be in a state in which it is symmetric under both

spin and parity or in a state in which both are antisymmetric.In the first case, the deuteron

is a spin triplet with the total spin of 1 and even orbital angular momentum l (to ensure even

parity). The lowest possible energy state in this category has s=1 and l=0. In the second

possible state, the deuteron is a singlet with the lowest possible energy state having s=0

and l=1. Since the s=1 gives a stronger nuclear attraction, the first state turns out to be the

deuteron ground state [57]. Therefore, the deuteron has spin +1 (”triplet”) and is thus a bo-

son. The fact that the deuteron ground state is the S-state with S=1, L=0 (even parity) (and

thus J=1) is only an approximation, and in reality, the D-state with L=2 is also possible and

contributes a small part to the ground state. The fact that the precisely measured deuteron

magnetic dipole moment (µd = 0.8574) is slightly different from the total of the moments

of proton and neutron (µp+ µn = 0.8797) indicates that higher orbital momentum states

are also contributing to the deuteron wave function. The electric quadrupole moment9 for

deuteron is also measured to be non-zero (= 0.2859e· f m2 [57]), indicating that the charge

distribution in the deuteron cannot solely be a sphericallysymmetric S-state, rather it must

be a quantum mixture of S and D states with L=0 and L=1 respectively. The S-state, which

8Totally analogous to the ordinary spin, isospin is a SU(2) symmetry. Proton and neutron are considered

as two isospin types or states of the same object commonly known as nucleon. In other words, the two

possible isospin states of a nucleon are said to form an isospin doublet, with the isospin ”up” and ”down”

states of the doublet being identified as proton and neutron respectively.

In contrast to the doublet for a single nucleon, a pair of nucleons can exist in any of the following four

possible isospin states - one being the antisymmetric isospin singlet 1√
2
(| ↑↓> −| ↓↑>) with a total of

0 isospin (i.e., neither ”up” nor ”down”) and the other threebeing the symmetric isospin ”triplet” states
(

| ↑↑>, 1√
2
(| ↑↓>+| ↓↑>), | ↓↓>

)

, with total isospins of (1,0,-1) respectively. The antisymmetric sin-

glet state is identified as the ordinary deuteron in its stable ground state, whereas the other three symmetric

states are identified with three very highly unstable objects - a nucleus of two protons, a highly excited state

of a deuterium nucleus and a nucleus with two neutrons respectively [57].
9The electric dipole moment for deuteron is zero as it is for all nuclei.
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has the spins of both nucleons aligned along the deuteron spin, can be expressed as:

|J = 1,Jz= 1〉= |L = 0,Lz= 0〉|S= 1,Sz= 1〉 (89)

whereas, the D-state, in which z-projections of the nucleonspins are not always aligned

with the total angular momentum can be written as:

|J = 1,Jz= 1〉 =

√

1
10

|L = 2,Lz= 0〉|S= 1,Sz= 1〉

−
√

3
10

|L = 2,Lz= 1〉|S= 1,Sz= 0〉

+

√

3
5
|L = 2,Lz= 2〉|S= 1,Sz=−1〉 (90)

The probability of finding the deuteron in the D-state isωD ≈ 0.056 [35]. Therefore, from

eq.90, the likelihood of finding a nucleon in the spin-down state is 3
4ωD. Using this fact

and ignoring other nuclear effects (to be discussed later),we get the following deuteron

cross sections (normalized as ”per nucleon”) in terms of those of the nucleons:

σ↑↓
d =

(

1− 3
4

ωD

)

σ↑↓
N +

3
4

ωDσ↑↑
N (91)

σ↑↑
d =

(

1− 3
4

ωD

)

σ↑↑
N +

3
4

ωDσ↑↓
N (92)

with σN = (σp+σn)/2 and the two arrows indicate the spin directions of the beam electron

and the target relative to the beam direction. If these two equations are substituted into the

basic definition of the virtual photon asymmetryA1 = (σT
1
2
−σT

3
2
)/(σT

1
2
+σT

3
2
), one gets,

Ad
1 =

(

1− 3
2

ωD

)

[

σT
p Ap

1 +σT
n An

1

σT
p +σT

n

]

(93)

where the subscript “T” inσ indicates the transverse polarization of the exchanged virtual

photon. By using the relations between the virtual photoabsorption cross sections and the

structure functions as discussed in section 2.1.3, one getsthe following relation:

gd
1(x,Q

2) =

(

1− 3
2

ωD

)[

gp
1(x,Q

2)+gn
1(x,Q

2)

2

]

(94)

with the factor 1/2 introduced to expressgd
1 as ”per nucleon” value (the factor in front

represents the ratio of the nucleon polarizationPn to the deuteron polarizationPd).
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2.4.1 EXTRACTION OF NEUTRON INFORMATION FROM A DEUTERON TAR -

GET

One of the objectives of having deuteron data is that it can beused in combination

with similar data on the proton target to extract the corresponding neutron information

(this is important because a free neutron target is impractical). Once the deuteron and

proton data is available, to a first order approximation, simply subtracting proton results

from deuteron ones would be expected to give neutron information. But, a nucleus is

not simply a collection of the two free neutrons, but it is more complex than that with

various nuclear medium effects (such as Fermi motion, deuteron D-state correction, Off-

shell effects, EMC effect) These effects must be understoodand properly accounted for to

extract neutron information from the deuteron. In addition, in order to have confidence in

the extracted neutron results, it is also important to have data on other nuclei such as3He

targets.

In the resonance region and at largex > 0.5, Fermi motion and the depolarizing ef-

fect of the D-wave are considered the most important nucleareffects. (the latter already

considered in Eqs. (93) and (94)).

Fermi Motion

As in any other nucleus, the bound nucleons in a deuteron are in a constant random motion

of quantum origin called Fermi-motion. Due to this motion, an incident lepton does not see

a nucleon at rest but with some momentum, resulting in systematic kinematic shifts and

smearing which causes the various nucleon resonances to show up at slightly shifted places

and their peaks/widths to suffer some Doppler broadening. Due to this fact, if one attempts

to extract the neutron structure functions by subtracting the proton ones from those of

the deuteron, a ’true’ maximum in the proton structure function may result in a ’false’

minimum in the those of the neutron and vice versa, even if we assumed similar behavior

for the two in the beginning. For this reason, the Fermi smearing becomes an important

effect (particularly important at high x and in the resonance region) to be considered while

extracting correct neutron information from the deuteron and proton data.

Folding Algorithm to model Deuteron

Recently Kahn et al [58] suggested a new convolution method to extract neutron structure

functions from nuclear data. This method uses iterative technique to take these effects into
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account and extract the neutron information. The method convolutes proton and neutron

structure functions (SFs) to model the deuteron and relies on the knowledge of the proton

and deuteron to iteratively extract the neutron SFs. The process starts with a predefined

input function for the neutron which is then evolved iteratively until the function becomes

stable. In the current form, the method considers only the two major sources of corrections

- the Fermi motion and the D-state of the deuteron and ignoresother nuclear effects. Still,

the method is capable of including other corrections as well. It has been tried and tested

well on the unpolarized structure functions which show no sign change. The spin struc-

ture functiong1, however, has several sign changes in the resonance region,causing the

iterative method to fail in some kinematic regions when one uses data with errors for the

proton and deuteron. But this method can be made reliable by using parameterizations of

the structure functions, instead, as was done successfullyin the EG1b data analysis [35].

In our analysis, we did not extract information on the neutron but we did use this

convolution method to model the deuteron.
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CHAPTER 3

EXPERIMENTAL TOOLS AND SET UP

The EG4 experiment was performed in the experimental Hall-Bof the Thomas Jeffer-

son National Accelerator Facility (TJNAF, also known as Jefferson lab or simply JLab ) in

Newport News, Virginia. The experiment ran from February toMay in 2006. Longitudi-

nally polarized (≈ 85% polarization) electron beams from the CEBAF linear accelerator

(with beam energies 1.0, 1.3, 1.5, 2.0, 2.3 and 3.0 at different times) were scattered off

longitudinally polarized solid ammonia targets (polarizations up to≈ 90% and≈ 45%

for NH3 and ND3 respectively). The particles scattered or produced in thisprocess were

detected using the unique CLAS (CEBAF Large Acceptance Spectrometer) detector and

with the help of the Hall-B triggering and data-acquisition(DAQ) system, the detector

signals (that passed the criteria for viable scattering events) were sorted out and recorded

on tape silos for later off-line analysis. In the following sections, all these experimental

components are introduced and the way they work is described.

3.1 CEBAF LINEAR ACCELERATOR

As with all other electron or photon scattering experimentscarried out in the experi-

mental halls in Jefferson Lab, the polarized electron beam for EG4 was provided by the

Continuous Electron Beam Accelerator Facility (CEBAF) (Fig. 10) [59]. CEBAF is capa-

ble of providing beams of up to 6 GeV1 with energy spread∆E/E ∼ 10−4 and currents up

to 300µA, with a 1497 MHz pulse structure, which are then sent to the halls in a round

robin fashion so that the effective pulse frequency in each hall is 1497/3 (= 499 MHz). The

beam polarization is up to 90% and the charge per bunch is up to3 pC [60]. The CEBAF

consists mainly of three elements: an injector that produces a 45 MeV polarized beam,

two linacs (north and south) each boosting the energy of an electron by upto 600 MeV in

one pass, and two recirculating arcs to steer the beams from one linac to another for up to

1Currently, JLab is undergoing an upgrade that will enable itto generate and work with beams up to 12

GeV.
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five passes (controlled by by beam switch-yard operator) before the beam delivery to the

halls.

FIG. 10. CEBAF accelerator at Jefferson Lab [59].

The injector uses a state-of-the-art room-temperature electron gun system with a strained

GaAs photocathode, which is capable of delivering high polarization (up to 90%), high

current (∼200 µA), continuous [61] wave beams into the accelerator and eventually to

the three end stations (Halls A, B and C), while maintaining alow current, high polariza-

tion beam to Hall B [62]. In the injector, beams of circularlypolarized light from a unique

system of three diode lasers - each pulsed with the frequencyof 499 MHz (the third subhar-

monic of the accelerating RF i.e., 1497 MHz) - illuminates the cathode under ultra-high

vacuum level (∼ 10−12 Torr) [63]. That causes the excitation of electrons from thetop

(spin-biased) valence band to the conduction band, thus emitting a 1497 MHz pulse-train

of low energy linearly polarized electrons. The direction of the polarization can be flipped

by using a voltage driven Pockel cell at about 30 Hz and occasionally reversed, which flips
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the polarization of the laser light and consequently flipping the photo-electron polariza-

tion. (During most polarized target experiments, data is collected with a “half-wave-plate”

(HWP) inserted and removed semi-regularly so as not to have apolarization dependent bias

in the data.) The electrons are first accelerated to 100 keV bythe 100 kV field in the gun

before passing them through a pre-buncher cavity and two circular apertures, where the

beam is pared down to improve the distorted shape and size of the bunches (due to space

charge effects). Thereafter, an optical chopper splits thebeam into 499 MHz bunches des-

ignated for the three halls, and sends them through a bunchercavity, followed by a capture

section made of a five-cell cavity, which further accelerates the beams to 500 keV while

controlling the beam bunch length and energy spread with theunwanted electrons steered

away to a beam dump. Next, the beam passes through two superconducting (SRF) cavi-

ties to get further bunched and accelerated to 5 MeV. At the end, two cryomodules - each

with 8 SRF cavities - boosts the beams to the final injector energy of 45 MeV and then

injects it into the north Linac by bending it with a chicane magnet. The bending produces

synchroton light with intensity proportional to the beam current, which is exploited by a

Synchroton Light Monitor (SLM) to monitor the relative beamcurrent [64, 65].

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

FIG. 11. CEBAF accelerator and some components

The 45 MeV beam injected into the north linac (linear accelerator) starts a number
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of laps (up to 5) of acceleration to reach up to about 6 GeV in the main CEBAF ma-

chine that looks like a race track. In between the accelerations in the two linacs (north

and south) of the machine, the beams are directed around two 180◦ magnetic recirculat-

ing arcs each with a radius of 80 m [62]. For acceleration, each linac employs a series

of 20 cryomodules, each of which is a cryogenic unit consisting of a series of 8 niobium

resonant superconducting RF cavities, vacuum pipes and pumps for cryogenics, and mag-

netic dipoles/quadrupoles for beam focussing and steering. The cavities in the modules

are cooled below the 9 K superconductivity point by 2.2 K2 LHe (liquid-Helium) from the

central helium refrigerator and the radiation shields are kept cool with 4.5 K LHe from

an end-station refrigerator. A 5-kW klystron synchronized(to less than 1◦ in phase differ-

ence) to the master driving RF (at the injector) supplies theRF power to each cavity which

creates an oscillating phase gradient along each cavity with the field maxima and minima

having the same separation as the spacing between the cavitynodes (see Fig. 12). Since

the bunch frequency is in resonance with the RF field, the electrons get a net acceleration.

The cavities operate in continuous wave (CW) mode with a gradient of at least 5 MeV per

meter so each of the linacs provides a boost of about 600 MeV tothe beam. The electron

bunches are delivered to the three halls in sequence, and since the bunches can be acceler-

ated to different energies by recirculating3 them through the CEBAF different number of

times, the three halls can either get the same energy or different multiples of the one-pass

energy (about 1.2 GeV). By controlling the intensities of the three independent lasers shin-

ing the photocathode in the injector, electron densities inthe corresponding bunches can

also be made different to provide different beam currents tothe halls [66, 65].

To minimize the accelerator hardware resources (tunnel space, cryomodules, magnets

etc.) the idea of using the recirculation arcs was implemented in the CEBAF design. The

arcs allow for the multiple laps/passes (up to 5) of beams through the linacs for higher

energies. Although the bunch lengths are the same for the different passes (enabling the

use of the same SRF cavities), their energies being different, they require different bending

strengths and, therefore, different bending magnetic fields for each pass. For that reason,

there are 5 arcs at the eastern end of the linacs and 4 at the other. A chicane magnet at

each end of the linacs separates the multi-energy beam into single energy beams and sends

2The lower temperature minimizes the BCS energy losses.
3Since electrons are extremely light particles, they travelessentially with the same speed as light at

energies above 45 MeV, thus making it possible to use the sameresonant cavities and driving RF frequencies

to boost the beam energy in every pass through the CEBAF machine.
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them through the different arcs each consisting of a chain ofsix “periods”, with each “pe-

riod” made of 8 dipoles, 8 quadrupole and 4 sextuple magnets.This optical configuration

keeps the beam from degrading due to dispersion and blurring, and also provides a path

length that is an integer multiple of the accelerating RF wavelength in addition to helping

minimize the energy spread due to the synchrotron radiation[65]. After the beam passes

through the south linac, a beam switchyard separator eitherlets the beam to go through

another pass of acceleration, or extracts it with a chicane from the appropriate recircula-

tion arc (after 2 to 5 passes depending on the beam energy requested). After the extraction,

a 1
3 harmonic RF separator, with the help of an oscillating deflecting field, separates the

bunches meant for the three different research halls and steers them towards 3 different

openings in a Lambert septum. After the separation, the three beams are sent to the appro-

priate halls - via a straight beam-line to the CLAS detector in Hall B, and via two arcs4

(with steering magnets) to the Halls A and C.

One final point to be noted is that during the beam recirculation process, the bending

magnetic fields cause the electrons to undergo spin precessions, the amount of which is a

function of the total number of times the beam is recirculated, the energy boost from each

linac, and the injector energy. As a result, the maximum (pure longitudinal) polarization

is achieved when the precession angleθ is a multiple ofπ . This condition can happen

simultaneously in the three halls if particular combinations of beam energies are chosen.

However, that is not always a feasible choice and, therefore, in many cases, a fraction of

transverse polarization can be present. But, this does not affect the experimental results

much because the contributions from the transverse polarizations are suppressed by a factor

of 1/γ [66]. In addition, a Wien filter is used in the injector which allows further control

of the spin direction [67, 68].

4The bendings here are exploited for the precise measurements of the beam energies
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FIG. 12. The acceleration is provided by establishing standing waves tuned such that an

electron always experienced a positive electric force while passing through the cavity

3.2 HALL-B BEAMLINE DEVICES

After the beam extracted from the CEBAF machine is directed towards the Hall B, it

passes through a number of devices before reaching and afterexiting5 the EG4 target and

the CLAS detector. As depicted in the schematic Fig. 13, the devices used before the beam

reaches the targets are a Moeller Polarimeter, 3 Beam Position Monitors (BPMs), and 3

Harp Scanners, and the one that comes after the CLAS is a Faraday Cup.

The beam polarization is measured at the injector using a Mott polarimeter, but we can-

not rely on that because the polarization may differ due to the spin precession mentioned

in the previous section. Therefore, a Moeller polarimeter installed at the entrance of Hall

B is used to make beam polarization measurements.

Moeller polarimetry is based on Moeller scattering of beam electrons from the atomic

electrons in an iron (or iron-alloy) target polarized by an external magnetic field. The

method is an invasive one, and therefore requires separate Moeller data runs (∼30 minutes

long) taken periodically throughout the experiment.

The polarimeter (see Fig. 14) consists of a target chamber with a 25-µm thick per-

mendur6 foil oriented at±20◦ with respect to the beam line and longitudinally polarized

5Applies only to the electrons that didn’t get scattered in the target
6Permundur is an alloy of 49% Fe, 49% Co, and 2% Va.
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FIG. 13. CLAS in the Hall-B beamline

to 7.5% by a 120 G Helmoltz magnet. Two quadrupoles separate the scattered electrons ac-

cording to their polarizations. The electrons then enter one of two lead/scintillator/photomultiplier

tube combinations for detection. Elastic electron-electron scattering coincidences are used

to determine the polarization. The differential scattering cross-section, in terms of the

permendur target polarization (Pt) and beam polarization (Pb), is given by

dσ
dΩ

∝
(

1+ ∑
i, j=x,y,z

Pt
i Ai j P

b
j

)

, (95)

where,

Ayy=−Axx =
sin4θCM

(3+cos2θCM)2 , (96)

−Azz=
(7+cos2θCM)sin2θCM

(3+cos2θCM)2 , (97)
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FIG. 27. A view from the top of the Hall B Moller polarimeter [41℄.The Moller polarimeter is designed to measure the beam polarization. The statis-tial unertainty of a Moller measurement, whih runs for about 30 minutes, is about1%. The polarization is measured by sattering polarized eletrons in the beampolarized atomi eletrons in the target foil. The interation between the beamb t
FIG. 14. A schematic diagram of the Hall B Moeller Polarimeter (from the top view

perspective).

Ai j ,i 6= j ≈ 0. (98)

Here,θCM is the scattering angle in the center-of-mass (CM) frame, z is defined as

the beam axis, and theeescattering plane is defined to be the xz plane. Using knowledge

of the scattering kinematics andPt (from the detectors and foil alignment, respectively),

the beam polarization,Pb
z , can be determined. The Moeller measurement typically had an

absolute statistical uncertainty of 1% and a systematic uncertainty of∼ 2%. In practice,

normalization to the elastic scattering asymmetry is used to determine the beam times

target polarizations; the only actual use for the Moller measurements in this analysis is for

consistency checks on thePbPt measurements [65].

During the experiment, it is very important to have systems to keep track of the stability

of beam alignment and the current level. There are three suchsystems which are known

as Beam Position Monitors (BPM) and are located at 36.0, 24.6and 8.2 m upstream from

the CLAS center. Each of them monitors three things - the X andY position of the beam

and the beam current - with position and current resolutionsof 10 microns and 50 pA

respectively. Each BPM has 3 RF cavities operating at 1497 MHz to monitor the three

variables. The monitoring data is taken at a rate of 1 Hz and are used in a feedback loop

to keep the beam centered on target [69, 70, 71, 65].

The next set of the beam-monitoring devices are the three Harp Beam Profile Monitors,

which are located at 36.7, 22.1 and 15.5 m upstream of the CLAScenter. Each of them

measures the profile and diameter of the electron beam through periodic harp scans. A scan
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is done by slowly moving a cross-hair of two thin wires (20µm W, 50µm W and 100µm

Fe, respectively) through the beam. A beam profile is then reconstructed by detecting

the electrons scattered off these wires using photomultipliers (PMTs) located at 10 cm

distance from the beam line. Past diameter measurements have shown an RMS of around

80 µm indicating that most of the beam falls within a 200µm diameter. Like Moeller

measurements, harp scans are invasive, and therefore, not done during data collection [65].

Finally, the total integrated beam charge, which is a crucial part of data required for

the calculation of experimental cross-sections, is measured by a Faraday Cup (FC), which

is located at the end of the beam line (29.0 m downstream from the CLAS center) as a

part of the beam dump7. The device is a horizontal, 75 radiation lengths long (4000kg)

lead (Pb) cylinder with a diameter of 15 cm which is connectedto an isolated electrical

circuit to measure the collected charge, which, in turn, is connected through a logic gate

to the CLAS data acquisition system (DAQ) to record two typesof measurements - one

for the total (un-gated) charge and the other for the “detector-live-time” (gated) charge

which ignores the electrons that arrive while the readout system (DAQ) is busy. Separate

recordings are made for each beam helicity bucket by gating the device with the main RF

frequency.

3.3 EG4 TARGETS

This experiment took two sets of data - one each for polarizedhydrogenated and deuter-

ated ammonia (i.e., NH3, and ND3) targets. The choice of the target material was a com-

promise between the desire for a pure proton/deuteron target, and the practical necessities

of materials that provide better polarization and resistance to radiation damage [72]. For

each of the beam energy settings, for the purpose of background studies and systematic

checks, some data were also collected with the following three types of unpolarized targets

- carbon-12, target cup with liquid-helium-4 only, and empty target cup without helium.

Even though the target sample itself was tiny in size (1.0 cm), the fact that it needed

to be polarized made the whole target system big with a host ofaccessories. The sys-

tem consisted of a superconducting magnet, a one-Kelvin refrigerator, a target insert/stick

(carrying the target samples), a microwave system and an NMRsystem, with the entire

assembly, including the pumping system, attached to a rail-mounted cart which could be

7Because only a tiny fraction of the beam is lost due to the scattering at the target as well as on other

beamline materials, the FCup measurement is not much different from the actual incident charge (not exactly

true for low beam energies).
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FIG. 15. Sectional view (from the beam-left side) of the polarized target system

rolled into or out of the CLAS within a matter of minutes [73].

One may be inclined to think that we could achieve the intended nuclear polarization

simply by forcing the alignment of proton spins in our targetsample by placing it in a very

high magnetic field (B) and at a very low temperature (T). As per Boltzmann statistics such

a thermal equilibrium (TE) polarization (we could call it the Static Nuclear Polarization)

would be given by

PTE =
e

µB
kT −e

−µB
kT

e
µB
kT +e

−µB
kT

= tanh

(

µB
kT

)

(99)

At a field of 5 T and temperature of 1 K, the proton polarizationwould be only 0.3% only

(free electron gas polarization would be near 100% due to the660 times higher magnetic

moment), which obviously is not practical for experiments [72]. For this reason, the tech-

nique of microwave driven Dynamic Nuclear Polarization (DNP) [74] was used to enhance

the polarization. At the 5 T field and 1 K temperature, DNP can produce polarizations as

high as 96% and 46% in NH3 and ND3 targets respectively [73].

DNP is one of several techniques for hyper-polarization (polarization of nuclear spin

beyond thermal equilibrium) of a given material. DNP results from the spontaneous trans-

fer of spin polarization from electrons to nuclei which takes place when the electron spin
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FIG. 16. Schematic of Hall-B polarized target insert

polarization deviates from its thermal equilibrium value [74]. In our case, such a devia-

tion is induced by continuous microwave irradiation close to the corresponding electron

paramagnetic spin resonance (EPR or ESR) frequency.

The basic idea involves using the hyper-fine splitting as shown in Fig. 17 which results

from the spin-spin coupling of free electrons to the nuclei (protons or deuterons) we wish

to polarize. By irradiating the target with microwaves of frequencies that match the energy

gaps seen in the diagram, transitions can be induced to flip the spin of the proton/deuteron

along with the spin of the electron. As shown, the “⇓⇓” aligned electron-nucleus state

can be flipped to the “⇑⇑” aligned state using microwaves. Also, by using a different
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FIG. 17. Electron energy levels arising from the hyperfine splitting due to the coupling of

free electron and proton spins.

microwave frequency matching the corresponding energy gap, it is possible to flip the

“⇓⇑” state to the “⇑⇓” state, thereby producing an anti-alignment of the nucleusspin

without changing the magnetic field. Thus both positive and negative polarizations can be

produced using the same field. After these upward transitions, the electron relaxes back

to the lower energy spin state. Due to the stronger coupling of electrons with the lattice

than that of nuclear spins, the electron spins flip back much more quickly (the relaxation

times at 1K are≈ 10−3s, and≈ 103s for electrons and protons respectively) [72] and the

same electron now can be used to polarize another nucleus andso on. This way, the nuclei

near the free electrons accumulate into one spin state producing a net polarization which

propagates throughout the target volume via the process of spin diffusion.

In order to provide free electrons for the spin-spin coupling required by the DNP, our

targets were doped with paramagnetic centers (radicals) twice. First, in what is called a

warm dose, the target at 80 K is irradiated with an electron beam in a smaller accelerator,

which produces radicals such as NH2 from NH3. Finally, the cold dose (at 1K) of the

CEBAF beam produces different radicals such as atomic H.

The 5 T field required by the DNP is produced by a superconducting Helmholtz magnet

which is kept at 4.2 K. The magnet produces a field uniform to better than 1×10−4 (enough
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to resolve the ESR linewidth of the paramagnetic radicals) over a cylindrical volume that

is 20 mm long, 20 mm in diameter and is centered at the target location.

The polarized target material is kept at a temperature of about 1 K by immersing it in

bath of liquid4He. The low temperature is achieved with a cooling system that consists of

a system of Roots and rotary-vane vacuum pumps, a 1 K refrigerator and an evaporation

chamber. An insert as shown in Fig. 16 is used to hold all the target materials in four

cylindrical cups roughly 1 cm in diameter and length. The insert is introduced into the

evaporation chamber and then remotely controlled by a stepping motor to move each of

the four targets onto the designated target position along the beam path. A gold-plated rect-

angular horn connected to a mircowave generator via waveguides, which is fixed rigidly

inside the evaporation chamber and facing towards the designated target position, contin-

uously delivers the needed microwave power, thus driving the DNP to produce the needed

polarization.

A continuous wave NMR (Nuclear Magnetic Resonance) system is used for online

(real time) monitoring of the target polarizations. The NMRsystem is essentially an RCL

circuit with its coil wrapped around the cylindrical cell containing the polarized target

material [65].

Two software systems installed on separate computers were used to control and mon-

itor the operation and performance of the target system. Labview 5.2 was one of the two

which operated from a PC located in the experimental hall andwas primarily dedicated to

NMR monitoring. The second program running on a VME-based single board computer in

the hall was known Experimental Physics and Industrial Control Software (EPICS), which

was used to control the cryogenic subsystems. The system handled most processes auto-

matically, but it could also be monitored and controlled from outside the hall by accessing

its graphical user interface from any Unix/Linux workstation on site via the Jlab Local

Area Network [72].

3.4 CEBAF LARGE ACCEPTANCE SPECTROMETER (CLAS)

The CEBAF Large Acceptance Spectrometer (CLAS) (see Figs. 18 and 19), which is

housed in Hall B of Jefferson Lab, is a nearly 4π detector, which makes it ideal for study-

ing multi-particle final-state reactions induced by photons and electrons at luminosities up

to 1034 cm−2sec−1 [75]. The detector is divided into six identical sectors (each functioning

as an independent magnetic spectrometer) with a superconducting coil located in between

each two of them (see next section). Each sector has three layers of drift chambers (DC)
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FIG. 18. EG4 Experimental Setup showing a cross-sectional view of the CLAS detector

along with the polarized target system in place.

and one layer of time of flight (TOF) or scintillation counters (SC), which cover the full de-

tector acceptance. Each sector also has a Cherenkov counter(CC) and an electromagnetic

calorimeter (EC) installed in the forward region of 8
◦

to 45
◦
.

A new (Moeller) Shield made of Tungsten (higher density thanLead) was put in place

to suppress low-momenta background electrons (also calledMoeller electrons because

they originate due to the Moeller scattering from the atomicelectrons), optimized for small

angle (θ ) operation at high luminosity.

3.4.1 TORUS MAGNET

The six superconducting coils placed one each in the gaps between the six indepen-

dently instrumented CLAS sectors form a toroidal configuration. This arrangement allows

for a central magnetic field-free region which can be very useful for purposes such as the
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FIG. 19. Cut-away view of CLAS detector

insertion of a polarized target [73].

The torus magnet setup produces a magnetic field up to 2.7 Tesla in theφ -direction,

surrounding the beam line. The magnetic field causes chargedparticles to bend when they

are moving through the detector. If the electron bends towards (away from) the beam

line, we call it the in-bending (out-bending) setting. Thisallows one to determine the

charge type and measure the momenta of charged particles according to the bending in

their trajectories.

In order to perform an absolute cross-section measurement,the CLAS-setup with a

few modifications was used. In contrast to the usual in-bending torus configuration, an

out-bending torus field was applied in this experiment in order to make measurements
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(a) Torus (b) Torus Magnetic Field Contour

FIG. 20. The CLAS Torus superconducting magnet (left) and the contour of its field.

down to as low as six degrees so as to achieve as low-Q2 measurements as possible.

3.4.2 DRIFT CHAMBERS (DC)

Charged particles in CLAS are tracked by a set of drift chambers (DC). A drift chamber

has thin wires fixed in a volume filled with a special gas in sucha way that there is a

posititve central (sense) wire surrounded by six negative (field) wires to form hexagonal

cells. Inside these cells a traversing charged particle ionizes the gas and the ionization

electrons drift to the sense wires. The connected electronics measures the charge of the

signals and the corresponding times the signals appear. Thedifference between this signal

arrival time and the time when the particle traversed the cell (measured by other detectors)

is used to reconstruct the particle impact points in the chamber virtual planes [76]. Using

such impact points, one can re-construct the track of the traversing particle.

The CLAS drift chambers are arranged in three regions:Region 1 is located closest

to the target, within the (nearly) field free region inside the Torus bore, and is used to

determine the initial direction of charged particle tracks. Region 2 is located between

the six super-conducting Torus coils, in the region of strong toroidal magnetic field (up

to 2.7 Tesla [77]), and is used to obtain a second measurementof the particle track at a

point where the curvature is maximal, to achieve good energyresolution. Region 3 is

located outside the coils, again in a region with low magnetic field, and measures the final

direction of charged particles headed towards the outer TOF, CC and the EC counters. All

three regions consist of six separate sectors, one for each of the six sectors of the CLAS.

So, there are 18 different drift chambers in CLAS [78].
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The DC information is important for energy, momentum and angle determination as

well as for particle identification. In this experiment, thedrift chamber system was used in

the standard CLAS configuration.

FIG. 31. One drift hamber setor showing the wire diretion. The beamto right.When a harged partile goes through CLAS it ionizes the gaseletron ion pairs. Eletrons drift to the sense wire along the �eld linesa voltage pulse on the sense wire. The signal size depends on the operating
(a) A DC sector
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(b) DC cells

FIG. 21. Different parts of a DC sector (left) and a section ofsuch a sector showing arrays

of DC cells as well as those that fired when a charged particle passed through them.

3.4.3 SCINTILLATION COUNTERS (SC) OR TIME OF FLIGHT (TOF) SY STEM

The TOF (SC) system (here used in the standard CLAS configuration) provides a high-

resolution (∼ 140 ps) timing measurement that can be used for velocity and mass calcu-

lation purposes. A scintillation counter measures ionizing radiation with a transparent

crystal, usually phosphor or plastic (CLAS uses 5 cm thick BC408 [77]) that fluoresces

when struck by the ionizing radiation. A sensitive photo-multiplier tube (PMT) detects the

light from the crystal. Scintillation counters typically have a poor spatial resolution but a

very good time resolution. They are also continuously sensitive, and are therefore often

used as triggers for other types of detectors.

In EG4, the CLAS was triggered by requiring a coincidence between the forward elec-

tromagnetic calorimeter (EC) and the new INFN Cerenkov counter (CC) which was in-

stalled only in the sixth sector [34].
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Beam

FIG. 22. TOF system

3.4.4 CHERENKOV COUNTERS (CC)

The Cherenkov Counter (CC) serves the dual function of triggering on electrons and

separating electrons from pions (or identifying charged particles). These detectors use the

light emitted by Cherenkov radiation (emission of light when the charged particle travels

faster than light in that medium) to measure the particle velocity (and, therefore,β = v/c).

The knowledge ofβ combined with the particle momentum (from the tracking detectors)

determines the particle’s mass, thus giving us informationon the particle identification.

The index of refraction (n) is carefully optimized for the particle masses and momentum

range of the experiments in question. Threshold counters record all light produced, thus

providing a signal wheneverβ is above the thresholdβt = 1/n. In the standard configura-

tion, CLAS uses one Cherenkov threshold detector in each of the six sectors in the forward

region from 8o to 45o.

New CC in the6th Sector

The standard CLAS Cherenkov detectors (as shown by Figs. 24 and 23) were designed

such that their optics, geometry, module position and mirror orientation were optimized

for low rate highQ2experiments that mostly use(d) electron in-bending torus fields. The

design was a compromise between the desired kinematic coverage and the complexities of

the CLAS detector system including the effect of the torus field. As a consequence, light

collection is constrained causing the number of photoelectrons to be strongly dependent on

scattering angles, and making the detection efficiency non-uniform, and strongly reduced
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FIG. 23. The computer rendered image of the Standard CLAS Cherenkov Counter

in some regions (for example, up to 30% drop in the middle of the sector and at forward

angles) [34]. While it would still be possible to detect electrons, the use of the existing CC

would mean that the absolute cross-section measurement would require large and com-

plex corrections which are difficult to evaluate. That wouldsignificantly contribute to the

systematic uncertainties, thus not meeting the proposed high accuracy requirement of the

measurements.

In order to avoid having all those CC-related issues in the new measurements, a new gas

threshold cherenkov counter (designed and built by INFN - Genova, Italy) was installed in

the sixth sector. This new CC detector (see Fig. 25 for its CADrendition) is specifically

optimized for the out-bending field configuration, which is necessary to reach the desired

low momentum transfer (measurements down to 6 degrees). Thedetector uses the same

radiator gas (C4F10 - perfluorobutane) and the same gas flow control system as the old

one, but it uses a different design. In the new CC, the number of CC-modules is now

11 instead of the 18 in the standard ones. In order to maximizethe light collection, a

single reflection design (see Fig. 3.26(b)) using sphericalmirrors is used (the standard

CC used double relections from elliptical and hyperbolic mirrors). The geometry, the size,

the mirror size, position, and orientation, the dimensionsas well as the assembly of the

modules were optimized for the experiment and the performance study was done using a

complete GEANT simulation [34].

This new detector achieves a very high and uniform electron detection efficiency (≈
99.9%) in most of its central (fiducial) region, to allow for the measurement of the absolute
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FIG. 24. The schematic diagram of a CLAS Cherenkov Counter (CC) module showing

mirrors, PMTs and the light reflections.

cross-section with minimal corrections and a high pion rejection ratio (of the order of

10−3). Due to the high electron rate at lowQ2, theφ coverage can be lowered, while still

having a large counting rate. Therefore, for reasons of limited data storage capability, and

also for the fact that only the sixth sector had the required new CC, only the sixth sector

events were collected, stored and subsequently used for data analysis [61].

3.4.5 ELECTROMAGNETIC CALORIMETERS (EC)

Each CLAS sector has an electromagnetic sampling calorimeter (EC) in the forward

region (8o < θ < 45o). These electromagnetic shower calorimeters are optimized for mea-

suring the energies and positions of electrons and gammas [75]. EC helps to discriminate

electrons from hadrons and photons from neutrons. When a high-energy electron or photon

(γ) passes through, a fraction of its energy is deposited in theform of an electromagnetic

shower (because of Bremsstrahlung and electron-positron pair production). This shower

produces a signal (in the scintillators - the active material) proportional to the energy de-

posit, which is recorded by the EC read-out. The calorimeteris made of alternating layers

of scintillator (SC) strips (36 strips per layer) and lead (Pb) sheets with a total thickness of

16 radiation lengths. In order to match the hexagonal geometry of the CLAS, the Pb-SC

sandwich has the shape of an equilateral triangle. There are39 layers in the sandwich,

each consisting of a 10 mm thick scintillator followed by a 2.2 mm thick lead sheet.

The calorimeter has a “projective geometry” in which the area of each successive layer

increases. This minimizes shower leakage at the edges of theactive volume and minimizes
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FIG. 25. The new Cherenkov counter (courtesy of INFN, Genova)

the dispersion in arrival times of signals originating in different scintillator layers. The

active volume of the sandwich thus forms a truncated triangular pyramid with a projected

vertex at the CLAS target point 5 meters away and an area at thebase of 8 m2. The

projective geometry maximizes position resolution for neutral particles.

For the purposes of readout, each SC layer is made of 36 stripsparallel to one side

of the triangle, with the orientation of the strips rotated by 120o in each successive layer.

Thus there are three orientations or views (labeled U, V, andW), each containing 13 layers,

which provide stereo information on the location of energy deposition. Each view is fur-

ther subdivided into an inner (5 layers) and outer (8 layers)stack, to provide longitudinal

sampling of the shower for improved hadron identification (or electron-pion discrimina-

tion; the electron-pion rejection factor is∼0.01.). Each module thus requires 36 (strips)×
3(views)× 2(stacks) = 216 PMTs. Altogether there are 1296 PMTs and 8424scintillator

strips in the six EC modules used in CLAS. The intrinsic energy resolution for shower-

ing particles is 10%/E, with approximately a 3 cm position resolution at 1 GeV. These

detectors have up to 60% efficiency for detecting high momentum neutrons [77].

With its good energy and position resolution, the main functions of EC are:
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(a) Schematic of a new CC segment. (b) Schematic of Cherenkov light reflections

in a new CC unit.

FIG. 26. Schematic of a new CC segment showing the arrangements of the mirrors, PMTs

and the light reflections (courtesy of INFN, Genova).

• Detection and primary triggering of electrons at energies above 0.5 GeV. The total

energy deposited in the EC is available at the trigger level to reject minimum ionizing

particles or to select a particular range of scattered electron energy.

• Detection of photons at energies above 0.2 GeV. Allowingπ0 andη reconstruction

from the measurement of their 2γ decays.

• Detection of neutrons, with discrimination between photons and neutrons using TOF

measurements [75].

In our experiment, DC, SC and EC counters were used in the standard CLAS configu-

ration. The modifications for this experiment were only in the CC (see section 3.4.4), torus

polarity (outbending for electrons), the Moeller shield (new one made of Tungsten which

is denser than lead which was used previously), and the position of the target (at -100.93

cm) relative to the CLAS center.
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(a) EC Sandwich (b) EC Readout

FIG. 27. EC sandwich (left) and the readout (right)

3.5 TRIGGER AND DATA ACQUISITION SYSTEM (DAQ)

Each detector subsystem in Jefferson Lab has its own electronic modules8 to monitor

its performance as well as to collect its signals for furtheranalysis. A detector can produce

signals due to a number of unwanted reasons such as the incidence of a cosmic radiation

or the intrinsic electronic noise, and so not all signals aredesired. There exists another

electronic system - the trigger-system - whose job it is to determine whether a given set

of detector signals constituted a desired physics event. The trigger acts as an interface

between the detector subsystems and the final data-acquisition system (DAQ), which re-

ceives the desired signals and records them on disks in intended data formats for online

as well as off-line analysis. The trigger helps minimize thedead-time of the detectors and

also minimzes the resources required to process and store data.

A two-level trigger hierarchical system is generally used with CLAS to acquire the

desired events. The level-1 (L1) trigger, which is dead-timeless and uses all prompt PMT

signals within 90 ns, controls the data acquisition throughthe front end electronics using a

trigger supervisor (TS) module by providing a common start signal to the ADCs (Analogue

to Digital Converters) and TDCs (Time to Digital Converters) and a delayed common stop

8Commercial (FASTBUS or VME) modules were used whenever possible, but custom modules with

in-house designs were developed when commercial options were not available, or the application was so

specialized that significant gains in performance or cost could be achieved [79].
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signal to the DC electronics. When a L1 trigger signal occurs, i.e. the event is accepted,

further signal reception from CLAS is halted for 2µs while the Level-2 trigger (L2) uses

additional information from the acquired data to make the final decision on whether to

reject the data and reset the front end electronics or convert and read out the data. If L2

okays an event, the conversion is initiated and the detectorwill not go live until all ADCs

and TDCs have digitized and locally buffered their data, a process which typically takes

20 µs [80]. In this experiment, only the Level-1 triggers requiring a coincidence between

the signals (above some specified thresholds) in the EC and the new CC (from INFN)

were used. Because the new CC was only in sector-6, no electron triggers came from the

other five sectors, thus, basically using them only to recordthe other coincident particles

from the accepted multi-particle final states. In addition to the normal production data, a

few special “EC-only” data runs were also taken with no CC signals required in the event

triggers. These special data sets together with normal datawere used in estimating the

(in)efficiency of the CC-detector.

After passing through the pre-trigger discriminators, allprompt PMT signals contain-

ing information about the hit locations in SC, and CC and deposited energy levels in EC

are sent to a custom electronic system to make groupings and sums of them to generate a

fast 62 bit signal, which, in turn, is sent as input to the L1 trigger in order to decide if a

desired event has occurred. Using a three-stage pipelined memory lookup with a pipeline

speed of 67 MHz, the input bit pattern is compared against preloaded patterns in memory

tables which are programmed using a graphical software package called TIGRIS [79].

As soon as a L1 signal comes, the TS generates the gates for thedetectors to allow

their signals to be digitized in the 24 FASTBUS and VME cratesstationed in the experi-

mental hall, waits for conversion (by ADCs, and TDCs) of all crates to complete, and then

places the event on the readout queue by sending all information to the 24 VME Readout

Controllers (ROC1 to ROC24). (The readout happens asynchronously with conversion.)

Fig(28) shows the overall schematic of the data data flow in the CLAS DAQ. The arrays

of digitized values related to different detector components collected by the 24 ROCs are

translated into tables with each data value (having a size ofup to 16 bits) in it given a

unique number to identify which component of the detector was responsible for the data.

The tabulated data is then transferred via fast Ethernet cables to the CLAS online acqui-

sition (CLON10) computer in the control room, with three primary processes - the Event

Builder (EB), Event Transport (ET), and Event Recorder (ER)- running in it. The EB as-

sembles the data pieces coming in the form of different tables to build the complete events,
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and then packages the complete event data by prefixing individual tables with headers to

form “banks” and labelling the collection of banks by a run and event number, an event

type, and the trigger bits which are put in a separate header bank. The packaged event is

then passed to the ET managed shared memory (ET1) in the CLON10 which allows si-

multaneous access by various event producer or consumer processes running on the local

or remote systems. The ER collects data from the ET1 and writes it in a single stream to

a local array of magnetic RAID disks. When the disk is full, the data is transferred to a

remote tape silo managed by the computer center a kilometer away9. Some events from

ET1 are also sent to remote ET systems, e.g. ET2 and ET3, for the online monitoring

purposes.

ET1

Detectors Discriminators

   pretrigger

   L2

trigger

L1 trigger

Trgger Supervisor (TS)

Gate

logic

EB ER Raid

SILO

Computer

   Center

Control

Info

FIG. 28. An schematic of the data flow in the CLAS DAQ.

9Since the maximum tape writing speed is small (about 10 MByte/s) [79], data transfers are performed

in parallel, so that consecutive files may end up in differenttape silos
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Trigger bits

Every reconstructed event in the BOS file has, in its HEVT bank, an integer variable called

trigger bits, which represents a 16-bit binary number that carries trigger information about

various detector components (the level-1 trigger bit variable in the ntuple-10 is named

’l1bit’). An N-bit binary number is an array of N zeros and ones which represents the

following:

a120+a221+a322+a423+a524+ ...+aN2N−1 (100)

where, the coefficientsan are either 1 or 0 (i.e., the bit is either present or absent). For an

example, if the trigger bits variable has the value of 41481,it means that the bits 1, 4, 10,

14, and 16 are present and others absent because,

41481= 20+23+210+213+215 (101)

Out of the 16 bits, the first six (1-6) indicate whether there was proper event trigger

(CC+EC) in the sectors 1-6 respectively. The next two (7th and 8th) represent EC trig-

gers only, with 8 representing a lower EC threshold than thatnormally used for event

triggers. The next six bits (9-14) are left unused and the last two (15-16) both indicate

(redundantly) the sign of the corresponding helicity bucket.

In general, only those events that have valid hits in at leastone sector are good for

inclusive analysis, so only events with at least one bit present out of 1-6 are kept and the

rest is discarded. In fact, EG4 used only the 6th sector, so only events with the 6th bit

present are useful for the final analysis. The bits 7 and 8 are useful for works such as pion

background studies. The last two bits are eventually overriden by the modified variable

read from the fixed helicity tables and, hence, go unused.
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CHAPTER 4

DATA ANALYSIS

As stated in previous chapters, the goal of this data analysis is to extract the spin struc-

ture functiong1 for the deuteron and evaluate its moments. We also saw (see Sec. 2.2)

that the productA1F1, which is proportional toσTT, directly enters sum rules for the real

photon point, which leads to the generalized GDH integral (ĪTT) and the generalized for-

ward spin polarizability (γ0) being expressed in terms of the first and third moments of the

productA1F1. In view of that, we decided also to extract the productA1F1 using exactly

the same procedure as forg1.

The extraction of bothg1 andA1F1 depend directly on the measurement of the follow-

ing polarized cross-section difference:

∆σ‖ =
d2σ↓⇑

dΩdE′ −
d2σ↑⇑

dΩdE′ =
1
Nt

·
[

N+

N+
e−

− N−

N−
e−

]

· 1
PbPt

· 1
∆Ω

· 1
Edetector

(102)

where,

• Nt = Number of deuteron nuclei in the target

• N+/−: Number of scattered electrons (off deuteron only) for eachhelicity state (+/-).

• N+/−
e− : Number of incident electrons for +/- helicity states

• PbPt = Product of the beam and target polarizations

• ∆Ω = sinθ ·∆θ ·∆φ : The solid angle for the given kinematic bin. This term includes

the “detector acceptance”.

• Edetectoraccounts for the detector efficiencies

The data analysis to extract the physics quantities involves accurately measuring each

of these quantities, either separately or in some combined form. To do so, the data must be

properly reconstructed, calibrated and corrected to buildall the scattering events during the
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experiment. Since the reconstructed events include a wide range of physical processes in

addition to the electron-deuteron scattering process thatwe are interested in, proper event

selection cuts must be applied. In this chapter, all these steps from the data reconstruction

and calibration through the extraction ofg1 are described.

4.1 EG4 RUNS

The deuteron target part of the EG4 experiment ran for about amonth in 2006, mostly

with longitudinally polarized frozen ND3 as the target. In between these deuteron runs,

some small amount of data was also collected on carbon-12 andempty cell targets, which

are important in various auxiliary studies during the data analysis (such as their use in

estimating nuclear background while developing momentum corrections, estimating the

length of the target material or estimating unpolarized background). A total of 113 data

runs (from run ID 51896 to 52040) were collected for the lowerbeam energy (1.3 GeV)

and 221 runs (from 51593 to 51867) for the 2.0 GeV case (with each run consisting of

about 3.0×107 event triggers) [81]. Each run took about 2 hours and collected about 2

GB of data in raw format and saved as about 20-30 BOS files (see next section). With the

combination of low beam energy and low scattering angle, lowmomentum transfers can

be measured down to about 0.02 GeV2 within the kinematic coverage of the resonance

region (1.08 <W < 2.0 GeV.)

4.2 RAW DATA PROCESSING - CALIBRATION AND RECONSTRUCTION

The raw data recorded by the CLAS DAQ system consist of ADC andTDC values

registered by different components of the detector (in response to the passing of various

particles through them) and also some beam related information such as Faraday Cup

readings and beam helicity information. These data are collected and saved (by the DAQ

system) in the fortran-77 based BOS format [82] which implements a dynamic memory

management. In the BOS file, the data is organized into banks,with each bank carrying

data belonging to a particular detector or some part of it. Each bank consists of two parts -

header and body. The body contains the actual collected data(such as the ADC and TDC

values from detector components such as PMTs, in the case of raw data, or information

such as energy and time in case of the reconstructed data), while the header contains some

relational information - such as the bank identifier, the number of rows and columns of data

in the bank and the location of the next bank. In the case of reconstructed data, in addition
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to the banks carrying detector specific reconstructed information such as the energy and

time of the signals, more banks are added to the data file for storing high level information

such as the number of particles detected in a given event, thefour-momenta of each of the

particles etc.

These raw data are next processed with another standard CLASsoftware package

called RECSIS, which analyzes and combines the matching bits and pieces of the raw

information (in the form of the TDC and ADC values from various detector components)

to reconstruct particles and events that produced those signals. Such reconstruction pro-

duces output data that consist of event and particle IDs, particle positions and energies and

momenta (in the lab frame CLAS coordinate system), and also some static particle proper-

ties such as charge and mass. The reconstruction program uses geometric parameters and

calibration constants (from the CLAS database) for the detector to process and convert the

raw data into the output form.

This iterative work of data reconstruction and detector calibration, which was a very

computing intensive and time consuming, was done by R. De Vita - one of the EG4 col-

laborators from INFN, Genova, with good expertise on CLAS data reconstruction - soon

after the data collection was completed (from 2006-2007).

The first part of the data processing is the detector calibration. In this phase, a small

sample (about 10%) of raw data (uniformly selected over the entire run period to ensure

time stability verification) is chosen and the energy and time calibration constants are ad-

justed to give the correct behavior while constantly monitoring related variables. This is

done separately for each run period to consider the different running conditions, the possi-

bility of unwanted changes in hardware that may have occurred, as well as drift of detector

response over time. This process of adjusting the calibration constants and reconstructing

the data is repeated until a desired level of accuracy is reached. Once that level is reached,

the calibration constants are “frozen” and the final reconstruction is done. The resulting

output is saved in especial formats1. These saved data provided the starting point for our

higher level data analysis as described in this dissertation. The details of the calibration

and reconstruction process can be found in [66].

4.3 HELICITY STATES

As we saw from Eq. 102, the physics extraction depends on measurements of the

number of events in the two (+/-) electron helicity states. The CEBAF accelerator provides

1Two especial data formats - BOS and ntuple (h10) - were used
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FIG. 29. Different data signals sent from the injector that monitor the helicity states of

beam electrons. (Fig. courtesy of N. Guler [35] ).

the polarized electrons in closely and equally spaced bunches. These bunches are further

grouped into “buckets” according to their helicity states,which are alternated pseudo-

randomly at the injector with a frequency of 30 Hz. The information on the helicity state

of each of the buckets and the total integrated charge contained in it is injected into the

DAQ data stream immediately after the helicity flip. Using a combination of different

types of sequence control signals sent from the injector (see Fig. 29), it is possible to

determine which helicity state a particular event belongedto, which then can be used to

label the helicity state of the event in the data stream, together with the total beam charge

of the state.

4.4 DATA QUALITY AND STABILITY CHECKS

With an available set of good event/electron selection cuts, beam charge (measured by

Faraday cup) normalized total event counts (sometimes alsoknown as event “yield”), as

well as polarization dependent differences, were calculated for each of the data files for all

the runs and then plotted against the run number to study the data quality and stability as

shown by Figs. 30, 31 and 32.

If nothing unusual happened or if the experimental conditions are not changed, then it

is expected that the event yield as well as the count differences remain constant over time.

Therefore, the graphs of these event counts plotted versus time or run number (which

also roughly reflect the flow of time) should indicate the stability and quality of the data

collected. For example, Fig. 30 shows such a total yield plotfor all the data files from
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the 2.0 GeV beam energy data set on deuteron target. We can seethat these data runs

display some features of instability over the full period oftime, but stability over short time

periods. For example, all the data with run numbers below about 51610 show significantly

higher event yield than the runs after that run (possibly dueto beam-target misalignment

as indicated by raster magnet ADC values in Fig 32.

Run #
51600 51650 51700 51750 51800 51850
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0.095
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Total YieldTotal Yield

FIG. 30. Total normalized yield (= N++N−
FC++FC− ) for 2.0 GeV ND3 runs.

Likewise, the stability of the polarized count differencesin the elastic region (0.9 GeV

< W < 1.0 GeV) as well as separately in the delta (∆) resonance region were studied

by plotting them versus the same run numbers (here the elastic and∆-resonance regions

are considered separately, because the spin spin asymmetries in these two regions have

opposite signs, which would have decreased the observed difference if combined. To

further enhance the sensitivity of the observation, the difference of the count differences

measured in the elastic and∆-resonance regions as given by

∆Nelastic−∆N∆ =
1

PbPt

[(

N+

FC+
− N−

FC−

)

elastic
−
(

N+

FC+
− N−

FC−

)

∆

]

(103)

were plotted (see Fig. 31). It was observed that this elasticnormalized count difference

(which is what really matters to our analysis, in the end) wasmuch more stable than the

total yield.
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FIG. 31. Polarized yield differences (Eq. 103) normalized with PbPt and BPM/F-cup for

elastic peak minus that for the∆ peak for the 2.0 GeV ND3 runs.

The same was also repeated for the other variables such as theroot-mean-square of the

ADC values (see Fig. 32) which carry information on the X and Ycoordinates of the beam

at the interaction vertex, thus their plots giving us somewhat more direct information on

whether there was any misalignment between the beam and the target.

Based on the studies of these quality and stability plots, the data runs were divided into

subgroups with each beam energy data set. In each subgroup, the data showed more stabil-

ity than over the whole run period for the given beam energy. For example, in case of the

2.0 GeV deuteron data, the runs were divided into four distinct sub groups corresponding

to the four separate bands as seen in the Fig. 30. These subgroups were later treated and

analyzed separately to get the corresponding normalized polarized count differences (with

all data runs from each subgroup combined together). After the initial combination within

the subgroups, they were again combined into the grand totalby properly considering the

half-wave-plate status, and the target polarization directions.



79

Run #
51600 51650 51700 51750 51800 51850

rm
s-

R
as

te
rA

D
C

-X

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

rms RasterX ADC per file from h10rms RasterX ADC per file from h10

Run #
51600 51650 51700 51750 51800 51850

rm
s-

R
as

te
rA

D
C

-Y

4220

4240

4260

4280

4300

4320

4340

rms RasterY ADC per file from h10rms RasterY ADC per file from h10

FIG. 32. Root-mean-square of the ADC values for the raster magnet currents in the di-

rections X and Y. The distributions show a larger raster sizein the y-direction for the first

group of runs, indicating that the beam may have been hittingthe edges and the walls of

the target or other more dense structure support materials,thus explaining the higher total

yield for the corresponding runs as shown by the Fig. 30. Thisdoes not affect our final

analysis because these off-target materials are not polarized and, hence, do not contribute

to the polarization dependent count difference (∆N) used in the final analysis.
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4.5 KINEMATIC CORRECTIONS

Particle 4-momenta and event vertices as detected by CLAS and reconstructed by REC-

SIS are not accurate enough for various reasons. First, RECSIS does not take into account

the fact that the beam is rastered in polarized target experiments. Next, any imperfections

and mis-alignments of detectors and other components of theexperimental set-up are not

accounted for. Also, the torus field map is not known precisely. In addition, the effects

of multiple-scattering and particle energy losses are not considered in RECSIS. Therefore,

to get more accurate results from the data analysis, the dataquality must be improved by

applying various kinematic corrections. Following is the list of the corrections that were

applied for analysis:

1. Incoming (beam) energy loss correction (due to ionization)

2. Raster correction

3. Drift chamber dependent momentum correction

4. Z-vertex correction

5. Solenoid axis tilt correction

6. Solenoid axis offset correction

7. Multiple scattering correction

8. Outgoing energy loss correction (due to ionization afterscattering)

The first correction listed above considers the loss of beam energy due to atomic col-

lisions before the actual nuclear scattering takes place. Agood estimate for this loss is

2 MeV [67, 83], which is subtracted from the nominal beam energy. This correction is

applied during the analysis whenever the beam energy is involved, and therefore it is not

included in the correction package described below.

4.5.1 RASTER CORRECTION

The polarized electron beam coming from CEBAF to Hall B is rastered in polarized

target experiments. This is done to minimize radiation damage (depolarizing effects) to

the polarized target and also to make maximum use of the target material (effective beam

size increases and, therefore, the overall volume of exposed target increases). The beam
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is periodically spiraled covering a circular region of the target cross-section by using two

raster magnets - one for the horizontal (X) direction and theother for the vertical direction

(Y). The currents driving the two magnets are continuously recorded by analog-to-digital

converters (ADCs).

FIG. 33. Raster correction geometry illustration (Figure courtesy of S. Kuhn)

The ADC values thus recorded can be translated to the coordinates (x,y) of the exact

beam position at the target. The values of x,y can then be usedto make corrections to

the original track by RECSIS (which assumes x and y were zero), allowing better z-vertex

and azimuthal angle (φ ) reconstruction. The better z-vertex reconstruction allows better

selection of events from the target proper, rejecting events from upstream and downstream

windows (especially for particles at small angles), and canalso be used to reduce accidental

coincidences in multi-particle final states (or to look for offset decays such as fromΛ).

Correction ofφ improves missing mass resolution for multi-particle final states which

is very important in exclusive channel analysis. In addition, plotting a two-dimensional
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histogram of events as a function of the raster information xand y, one can look for mis-

steered beam that might have hit the target cup edges.

FIG. 34. Raster correction geometry illustration (Figure courtesy - S. Kuhn)

A procedure was developed by P. Bostedet al. [84] to translate the raster ADC values

into the beam coordinates x, y and then use them to improve thez-vertex andφ reconstruc-

tion. This procedure was successfully applied in previous CLAS experiments and EG4 has

also embraced it to do the needed raster correction.

In short, the procedure for this correction is as follows:

1. Translates raster-ADC values to beam coordinates x and y.

2. Corrects the event vertex z-coordinate (represented as vz in the data).

3. Corrects the azimuthal angleφ of each particle in the event.

This correction is applied before the momentum correction.So, the partially corrected

φ and vz will be a part of the input fed into the next stage of the kinematic correction
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which, henceforth, will be termed “momentum correction”.

Procedure to translate ADCs to centimeters

FIG. 35. Beam coordinates x and y calculated with the raster correction procedure.

The procedure assumes that a linear relation holds between the raster currents and the

beam coordinates x and y (displacements in cm produced by thefield of the currents) as

follows:

x= (Xadc−Xo f f set)Cx, (104a)

y= (Yadc−Yo f f set)Cy, (104b)

where,Xo f f set, Yo f f set, Cx, andCy are the parameters to be determined by the procedure.

These parameters are determined by selecting reasonably well reconstructed events each
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consisting of more than one charged particles tracks originating reasonably close to the

nominal target center (vz≈- 101.0 cm) and using them in TMinuit (ROOT Minuit program)

to minimize theχ2, defined as

χ2 =
N

∑
i=1

((zcorr)i −zo)
2, (105)

wherez0 is the 5th parameter that defines the center of the target and is to be determined

from the minimization. Likewise,zcorr is the trial value of the corrected z-vertex (a func-

tion of trial values of the first four fit parameters, as will beevident below). TMinuit will

give us those values of the parameters which gives theχ2 a minimum value.

FIG. 36. Vertex Z-coordinates (in cm) of scattered electrons from an 3.0 GeV empty-cell-

target run before (black) and after (red) the raster corrections. It is clear that the correction

improves the resolution, thus revealing the positions of the empty target cells (the first two

peaks near -101.0 cm) and the heat shield (around -93.0 cm).

From a simple geometry consideration (as illustrated in Figs. 33 and 34), an expression
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for correction to the z-vertex in terms of x, y and angles of a particle track is arrived at as

follows:

zcorr = zrecsis+x′/tan(θ), (106)

wherezrecsis, and zcorr are the z-vertex measured by the tracking code and the raster-

corrected z-vertex respectively, and

x′ = (x cosφs+y sinφs)/cos(φ −φs), (107)

is the distance in cm along the track length that was not considered in tracking (because

the tracking code assumes that the track started fromx= 0, y= 0); φs is the sector angle

defined as the azimuthal angle of the sector mid-plane (equalto (s−1 ·60 degrees, where

s is the sector number from 1 to 6), andφ is the azimuthal angle of the particle (in the

lab-coordinate system) defined asφ = arctan(cy/cx), wherecx andcy are the x- and y-

direction cosines of the track.

Due to the difference of the actual track length (through the50 kG magnetic field

of the target) from what is assumed by the tracking software,the azimuthal angleφ is

reconstructed incorrectly. The angleφ can now be corrected by adding a correction term

−50q(x′/100)/33.356/pt to the reconstructed valueφrecsisas follows:

φcorr = φrecsis−50q(x′/100)/33.356/pt, (108)

whereφrecsis andφcorr are the reconstructed and corrected values ofφ respectively,q is

the particle charge in units ofe, the factor 50 is the target field expressed in kG, the factor

100 is to convert the unit cm ofx′ to m, the factor 33.356 is the inverse speed of light in

the appropriate units andpt = psin(θ) is the particle’s transverse momentum expressed in

GeV [84].

For our analysis, all the four parametersXo f f set, Yo f f set, Cx, andCy were determined

separately for each beam energy by selecting a set of good electrons and using the method

of χ2 minimization (see Eq. 105). With the parameters known, we can use Eqs. 104a and

104 to convert the X- and Y- ADC values into beam positions (atthe target location) in

centimeters as shown in Fig. 35 for 1.3 GeV data. Likewise,vzandφ can be corrected by

calculating the correction termsx′/tan(θ) and−50q(x′/100)/33.356/pt and adding them

to the respective reconstructed values (see Eqs. 106, 108).For example, Fig. 36 shows

the distribution of electron Z-vertex distribution (from 3GeV proton data) before and after

the corrections. It is evident from the figure that the corrections improves the resolution
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as expected in addition to shifting (towards left) the average position of the distribution by

some amount.

4.5.2 DRIFT CHAMBER (DC) DEPENDENT MOMENTUM CORRECTION

Different DC related factors contribute to the biggest partof the systematic deviations

of particle momenta as reconstructed by RECSIS. The drift chambers could be misaligned

relative to their nominal positions or the survey results that is used by RECSIS could be

inaccurate or out-of-date. The effects of physical deformations (due to thermal and stress

distortions) of the chamber including wire-sag, incorrectwire positions may not have bee

incorporated properly. The torus field map used by the reconstruction software may not

have been accurate and complete enough [85]. To address issues like these, a general

approach as described in [85] which makes corrections top andθ was followed to develop

the corrections.

The ratio of the correction to the magnitude of the momentum could be expressed as:

∆p
p

= Pcorr1+Pcorr2+PatchCorr (109)

where,

Pcorr1=

(

(E+Fφ)
cosθ
sinφ

+(G+Hφ)sinθ
)

p
qBtorus

(110)

Pcorr2= (Jcosθ +Ksinθ)+(Mcosθ +Nsinθ)φ (111)

PatchCorr= 0.02

(

P+(Q+R
φdeg

30◦
)(

10◦

θdeg
)3
)

(112)

The quantityBtor stands for
∫

B⊥dl along the track length multiplied by the speed of

light in the units of m/ns (c = 0.29979 m/ns) and is given by

Btor = 0.76
Itorsin2(4θ)
3375θ/rad

for θ <
π
8

(113)

Btor = 0.76
Itor

3375θ/rad
for θ >

π
8

(114)
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In all these equations, sector number,θ , φ , θdeg, andφdeg come from the angle infor-

mation measured at DC1. The direction cosine variables tl1cx, tl1 cy, tl1 cz (from pass1

ntuples) are used to derive these quantities. C++ standard functions acos() and atan2() are

used to evaluateθ , φ (w.r.t the sector mid plane).

All these total of eleven unknown parameters were determined separately by fitting

above mentioned momentum offsets (in combination with ionization energy loss correction

for electrons) to the correction function given by the Eq. 109.

Unlike for sector-6, both p- andθ were subjected to correction if a given particle track

was detected by the drift-chamber in any of the other 5 sectors. This time, the PatchCorr

component was not considered in the expression (Eq. 109) forp-correction. On the other

hand, following expression was used to parameterize the correction to the polar angleθ .

∆θ = (A+Bφ)
cosθ
cosφ

+(C+Dφ)sinθ (115)

A total of 12 (8 for p-correction and 4 forθ correction) parameters for each of these

five sectors were determined (from a fit procedure to be described below) to account for

the DC contribution to the corrections.

4.5.3 SOLENOID CORRECTION

If the axis of the target solenoid field is not aligned exactlyalong the beam line, then

theφ reconstruction is skewed. To correct for that, the following changes are made to the

reconstructed angles:

cxtrue = cxini +a/p (116a)

cytrue = cyini +b/p (116b)

wherecx andcy are the x- and y- direction cosines,p is the particle momentum and a and

b are the parameters to be determined by the fit (described in 4.5.6). It’s clear thatcx and

cyand thereforeφ = arctan(cy/cx) is changed by this part of the correction.

The target field may also have an overall displacement or offset w.r.t the beam line and

so the following correction to the angles is used in additionto the other corrections:
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φtrue = φini +qBsolenoid
Scosφini −Tsinφini

psinθini
(117a)

θtrue = θini +qBsolenoid
Ucosφini −Vsinφini

p
(117b)

Here, S, T, U and V are the additional parameters to be determined by the method of

χ2 minimization (see Sec. 4.5.6) for the overall correction.

RECSIS evaluates the vertex assuming that it lies on the intersection of the track and

the plane perpendicular to the sector mid-plane that contains the beam axis [86]. So, REC-

SIS backtracks the DC-reconstructed particle track and finds the point where the track

meets this plane to determine the vertex. As a consequence, while doing the raster correc-

tion, we correct Z in addition toφ . Since the track itself is subject to further corrections

even after the raster correction, the vertex should also be corrected further. The following

expression is used to further correct the z-component of thevertex.

ztrue = zrst +Y
θ −θini

sin2θ
(118)

whereθini is the polar angle (in radians) at the start,θ is the one after all the previous

corrections and ’Y’ is the new fitting parameter to be determined whose physical meaning

is the distance from the vertex to the first region of DC (about150 cm) [87].

4.5.4 MULTIPLE SCATTERING CORRECTION

As a particle travels away from the reaction vertex, it encounters additional scattering

centers (within the target material as well as outside) before being registered by the CLAS

detector. That means, even if the detectors record the trackperfectly, its angles most likely

would not be the same as the ones at the vertex. Since the vertex position is reconstructed

based on the angle information, the reconstructed vertex would also be shifted from the

real one by some amount (see Fig. 37).

This effect is common in all CLAS experiments and a simulation study (using GSIM

(see Sec. gsim)) ) on this issue was done by the collaboratorsof the CLAS EG1b and

EG1dvcs experiments [88]. The study indicated that tracks could be corrected for this

effect if there are multiple track in an event, with the corrections to the angles given by

simple parameterized formulas. These corrections are based on the assumption that the

real z-vertex of all the coincident particles in an event is close to the average z-vertex for
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FIG. 37. An exaggerated figure showing the effect of multiplescattering.

the event, and that the angles should be modified accordingly. The average z-vertex is

calculated as:

zave= 〈z〉= ∑zpart/z2
res

∑1/z2
res

(119)

where the sums are over all the well-identified charged particles from the event,zpart is the

z position of each of the particles (with all of the previous corrections applied), andzres is

the resolution in z which is given by

zres=
0.1
p⊥β

(120)

wherep⊥ is the transverse component of the 3-momentum given byp sinθ andβ is the

particle speed in the units of the speed of light.

After finding the weighted average of the z-vertex, all the particles from the event are

’forced’ to originate from that vertex and the angles are corrected as follows:

θtrue = θini − (z−zave)(Lθini +M/p) (121a)

φtrue= φini −q(z−zave)N/p (121b)
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where L, M, and N are the three more parameters to be determined from the fit (see Sec.

4.5.6).

4.5.5 OUTGOING IONIZATION LOSS CORRECTION

After all the previous corrections are made, the energy of each of the particles is calcu-

lated asE =
√

p2+m2
rest and a correction for ionization loss is added to it:Ecor = E+∆E

with ∆E = dE
dXτ where the factorτ is the total effective mass thickness traversed by the

particle and

dE/dX ≈ 2.8 MeV/(g cm−2) for electrons (122a)

and, for hadrons [89]

dE/dX ≈ 0.307× 0.5
β 2

(

ln

(

2.0×511.0
β 2γ2

0.090

)

−β 2
)

MeV (122b)

which is an approximation of the Bethe-Block formula [89]:

− 1
ρ

dE
dx

= 4πNar2
emec

2Z
A

1
β 2

(

ln

(

2mec2γ2β 2

I

)

−β 2
)

(123)

This quantity is calculated as follows:

• τ = τ‖/cosθ if θ <= π/4

• τ = τ‖/cos(π/4) if θ > π/4

whereτ‖ is calculated as:

• τ‖ = ∆z×0.6+0.4 if ∆z> 0.0 and∆z< 1.0

• τ‖ = 0.6+0.4 if ∆z≥ 1.0

• τ‖ = 0.4 if ∆z≤ 0.0

with ∆z= ztarget center− zave+Ltarget/2 = (−101.0 cm−zave+0.5) cm being the physi-

cal distance (along the target length) traveled by the particle through the polarized target

material (e.g. the EG4ND3 target has length 1.0 cm and is positioned at z = -101.0 cm).

The factor 0.6 is the effective mass thickness of ND3 (density of ND3 (∼ 1 g/cm3) multi-

plied by the packing fraction which is roughly 0.6 [65], whereas 0.4 is the sum of the mass

thicknesses of He (∼ 0.3) and that of window foils (∼ 0.1) [35].
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Using the ionization loss corrected energy and the rest massof the particle, momentum

is recalculated aspcor =
√

E2
cor−m2 (wherem is the mass of the particle). Finally, this

new p is used along with the previously corrected angles to evaluate the three cartesian

componentspx, py andpz of the momentum.

4.5.6 PROCEDURE TO DETERMINE THE PARAMETERS

As is clear from above sections, all together, there are 81 parameters to be determined

for the various corrections. These are:

• 11 parameters for 6th sector DC dependent momentum correction (corresponding to

Eqs. (110), (111), and (112))

• 60 (= 12×5) parameters for the same type of correction correspondingto other five

sectors (corresponding to Eqs. (110), (111) and (115)).

• one parameter for the z-vertex correction (corresponding to Eq. (118))

• 6 parameters for solenoid tilt and offset corrections (corresponding to Eqs. (116)

and (117))

• 3 parameters for the multiple-scattering correction (corresponding to Eq. (121))

Out of these, the first eleven parameters for the sector-6 correction are determined from

one procedure and the rest are determined from a different procedure.

Procedure to determine the first 11 parameters

The procedure involved dividing the covered kinematic space into a number of bins, find-

ing in them the magnitude of shifts of the inclusive elastic peaks w.r.t. the expected posi-

tion and use that to fit to a function to get an analytical expression for the correction. The

following angular bins were used:

• Six θdc1 bins: (0,8),(8,10),(10,12),(12,15),(15,20),(20,30) degrees

• Fiveφdc1 bins: (-10,-6),(-6,-2), (-2,2), (2,6), (6,10) degrees

where the angles used are the ones measured at the first drift chamber andφdc1 is measured

w.r.t the sector mid-plane (thus the maximum range allowed is (-30.0,30.0)).
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E′
elastic=

Ebeam

1+ 2Ebeam
Mp

sin2(θe/2)
(124)

In each of these kinematic bins, the quantity∆E =E′
elastic−p is histogrammed for both

NH3 and C12 data separately. Next, the carbon histogram is cross-normalized with the am-

monia histogram and subtracted from the latter one to removethe nuclear background.

The difference gives histogram for the elastic events (as shown by the dashed green his-

togram in Fig. 38. A Gaussian fit to the extracted elastic histogram gives the position and

width of the distribution. The offset or shift of average position of the peak with respect

to the expected∆E = 0 gives us the needed correction on energyE ≈ p for the electron.

This process is repeated for all of the bins listed above and the corresponding∆E offsets

or the corrections are determined for each of them. Finally,these values of corrections

for different average values ofθdc1 andφdc1 are used into Eq. 109 and then used in the

χ2-minimization based on four momentum conservation (as described below) in order to

determine the 11 fit parameters.

Procedure to determine the rest of the parameters

This procedure uses the technique ofχ2-minimization, where theχ2 is constructed from

the 4-momentum conservation requirement in exclusive reactions for which sufficient

statistics is available. Two types of events (from NH3 target runs) in which all parti-

cles in the final states are detected are chosen for this purpose, so that both higher and

lower momenta are covered. Fully reconstructed elastic events p(e,e′p) are used to cover

higher momenta and exclusivep(e,e′pπ+π−) events are used to cover lower momenta for

different types of hadrons. Theχ2 to be minimized is calculated as follows:

χ2 = χ2
p−miss+χ2

W +χ2
z +χ2

par (125a)

where,

χ2
p−miss= ∑

all events

(
E2(miss)+ p2

z(miss)

(0.020GeV)2 +
p2

x(miss)+ p2
y(miss)

(0.014GeV)2 ) (125b)

χ2
W = ∑

ep−events
(
(W−Mp)

2

(0.020GeV)2) (125c)

χ2
z = ∑

all particles

(
(zcor−zave)

2

z2
res

) (125d)
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FIG. 38. Plots showing background removal from the∆E counts from NH3 (shown

by “NH3” line) data (by subtracting cross-normalized counts from12C data (shown by

“12Cscaled” line)) to separate the elastic peak (shown by “NH3 - 12Cscaled” line) in one of

the kinematic bins, thereby getting the momentum offset forthat bin.

χ2
par = ∑

all parameters

(
par2

σ2
par

) (125e)

wherezcor andzaveare evaluated using Eq. 118 and 119 respectively after applying the DC

dependent corrections.

Event Selection

For all events, the usual fiducial, preliminary vertex and electron ID cuts are applied (see

later). Protons and pions are selected using time-of-flight(TOF) cuts, in addition to other

simple common cuts. Finally, cuts on all four components of missing 4-momenta are ap-

plied to exclude events where not all produced particles were detected or where there were

accidental co-incidences. These missing momentum cuts also serve to suppress nuclear
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background (from various sources such as from15N nuclei in the ammonia target, from

target windows etc.). The cuts used in the initial data skimming required that each of the

four missing components be less than 0.1 GeV. Later during the fit, tighter cuts (up to 0.03

GeV for the x- and y- components and up to 0.04 for z- and E- components) were used.

The cut onEmissalso serves to remove events where the radiative (internal or external) loss

in electron energy could be large enough to skew the momentumcorrections. For elastic

events, the three more cuts (on W,∆θ , and∆φ ) were applied.

After the desired sample of the two types of exclusive eventswere selected, raster

correction was applied to each of the particles from the sample, modifying/correcting the

z-vertex and the azimuthal angleφ by some degree. Then the sample was subjected to the

above mentionedχ2-minimization to optimize all the remaining free parameters for our

momentum and angle corrections.

Once the minimization were complete, all the unknown parameters were determined

and they were used to apply the corrections top andθ . For example, Figs. 39, 40 and

41 show the effects of corrections on various quantities in different type of events. We

can see that the corrections have not only shifted and improved the positions of various

distributions but also improved their resolutions (narrowed distributions relative to the

distributions before the corrections).
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FIG. 39. Effects of kinematic corrections on ep-elastic events. In the 6 panels the distribu-

tions of missing energy, missing momentum components (px, py, andpz), the difference

∆W =W−Mp and∆θ = θq−θp of ep-elastic events respectively. The distributions before

the corrections are shown byblack continuous lines and the ones after the corrections are

shown by thered dotted lines. Here,Mp is the proton mass in GeV. Likewise,θq and

θp are the expected and measured angles of the recoil proton (orthe exchanged virtual

photon) respectively.
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FIG. 40. Effects of kinematic corrections on ep2pi i.e.p(e,e′π+π−)X events. The four

panels show the distributions of missing energy, and the three components of missing

momenta for the events before (black) and after (red) the corrections.
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FIG. 41. Missing mass (minus the neutron mass) calculated before (black) and after (red)

the kinematic corrections of semi-inclusive events of typep(e,e′π+X) from four different

Eb run sets.



98

4.6 EVENT SELECTION CUTS

In CLAS electron-scattering experiments, the scattered electron defines the timing of

each event. In addition, in inclusive measurements, the scattered electron is the only parti-

cle to be detected and measured. So, it is particularly important to make sure that electrons

are well measured and properly identified and are not contaminated with other misidenti-

fied particles such as negative pions (π−) or lost by being misidentified as something else,

thus affecting the accurate measurement of cross sections.In particular,π−and electrons

give rather similar detector signals and, therefore, are difficult to discriminate in some

kinematic regions. In each event the electron candidate is the negative track that triggered

the event. The trigger condition is ensured by choosing the first entry in the event and

also requiring that the track has hit matches in CC, DC, EC andSC and is also time-based

(positive DC status word in DCPB).

All four layers of detectors are important in identifying electrons. For example, track-

ing by DC decides the charge of a candidate, SC records the time of flight, which is im-

portant in the time-matching criteria as mentioned below. The following list shows crite-

ria/cuts defining a good electron starting from a candidate electron.

In addition to the electron ID cuts, we also make further cutsto select only those events

that originated from the polarized target and also only those that were detected within the

fiducial region of the detector. In other words, one may divide the cuts into two categories

- electron ID (or good electron) cuts and good event cuts. Following are the cuts used to

selectgood electronsandgood events:

1. Good Electron Cuts

(a) Cut on Particle charge: q=-1

(b) Detector Status cuts:

i. DC status: dc>0; dc part>0

ii. SC status:sc>0; scpart>0

iii. EC status: ec>0; ecpart>0

iv. CC status: cc>0; cc part>0

(For simulated data, all of the above except those on CC variables are

used.)

(c) Electromagnetic Calorimeter Cuts(see Sec. 4.6.1)
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(d) Osipenko cutsCuts on CC angleθ , φ and time matching between CC and

other detectors. (see Sec. 4.6.2)

(e) Cut on Minimum Number of Photoelectrons (see Sec. 4.6.3)

2. Good Event Cuts

(a) Cut on Minimum number of particles detected and reconstructed in the

event: gpart>0

(b) Minimum/Maximum Momentum cuts (see Sec. 4.6.4)

(c) Sector cutdc sect = 6; ccsect = 6 (to select electrons from the sector where

the low momentum Cherenkov detector was installed)

(d) Scattering Vertex-Z cuts(see Sec. 4.6.5)

(e) Fiducial Cuts (see Sec. 4.6.6)

Data analysis method of this thesis relies on comparing the experimental data with a

data set produced from a Monte-Carlo simulation that was as realistic as possible. The

simulation process involves first the simulation of the physics process of inclusive electron

scattering, then simulation of the CLAS detector response when the scattered electrons

passed through it and finally reconstructing the events fromthe simulated detector re-

sponses using the same reconstruction software as used for the real data. So, we also have

to analyze the simulated data in the same way as the experimental data requiring similar

event selection cuts of their own. In the ideal situation, all cuts would be the same for

both types of data. But, despite our efforts, we could not make our simulation match with

our experimental data to the expected level - mainly due to some previously unseen issues

with the reconstruction software (RECSIS). So, some of the data selection cuts are defined

separately for the two cases and sometimes even for different Q2 bins (to make sure we

have the same fractions of events in corresponding kinematic bins for

4.6.1 ELECTROMAGNETIC CALORIMETER CUTS

The EC cuts basically consist of three different cuts applied together. One of these is

on the sampling fraction (which is the fraction of the energydeposited in the calorimeter),

another on the energy fraction deposited in the inner part ofthe calorimeter and the last is

based on the correlation between the inner and outer energies recorded by the calorimeter.
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Cuts on sampling fraction

While moving through the EC, charged pions are minimum ionizing particles in the mo-

mentum range detectable by CLAS. On the other hand, each electron deposits its total

energyEtot in the EC2 by producing electromagnetic showers (Etot ≈ p for electrons that

have high energies). Therefore, the sampling fractionEtot/p should be independent of the

momentum for electrons (in reality there is a slight dependence).
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FIG. 42. An example of the cut on the EC sampling fraction (2.0GeV data). The plots

shows the distribution of the sampling fraction (in Y-axis)plotted against the particle mo-

mentum (in X-axis). The brighter stripe above about 0.2 in the energy fraction are due to

the electrons whereas those below are the pions.

For the EC in CLAS, the electron sampling fraction is about 0.25 and pions give signals

that are mostly below 0.2 as is evident in Fig. 42 or others that follow. Therefore, usually a

2Because some of the deposited energy is in the lead part of theEC rather than the scintillator, only a

fraction of th electron energy is detected in the EC.
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universal lower cut of 0.2 is chosen to reject most of the pions without significantly losing

good electrons. In our experiment, with its low beam energy,even less pions are produced

and the electron peaks are even cleaner in lower kinematic bins as can be seen in the low

Q2 bins of Fig. 43. Therefore, in order to have fewer good electrons rejected, the sampling

fraction cut was relaxed to 0.15 for the first fourteen of ourQ2 bins and 0.2 was kept for

the higher bins.

In case of the corresponding simulation data, however, the cuts were not that simple

because the EC performance simulation does not match the experimentally observed data

well. As we can notice by comparing figures 43 and 44, the mean positions and widths

(represented by theσ of a Gaussian fit) of the sampling fraction in differentQ2 bins are

not exactly the same for data and simulation, which means that if we were to use the same

rigid cuts of 0.15 or 0.2, then we would have different fractions of events selected for

simulated compared to experimental data. To avoid this situation,Q2-bin dependent cuts

were determined for the simulation based on the Gaussian fit parameters of both data and

simulation as well as the above mentioned cuts used on the data. In a givenQ2 bin of

simulated data, the cut on the left side of the electron peak is chosen that is at the same

distance in terms of itsσ from its peak as the cut values 0.15 or 0.2 are from the peak in

the experimental data in terms of its ownσ . For example, suppose we are considering one

of the first fourteenQ2 bins, andµexp, σexp, µsim, andσsim are the Gaussian fit parameters

for the electron peaks in the experimental data and simulation respectively, then the cut on

the simulation would be equal toµsim− µexp−0.15
σexp

×σsim.

In short, only two numbers 0.15 and 0.2 define the cuts on the experimental data, but

the cuts for simulation data are all different, yet they are at the same relative distance

from the electron peaks as in the experimental data and, therefore, include about the same

fraction of good electrons.

Cuts onEin

Pions, which do not shower and are minimum ionizing particles in the momentum range

detected in CLAS, deposit only a (small) amount of energy in the inner part of the EC

independent of their momentum. WhenEin is histogrammed, the tiny pion signal peak at

about 0.03 clearly stands out from the huge electron sample with little overlap in between.

So, a universal cut ofEin=0.06 on both data and simulation (as shown by figures 45, 46

and 47) safely rejects most of the pions from the electron candidate sample.
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FIG. 43. TheQ2 dependent cuts on the EC sampling fraction for 2.0 GeV experimental

data. Events below the red lines are rejected.
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FIG. 44. TheQ2 dependent cuts on the EC sampling fraction for 2.0 GeV simulation data.

Events below the red lines are rejected.
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FIG. 45. Energy deposited (GeV) in the inner EC and the cut (red line) used to reject pions

(seen as a peak at about 0.03 GeV) from a sample of electron candidates of 2.0 GeV data.

Cuts onEout

In addition to the two EC-cuts above, one more cut based on thecorrelation between EC-

outer and EC-inner (as shown by fig. 48) was used which helps further to clean up the

electron sample.

4.6.2 OSIPENKO (CC GEOMETRY AND TIME MATCHING) CUTS

As discussed in chapter 3 the new EG4 dedicated CC is made up of11 modules each

consisting of a pair of mirrors and PMTs. The segments are placed along the CLAS polar

angle covering 15 to 45 degrees, i.e., the segments are at different polar angular positions.

During normal operation, the PMTs of these segments producenoise that is equivalent to

that produced by one photo-electron passing through it. As aresult, when a noise pulse in

the CC and a pion track measured by DC coincides within the trigger window of the CLAS

detector, the track gets registered as an electron candidate by the event reconstruction pro-

gram, thus contributing to the contamination of electron candidates with the misidentified

pion tracks. In fact, this turns out to be the biggest source of pion contamination. In

order to minimize such contamination and help better identify electrons from pions, CC
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FIG. 46. The EC-inner cut on a sample of 2.0 GeV experimental data in variousQ2 bins.
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FIG. 47. The EC-inner cut on a sample of 2.0 GeV simulation data in variousQ2 bins.
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FIG. 48. Energy detected in EC outer as a function of EC inner,both normalized with the

particle momentum, for the 2 GeV data. The brown line shows the EC cut to reject pions

(which fall below that line).

geometric and time matching cuts are applied.

The cuts in this category were worked out for this experimentby X. Zheng - one of the

collaborators of the experiment. Her work, in turn, was mostly based on a similar analysis

done for another CLAS experiment by M. Osipenko [90] in orderto study the CC response

and thereby develop a method to better discriminate electrons from pions.

The first requirement in the CC-matching is for the electron candidate track (as recon-

structed by DC) to have a corresponding signal in CC. In addition, the track needs to meet

several matching conditions to be acceptable as described in the next sections.
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CC θ Matching

As said above, the CC segments are at different average polarangle positions (between

15 and 45 degrees), so in principle, one can expect a one-to-one correspondence between

the polar angle of the track (as measured at the vertex) and the CC-segment. However,

the torus magnetic field bends the particles towards or away from the beamline, so it’s

more convenient to use the CC projected polar angleθpro j rather than the vertex angle

θ , whereθpro j is defined as the polar angle of the position vector defined by the point of

intersection of the track with the CC plane (another projected angleφpro j is the azimuthal

angle of the same vector). These projected angles can be uniquely calculated for each

track based on the DC signals of the track as well as the CC geometry information. To

simplify the later analysis process, these projected angles for each track were calcuated

during the final data reconstruction process and then saved in the output files just like the

all other information for the events and particles. Finally, for the actual electrons a one-

to-one correspondence betweenθpro j and the segment number can be established, which

discriminates against background noise and the accidentalpions (or any other negative

charge candidates). For each segment, theθpro j distribution is fitted with a gaussian to

determine its mean (µ) and width (σ ) and then saved for future use in cuts. These fit

parameters are then used during the data analysis to define these CC-θ -matching cuts.

The events that haveµ −3σ < θpro j < µ +3σ pass this cut, and the others are rejected as

not genuinely being electrons.

CC φ Matching

One can also have a one to one correspondence between the other CC-projected angle

φpro j and the left or right PMT in the corresponding CC-segment, because when the track

is on the right side of the CC, the right PMT should fire and viceversa. However, there are

some exceptional cases of events which fire both PMTs. That happens whenφpro j of the

track is less than 4 degrees (when measured relative to the sector mid-plane), in which case

the Cerenkov light hits both PMTs but with less efficiency (because the energy is shared

between the two).

CC Time Matching

The difference∆T between the track time recorded on a CC segment and the corresponding

time recorded on the TOF, corrected for the path length from the CC to the TOF, is used to
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define one of the time-matching cuts. Likewise, the time between CC and EC is also used

to define another cut.

4.6.3 CUT ON MINUMUM NUMBER OF PHOTOELECTRONS

The “nphe” variable in the data ntuple which represents the ADC signal from the CC

converted to “number of photoelectrons” and multiplied by 10 is also to discriminate elec-

trons from pions and electronic noise. The number of photoelectrons produced in CC by

an electron is typically between 5 and 25 or between 50 and 250in the units of nphe,

where the electronic background and negative pions producesignals equivalent to one

photo-electron (or 10 in nphe units) and so a cut is determined somewhere between these

two regions based on the shapes and sizes of the electron and pion peaks. In our case, we

chose to have the cut at nphe = 25 as depicted by the straight line in Fig. 49.

Nphe
Entries  420348
Mean      131
RMS      66.6

0 50 100 150 200 2500

500

1000

1500

2000

2500

3000

3500

4000

4500

Nphe
Entries  420348
Mean      131
RMS      66.6

nphe[cc[0]-1]

FIG. 49. The cut (the red straight line at 25) on the number of photo-electrons produced

in CC times 10 (from 2.0 GeV data). The signals below the red line are mostly pions and

noise and above the line are mostly electrons.
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4.6.4 MINIMUM/MAXIMUM MOMENTUM CUTS

A study [91] of the inclusive cross section at various beam energies in CLAS developed

a parametrization of the low momentum cutpmin as a function of the calorimeter low

trigger threshold (in milli-Volts)

pmin (MeV) = 214+2.47×ECthreshold(mV) (126)

The low threshold for EC-total energy for EG4 was 65 mV [92], so, the minimum

momentum cut was determined to be at:pmin = 0.37≈ 0.4 GeV. In addition, another

minimum cut ofpmin= 0.2∗Ebeamwas added, so the actual minimum cut amounted to the

larger of those two. Likewise, the momentum cannot be more than that of the beam energy

(in natural units), therefore, the upper cut on the momentumis: pmax= Ebeam.

Fig. 50 shows the momentum distribution of the electron candidates for the 2 GeV data

and the minimum and maximum cuts.
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FIG. 50. The maximumum and minimum momentum cuts (on 2.0 GeV ND3 data).
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4.6.5 VERTEX-Z CUTS

In the EG4 experiment, the ND3 polarized target was of 1 cm long and was placed at

(x= 0, y = 0, z = -100.93 cm) in the CLAS coordinate system. Since the beam electrons

have to go through a few foils before reaching the target as well as the detector, we want to

reject electron tracks with vertices outside the target volume. For this purpose, use a cut on

the reconstructed vertex co-ordinate “vz”. However the vertex resolution demands reson-

ably wide “vz” cuts so as not to loose too many good events. That is why the distribution

of “vz” was studied and based on the position and width of the distribution as well as our

knowledge of the location of various foils and target materials, the cuts on “vz” were de-

cided. It was seen (see Figs. 51 and 52) that the resolutions get worse and the distributions

get wider as we go to lowerQ2 values, so againQ2 dependent cuts were chosen for both

data and simulation with the cuts tightening asQ2increases.

As in the case of EC variables, the reconstructed “vz” distribution in the simulation

does not come out quite the same as in the experimental data . To have the same fraction

of events in the correspondingQ2 bins as in the experimental data, a separate set of cuts

(determined based on the distributions of both types of data) had to be used for simulation.

For this purpose, the Gaussian fit parametersµ andσ (representing the mean and standard

deviation) for all theQ2 bins were tabulated separately for both data and simulationand

separate sets of±3σ cuts were determined for all bins. For example, ifµq andσq were

the two Gaussian fit parameters for theqth Q2 bin of either data or simulation, then the

lower and upper cuts for “vz” for that data set in the givenQ2 bin would beµq−3σq and

µq+3σq respectively (as shown by the magenta vertical lines in Figs. 51 and 52.

4.6.6 FIDUCIAL CUTS

Similar to the cuts discussed so far, we also had to match the region of good efficiency

of the physical detector with the corresponding region fromthe simulation. For the experi-

mental and simulation data to be comparable, they must have the same detector acceptance.

Two event variables polar angle (θvtx) measured at the vertex and the azimuthal angleφDC1

measured at the drift chamber layer 1 are chosen to define the good efficiency regions of

the detector. The reason for the choice of the variableθvtx should be obvious because it is

directly related with the kinematic variablesQ2 andW used in the analysis. However, due

to the momentum dependent rotational effect of the magneticfield on the reconstructed
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FIG. 51. 2.0 GeV data showing theQ2 dependent vz-cuts (the magenta lines on the left

and right of the peaks) in some of theQ2 bins. The continuous black line represents events

before applying all the other event selection cuts (except on vz) and the thicker dotted red

line are the events after the cuts. The blue lines are the centers of the distributions, from

which the cuts are 3 timesσ away on each side, whereσ is the standard deviation for the

distribution in the givenQ2 bin (both the central value and theσ are determined during the

cut development studies).
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azimuthal angle (φvtx) at the vertex, the angleφDC1 is preferred overφvtx to define the fidu-

cial region because that allows the easy selection (rejection) of the events which passed

through and got detected by the more (less) reliable central(marginal) regions of the drift

chambers. After a careful and extensive study of the event distributions on both data and

simulation, we arrived at the fiducial cuts in terms of the twovariablesθvtx andφDC1 as

shown by the magenta lines in Fig. 54.

In addition, the data and simulation were also directly compared with each other by

taking the ratio of their distributions in a two dimensionalspace defined in terms of two

variablesθvtx and the torus current normalized inverse momentum (i.e.Itorus/(2250p).

In one case, the ratio was taken between the regular experimental data and the ”EC-only”

experimental data (with CC-signal not required in the eventtrigger) (see Fig. 55) and in the

other case, the ratio was of the experimental deuteron data (after background subtraction)

to the simulated deuteron data (see Fig. 56). From these comparisons, some of the regions

that showed big CC-inefficiencies or big discrepancies between data and simulation were

selected and removed from the fiducial region as indicated byvarious straight lines in the

two plots.
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FIG. 52.Q2 dependent vz-cuts on simulation data (similar to Fig. 51).
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FIG. 53. Distribution ofexperimental dataas a function of vertex angleθ and azimuthal

angleφDC1 as measured by the track position at the first drift chamber layer (angles in

degrees). The magenta lines indicate the fiducial cuts for accepting good electrons.
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FIG. 54. Distribution ofsimulated data as a function of vertex angleθ and azimuthal

angleφDC1 as measured by the track position at the first drift chamber layer (angles in

degrees). The magenta lines indicate the fiducial cuts for accepting good electrons.
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FIG. 55. Ratio of Regular to EC-only proton target data for 2.256 GeV beam energy show-

ing regions of varying CC-efficiencies in the 2D kinematic space defined by the scattering

angleθ along x-axis and the inverse momentum variableinvP= Itor/(2250p) along y-

axis.
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data to simulated deuteron data (for 2.0 GeV beam energy) as afunction of Itorus/2250p vs

θ at the vertex. The red and magenta lines indicate additionalexcluded regions.
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4.7 CERENKOV COUNTER (CC) EFFICIENCY

In the EG4 experiment, the Cherenkov Counter (CC) signal plays a major part in form-

ing the event trigger for the data-acquisition system (DAQ). As stated earlier (see 3.4.4),

for the purpose of achieving lowQ2 measurements with high detector efficiency3, a new

dedicated CC was designed and placed in the sixth sector. Even though the new CC was

designed to have a very high and uniform detection efficiency, some variation occurs over

the covered kinematic range and therefore the knowledge of the detector efficiency as a

function of the kinematics is required by our “method of absolute cross-section differ-

ence”. Therefore, a study was done to determine the CC efficiency as follows.

4.7.1 PROCEDURE

It is assumed that the efficiency for some specific kinematic bin depends on the average

number of photoelectrons produced by electrons in that bin which, in turn, is determined

by the hit location on the Cerenkov PMT-projected plane as well as the angle with which

the electron hits (or intersects) the plane. In the following, we describe how we determined

the efficiency as a function of kinematic variables.

1. First, we define a torus-current normalized inverse-momentum variableip=(Itor/2250)/p

(see above), and divide the whole kinematic space into 12 bins in “ip” as follows:

(0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.53). (For example, a 0.5

GeV electron during a 2 GeV run, which used 2250 A for torus current, would have

ip = 2.0 GeV−1)

2. Next, for each bin in “ip”, a 2D map of the average number of photoelectrons is

produced in a kinematic space defined byθvtx (scattering angle measured at the

event vertex) andφDC1 (azimuthal angle as measured at DC1). For this step, some

data from NH3 production runs4 are used with the standard electron selection cuts.

One of these average-nphe maps is shown in the Fig. 57.

3. Next, using the “EC-only-trigger” data runs, good electron candidates are selected

3High detection efficiency is crucial for achieving smaller systematic uncertainties in the extracted

physics quantities.
4This method relies on the use of two different sets of data. One is the regular NH3 target data and another

is the “EC-only” data runs which were collected without using CC in the trigger. Since the latter type of data

were collected with NH3 as target, to be consistent, NH3 production data was chosen rather than the ND3

ones to make theNph-maps.
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FIG. 57. Average photoelectron number (color-coded) produced in the 6th sector CC as a

function ofθvtx andφDC1 in the second bin of the variableip = (Itor/2250)/p (from the

2.3 GeV NH3 data).

using the same cuts as before but without any CC-related cuts. For each of the

selected electrons, the expected number of photoelectronsin the CC is determined

in a look-up from the above averageNph-maps based on its momentum and angles.

This expectedNph is then histogrammed in two ways - one histogram for those

electrons which either didn’t trigger CC or didn’t pass all of the CC related cuts

and another histogram for all electrons. The ratio of these two histograms (shown

in the top-right and top-left panels of Fig. 58 respectively) gives us the inefficiency

of the CC-detector as a function ofNph (as shown by the bottom two panels of the

same figure). (Errors in the inefficiencies have not been drawn (for the purpose of
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cleaning) in the figures but they were calculated using the fact that the error in a ratio

N2/N1 is
√

N2(1−N2/N1)/N1).

4. The ideally expected CC intrinsic inefficiency is given bythe Poisson distribution,

since we require more than 2 photoelectrons, the theoretical prediction for the inef-

ficiency is actually (1 +Nph + 1/2 N2
ph)*exp(-Nph). However, we found empirically

that if we calculateNph only with electrons that exceed the threshold of 2.5, then

we find that the functional form is pretty close to the formy= p0+ p1 ·exp(−p2x),

where x represents< Nph >, and y represents the inefficiency. This form was used

to fit with the above measured inefficiency and the result of the fit is shown in Fig.

58. We find that the inefficiency agrees very well with the expectation at low nphe,

but remains at a very small constant value of around 0.01 (we call it the “constant

background”) at higher nphe.

5. Finally we use the inefficiency fit just developed to evaluate the corresponding ef-

ficiencies and transform the 2D map ofNph into the corresponding efficiency maps

(see Fig. 59 for such a map in one momentum bin.). These maps are later used to

apply the efficiency correction on an event by event basis in the simulation.

From this study, we see that the CC is very efficient in most of the kinematic region (see

Fig. 59). Once, the CC-(in)efficiency was estimated, we use the calculated CC efficiency

to multiply our simulation (i.e., for each simulated event,we look up the CC efficiency

and weigh the event with it.
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FIG. 58. EC detected good electrons (for all momenta) as a function of < Nph > (top

left). Similar distribution (top right) for those good electrons that were detected by the EC

but were rejected by the standard set of event selection cutswhich includes CC-dependent

cuts. By dividing the latter with the former, one gets the calculated CC inefficiency. The

bottom two plots show the inefficiency distribution and a fit (red continuous line) in both

linear (in third panel) and logarithmic (fourth panel) scales. Looking at the first plot, it can

be seen that most electrons are aboveNph= 15 where the inefficiency is at most 1-2 %.
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4.8 PION CONTAMINATION CORRECTIONS

One of the two major sources of backgrounds in the measured EG4 electron rates

comes from misidentified negatively charged pions (π−) that produce similar set of signals

as electrons in various detector components and thus pass the electron ID cuts. In the EG4

experiment, signals from the electromagnetic calorimeter(EC) and Cherenkov counter

(CC) are used to discriminate electrons from pions, but evenwith stringent conditions on

these signals, some of the pions get misidentified as electrons. To avoid limiting statistics

too much in order to minimize the final statistical error in a given kinematic bin, a trade-

off in purity versus efficiency (statistics) is made by quantifying the amount of this kind of

contamination.

4.8.1 METHOD

First, the whole kinematic space covered by EG4 is divided into 90 two-dimensional

bins - 9 in p and 10 inθ5.

For each kinematic bin, a histogram of the number of photo-electrons (variable ‘Nphe’

in the data ntuple) produced by the electron candidates (selected using the standard particle

selection conditions (cuts) except that no cut on ‘Nphe’ is included is made (see Fig. 4.8.1).

Likewise, using a very stringent set of cuts, a similar histogram is made for the cleanest

possible sample of pion candidates in the same kinematic bin.

• Estimating the contamination in each bin:A 7th order polynomial is fit to theNphe

histogram for electrons in theNpherange extending fromNphe= 1.8 toNphe=10. The

fit is then extrapolated down toNphe= 0 (see Fig. 4.8.1). Subtracting the extrapolated

fit from the impure electron distribution results in the extraction of the contaminating

pion peak6. Rescaling the pure pion sample to the extracted peak gives us the distri-

bution of the actual pion contamination over the complete range ofNphe. Finally, the

5For 2 GeV or higher beam energy data sets, the p-bin boundaries are chosen as (0.30, 0.60, 0.90, 1.20,

1.50, 1.80, 2.20, 2.60, 3.00) and (0.30, 0.45, 0.60, 0.75, 0.9, 1.1, 1.4) for others. And, forθ , the boundaries

are (5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 15.0, 19.0, 25, 49).The choice of the binning was rather arbitrary.

Nevertheless higher statistics region was divided into relatively finer bins (event population peaks aroundθ=

10 degrees).
6BeyondNphe= 1.8, the electron sample is nearly pure except for a tiny fraction due to the pion tail, so any

function that fits that section of theNphe-distribution is supposed to represent the pure electron distribution.

In order to simplify the situation, we chose to fit only from 1.8 to 7.0 rather than covering the full range

beyond 7.0.
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counts corresponding to this rescaled pure sample in the region above the standard

cutNphe> 2.5 is calculated. Then the ratio of this count to the impure electron count

in the same standardNphe range gives the measured contamination for the bin.

• The contaminations thus evaluated for different momentum bins belonging to a par-

ticularθ -bin are then plotted against the corresponding momenta. Then, this is fit to

an exponential function.

• The parameters par1 and par2 of the exponential fit performedin different theta bins

are next graphed together to see the presumed linear dependence.

• Finally, a global fit is performed on all the contaminations in differentθ - and p- bins

(not on the fit parameters). The fit parameters from the earlier two fits only give

us a hint to the type of the dependence, thus allowing us decide the form of the fit

function.
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FIG. 60. Number of photo-electrons produced in CC by clean pion and contaminated

electron samples (3.0 GeV data)

From the study, it is found that the typically pion contamination is less than 1 %.
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FIG. 61. The top row plots show the calculation of pion contamination of electrons for the

given kinematic bins of 3.0 GeV data. The dotted black line indicated by the label “Raw

El” in the legends of each of the two plots are the contaminated electrons. Likewise, the

line labeled “El Fit” is a polynomial fit to the electron distribution (in this case fitted from

Nphe=1.8 to 7.0, but extrapolated down to Nphe=0). The line labeled “Unscaled Pi’ is the

pure pion distribution obtained with stringent set of cuts.“Raw El - Fit” is the difference

between the contaminated electron sample and the polynomial fit and finally “Scaled Pi”

is the pure pion-sample but after its scaled to match with the“Raw El - Fit” at the pion

peak position (around 1 Nphe). The bottom row plots show the fits of the contaminations

as a functions of momentum (p) in a givenθ bin.
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4.9e+e−-PAIR SYMMETRIC CONTAMINATION CORRECTIONS

The next major source of background is the secondary electrons from variouse+e−

pair production processes. When an electron originating from such a pair passes through

the detector, the detector has no way to distinguish it from the electrons that actually

scattered off the target. Therefore, the detector simply accepts it as a true scattered electron

candidate, thus producing a contamination that has to be estimated and corrected for. The

first such source is the wide-anglee+e− pair production from bremsstrahlung photons

generated in the target. The other major source is hadron decay such as the Dalitz decay

(π0→e+e−γ), π0→ γγ and then conversion of these photons intoe+e− pairs. Likewise,

the pseudoscalar particleη, and the vector mesonsρ , ω, φ also decay toe+e−, but they are

not major contributors because of their very small decay probabilities as well as the small

population compared to theπ0 and photons. Of all these sources, the biggest contributor

to the secondary electrons is theπ0→ γγ with γ conversion toe+e− [93].

The amount of contamination from this type of process can be estimated by monitor-

ing the amount of positrons that were recorded under the sameexperimental and kinematic

conditions. Because of the symmetry in the amount of electrons and positrons produced

from these sources, the positron to electron ratio gives us the amount of the pair-symmetric

contamination. However, due to the presence of the strong magnetic field inside the detec-

tor and the fact that the positrons have opposite charges, their detector acceptance would

be different in a given setting. By reversing the magnetic field while keeping everything

else the same, it is possible to estimate the contamination.For some of the beam energies

used for the NH3 data f the EG4 experiment, some data were collected with identical ex-

perimental setting but with the torus field reversed. The data from those runs were used to

estimate the amount of positrons in somewhat the same fashion as pion contamination. For

example, Fig. 62 shows one estimate (both data points and thefit) of the contamination in

EG4 compared with those determined for the EG1b experiment [35].

For this analysis, both the pion ande+e−pair symmetric contaminations are small

enough to be ignored. This leads to only a slight increase in the systematic error in the

final physics results.
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FIG. 62. Pair-symmetric contamination Fits (%) as a function of electron momentum.

4.10 STUDY OF NH3 CONTAMINATION OF EG4 ND 3 TARGET

In equation (102), it is assumed that the ammonia target is 100% pure i.e. composed

of only 15ND3 molecules and that the contribution from the slightly polarized nitrogen is

negligible. But, in practice, the standard ND3 sample is not a 100% pure material. Rather,

it contains one or two percent of14ND3 , 15NH3 [94], and some traces of other isotopic

species of ammonia. It was reported by the EG1-DVCS experiment at Jlab [95][96] that a

higher than usual amount of NH3 (about 10%) was observed in the ND3 target, indicating

that an inadvertent mix-up of NH3 and ND3 materials could have happened during the
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experimental run. Wondering if the EG4 experiment had a similar incident, we decided to

investigate and estimate the amount of NH3 contamination of our ND3 target by looking

at the data from the ND3 run period of the experiment as described below.

4.10.1 PROCEDURE

The method involves using ep elastic (or quasi-elastic in the case of non-proton target)

events and comparing the width in some quantity that reflectsthe correlation between the

scattered electron (e) and the recoiling proton (p) due to the kinematic constraints of such

events. The most suitable correlation is the one between thepolar angles of the electron

and the proton. That is because of the better angular resolution in CLAS than that for

momentum, and also due to the fact that polar angle (θ ) resolution is much better than that

of the azimuthal angle (φ ) because of the rotational effect (onφ ) of the polarized target

field as well as the drift chamber resolutions [95].

Theθ -correlation can be studied mainly in two ways. The first way is to reconstruct

and histogram the beam energy using the measured polar angles and the known target

mass and then compare the histogram from the ND3 target run with that from a pure

NH3 target run. The other equivalent way is to predict the protonpolar angles (using the

measured electron angles, known target mass and the beam energy) and then histogram

the deviation of the measured proton angles from the expected values. We chose to use

a slightly modified version of the latter approach in which wehistogram the following

quantity7:

∆ = pp · (sinθq−sinθp) (127)

wherepp is the measured proton momentum,θ p is the measured polar angle of the proton,

andθq is the expected polar angle of the recoiling proton (which isalso the angle of the

exchanged virtual photon (q)) given by:

θq = tan−1
(

Mp

tan(θ/2) · (Ebeam+Mp)

)

(128)

The method exploits the fact that the width of the quantity∆ from data with deuteron

target decreases because the Fermi motion of the protons in the deuteron nuclei gives

a spread of the order of 50 MeV in transverse momentum, and forlongitudinal particle

momenta of order of a few GeV, we obtain a polar angle spread about 20 mr, which is

much larger than the intrinsic CLAS resolution of about 2 mr.

7We chose this quantity∆ rather than the simple angle difference (θ q-θ p) because the former is more

directly interpretable in terms of transverse missing momentum for the case of quasi-elastic scattering.
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4.10.2 EVENT SELECTION

First, for each data set (corresponding either to NH3, ND3 or 12C runs), using stan-

dard electron and proton identification cuts events each with a well reconstructed scattered

electron and a similarly well reconstructed candidate for proton are selected. We accept

only events each of which have one electron, one proton and atmost one neutral particle

candidate (expected to be a neutron coming off from the deuteron target break-up). If the

event is one of the above two types, following additional cuts are applied to make sure it

is elastic or quasi-elastic event:

• EX < 0.15 GeV withEX = Mp+Ee−Ee′ −Ep = Mp+ν −Ep

• PX < 0.5 GeV/c with~PX =~0p+~Pe−~Pe′ −~Pp′ = ~Pe−~Pe′ −~Pp′

• 0.88GeV< MX < 1.04GeV

• θq < 49.0◦

• ||φe−φp|−180.0◦|< 2.0◦

where X indicates the missing entity in the d(e,e’p)X channel, which is expected to be

neutron in the case of the quasi-elastic channel, thusEX is the missing energy and so on.

If it passes these cuts, the quantity∆ is calculated for the event and then histogrammed

as shown by the red curves in the top-left (from12C runs), top-right (from NH3 runs), and

bottom-right (from ND3 runs) panels of Fig. 63.

After getting the histograms for the quantity∆ for the ep-elastic or quasi-elastic events

from the NH3, ND3 and12C target data sets, we first remove the contribution from the non-

hydrogen component of NH3 and ND3 targets by subtracting the corresponding carbon

histogram (properly scaled to match with the shoulders fromthe background in each of

the ammonia data). Since the carbon data is too low in counts (hence the raggedness in

the histogram), a fit (a ’gaussian’ times a ’linear’ function) to the carbon data is obtained,

and that fit (shown as the blue line in the first panel in Fig. 63 is used instead of the

histogram itself to remove the background. The blue line in the second (top-right) panel

and the cyan line in the last (bottom-right) panel show the properly scaled carbon fits

which are subtracted from the NH3 and ND3 histograms (shown by red lines) respectively.

After the subtraction, we get new histograms that represent’pure’ elastic or quasi-elastic

data from protons and deuterons (shown by the magenta lines in the third and last panels

respectively).
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4.10.3 EXTRACTING THE CONTAMINATION

After we have the ’pure’ elastic or quasi-elastic data from NH3 and ND3 runs, we get

the mean and the spread (standard deviationσ ) of the proton elastic peak by fitting the

NH3 data to a Gaussian functionfp(x) (the blue line in the third panel with parameters

p0=height, p1=mean and p2=σ ). After we have the fit for the proton elastic peak, we fit

the background subtracted deuteron data to a function f(x) that is a linear combination of

the pure proton fit and a pure deuteron fit (the latter with the form ofa quadratic function

× a Gaussian8) as follows:

f (x) = p0 · fp(x)+(p1+ p2 ·x+ p3 ·x2) ·e−0.5·
(

x−p4
p5

)2

(129)

wherepi (i = 0, 2, .. , 5) are the free parameters which are determined by fitting of f(x)

to the deuteron data. The first termp0 · fp(x) in f(x) represents the contribution from the

contaminant (i.e., protons in ND3) and the rest of the term in f(x) represents the contribu-

tion from the deuterons in ND3. The total fit function f(x), the proton contribution and the

deuteron part are shown by the blue, green and black lines in the fourth panel. The ratio of

the area under the green line to that under the blue line givesus the relative amount of the

NH3 contamination in the ND3 target.

4.10.4 RESULTS AND CONCLUSION

From the calculation as described above, the estimate for the ND3 contamination came

out to be 4.4% It was not possible to do a similar analysis on the 1.3 GeV ND3 data,

because the CLAS acceptance constraints did not allow for the coincident detection of e

and p from the exclusive (quasi-)elastic events. The basic conclusion is that at 2 GeV, we

cannot get a ’pure’ Gaussian spectrum for deuteron, and therefore, there is no way to un-

ambiguously separate deuteron from proton in ND3. The fact that the fit looks reasonably

well (with contamination coming out to be only a few percent)and that we clearly do not

see a narrow peak on top of a wider one (unlike in EG1-DVCS) should be sufficient to

ascertain that EG4 did NOT have the same contamination problem as EG1-DVCS (which

still has not been explained yet) [67]. To accommodate the fact that the contamination

measurement is not reliably unambiguous, we will assume a rather generous systematic

error due to the contamination.

8A pure Gaussian and other forms for the deuteron spectrum were tried but the overall fit was not as good.
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FIG. 63. Histograms showing the quantity∆ = pp · (sinθq− sinθp) for elastic or quasi-
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runs respectively. The third (bottom-left) panel shows thebackground removed elastic

events from the NH3 data. In the fourth panel, various∆ are shown - red is the raw

ND3, light green is the scaled-12C for the nuclear background, brown is for the difference

between the two.



133

4.11 SIMULATION AND APPROACH TO ANALYSIS

The EG4 data consist of a table numbers of electrons reconstructed within various

(W,Q2) bins that are scattered off polarized hydrogen (NH3) or deuteron (ND3), divided by

the (life-time gated) integrated charge, for two differentcombinations of target polarization

and beam helicity:

n± = N±/FC±, (130)

where “+” refers to beam helicity and target polarization anti-parallel, while “−” refers to

the parallel case. The difference between these two normalized counts is given by

∆n(W,Q2) = n+(W,Q2)−n−(W,Q2) = Lr ·PbPt ·∆σ(W,Q2) ·AccE f f(W,Q2)+Bg

(131)

where the “relative luminosity”Lr is a constant factor containing the density of polarized

target nuclei per unit area and the conversion factor from Faraday cup counts to integrated

number of electrons incident on the target;Pb andPt are the beam and target polarization,

Acc and E f f are the geometric acceptance and detection efficiency of CLAS for elec-

trons within the kinematic bin in question (including cuts and trigger efficiency), and the

backgroundBg comes from several sources, including pions misidentified as electrons,

electrons frome+e− pair production, and electrons scattered off (partially) polarized tar-

get nucleons and nuclei that are not the intended species (e.g., bound protons in15N, free

proton contamination in nominal ND3 targets, and bound proton-neutron pairs in any14N

contamination present)9.

Our main goal is to extract the spin structure functiong1 and calculate its moments.

The cross section difference∆σ(W,Q2) on the right side of the above equation is what con-

tains the information ong1(W,Q2) along with various other contributions.10 This means

we can, in principle, calculate the cross section (and then use that to extractg1), from the

background corrected measured quantity∆n(W,Q2) by putting in the values for all the rest

of the quantities involved in Eq. 131. But, in reality, having an accurate knowledge ofAcc

andE f f is challenging and the available measurements of polarizations and luminosities

are not reliable enough. So, experimenters usually resort to Monte-Carlo simulation to

9While this background is a small correction for hydrogen targets, in the case of deuteron targets, it must

be corrected for (see Sec. 4.16.1).
10∆σ(W,Q2) also has contributions from the unmeasuredg2 or, equivalently, from the productA2F1.

Moreover, the cross section receives modifications and tails from radiative effects (both internal and external

radiation) and kinematic resolution smearing.
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determine some or all of those factors that are involved in the relation between the counts

and cross-section differences.

A standard way to extract the sought-after Physics quantities from these kinds of mea-

surements proceeds along the following steps [97]:

1. Use a full simulation of CLAS with a “realistic” event generator, detector simulation

and event reconstruction including cuts to obtain the product AccE f f as the ratio of

events reconstructed in a particular bin, divided by eventsthrown in that same bin.

2. Extract the productLr ·PbPt from the ratio of the acceptance and efficiency corrected

∆n in the (quasi-)elastic region (0.9<W < 1.0) to the well-known theoretical cross

section difference for elastic (or quasi-elastic) scattering off the proton (deuteron).

3. Estimate and correct forBg.

4. Apply radiative corrections, which use a model of the unradiated Born cross section

and a calculation of the radiated cross section based on programs like RCSLACPOL

(see below). There is some ambiguity in how to apply these corrections; e.g., one

can attempt to separate the effect of the (quasi-)elastic (or other) tail which should be

simply subtracted from the measured cross section difference, and a multiplicative

factor that accounts for vertex corrections and all other effects not accounted for in

the tail. In practice, one has to repeat the calculation of these radiative corrections

several times with different model input and assumptions about the target, to assess

systematic uncertainties.

5. Express the extracted Born cross section difference in terms of the desired quantity

(here:g1) and additional input (e.g.,A2F1). Use a model for the latter to extractg1

only. Vary the model (concurrently with the model input to the previous step) to

assess systematic uncertainties.

One conceivable problem with this approach lies in the first step, and in particular with

the choice of the “realistic event generator”. This choice would not matter at all if two

conditions are fulfilled [97]:

1. The kinematic bins are chosen so small that the variation of the cross section over

the bin (and/or the corresponding variation of the acceptance times efficiency) do not

lead to any significant deviations for theaverage AccE f fbetween the simulation

and the real detector.
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2. The counts reconstructed within any one bin are directly proportional to the number

of initial electrons generated within thatsamebin (the proportionality constant being

AccE f f), without any “bin migration” from other kinematic bins. (Otherwise, the

ratio reconstructed/generated depends on those “migration tails”, and the simulation

will give different results from the “true value” if the overall cross section model of

the generator is not accurate enough.)

Unfortunately, assumption 1 tends to directly contradict assumption 2 because 1 favors

small bins and 2 favors large bins! For most precision experiments , bin migration effects

are significant. This is aggravated by the difficulty of making a clean separation between

bin migration due to detector resolution alone and the contribution from radiative effects.

For instance, GEANT and therefore GSIM includes (at least bydefault) photon radiation as

part of the simulation of outgoing electron tracks throughout the gas and building materials

of all detectors. It is very important not to “double count” when simulating an experiment;

the radiative calculations in step 4 above should not include any “after” radiation beyond

the limit of the target itself (which, in turn, should thenNOT be included in the GSIM

simulation as material to be traversed).

This is a problem for all CLAS experiments attempting to extract absolute cross sec-

tions (or, here, cross section differences); however, the problem is magnified for our case:

Since the cross section difference itself is not required tobe positive, one can have both

positive and negative tails migrating into adjacent bins. In any case, it is clear that using

the average,unpolarized cross section as a model for the generator is not really appropri-

ate (unless one is confident that the asymmetry is fairly constant or slowly-varying – not

a good assumption in the resonance region where the∆(1232) with negative asymmetry is

adjacent to the S11 with positive asymmetry). Using a (hopefully realistic) model of the

cross section difference instead would be much better, but this causes two new problems

[97]:

1. Prima facie it is unclear how to simulate a negative cross section (difference). This

problem can be circumvented fairly easily (see below), albeit at extra cost in terms

of simulation effort.

2. It obviously becomes impossible to extractAccE f f from a simple ratio of recon-

structed divided by generated events; both of these quantities could be positive, neg-

ative (even different sign under extreme circumstances), or - particularly bad for the

denominator - zero. From this discussion, it is also clear that such a ratio would
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depend very sensitively on the cross section model and bin migration tails and be a

very poor indicator of the actual productAccE f f.

For this reason, we decided to try a different approach outlined in the following. The

basic idea is to study the dependence of the reconstructed count difference on the model

input (in particularg1) directly through the whole chain of simulation and reconstruction,

and then use tables of Born and radiated cross section differences for various model inputs

as estimates of systematic uncertainties11.

4.11.1 OUTLINE OF THE METHOD

The basic idea is the following: If we already had a perfect model of g1 and all other

ingredients that go into∆n (including a perfect simulation of CLAS), a simulation of∆n

would agree 100% with the data (within statistical errors).Any (larger than statistical)

deviation between such a simulation of∆n and the data can only be due to the following

possible sources:

1. The model forg1 must be adjusted to reflect the “true”g1. This is the default as-

sumption which we will use to extractg1 from the data. This will be done by finding

the proportionality factor betweensmallchanges ing1 and the reconstructed∆n and

then adjustingg1 to fully account for the observed∆n.

2. There could be a systematic error on this proportionalityfactor (which, after all, will

come from simulation); for instance, there could be systematic deviations from the

simulated results for acceptance and efficiency (in particular efficiencies of the CC,

EC, or tracking, that are not perfectly simulated by GSIM). This is a multiplicative

uncertainty that must be carefully estimated and applied tothe final data.

3. Any imperfect simulation of the “background” due to all events not originating in

the bin in question (migration, radiation), or due to undesired target components (hy-

drogen, bound polarized nucleons in nitrogen), or from misidentified pions ore+e−

pairs, or due to contributions to∆σ from A2 can lead to an additive systematic devia-

tion that would then be misinterpreted as a change ing1. This systematic uncertainty

must be studied by varying model inputs, parameters etc. in the simulation.

11We developed this method for the case of an ND3 target; however, it could, of course, easily be adopted

to NH3, as well
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4.12 RADIATIVE CORRECTIONS

The physics quantities that we seek to extract from measurements are theoretically de-

fined or interpreted and calculated in terms of the cross-section of the so called “Born”

scattering process, which is represented by the simplest possible Feynman diagram i.e.,

by the lowest order approximation of a single photon exchange process. However, the

measured cross-sections also contain contributions from higher order electromagnetic pro-

cesses, which must be accounted for before extracting the quantities of our interest. These

additional contributions are grouped into two categories -internal and external radiative

corrections.

The internal corrections are the contributions from the higher order QED processes

(higher order Feynmann diagrams) which occur during the interaction. These include the

correction for the internal Bremsstrahlung (i.e., the emission of a real photon while a vir-

tual photon is being exchanged with the target) by the incoming or the scattered electron),

the vertex correction (in which a photon is exchanged between the incoming and the scat-

tered electron), and the correction for the vacuum polarization of the exchanged virual

photon (e+e− loops).

External corrections include those that account for the energy loss (mainly by the

Bremsstrahlung process) of electrons well before or after the interaction while passing

through the target material and the detector.

If the beam electron radiates a photon before the scattering, the kinematics of the ac-

tual process will be different from the the one calculated with the nominal beam energy.

Likewise, if the radiation occurs after the scattering, theactual energy and momentum of

the scattered electron will be different from what is calculated normally (i.e., without any

radiation). The effect can be quite large for elastic scattering.

4.13 “STANDARD” SIMULATION

The simulation process consists of mainly three parts - generating events similar to

the ones as produced in the double polarization scattering process, simulating the CLAS

detector response, and finally the event reconstruction from the simulated detector signals.

The first part is accomplished by using a program that is made by combining the es-

sential elements of an updated version of the “RCSLACPOL” program (for cross section

generation) and some parts of the “STEG” event generator (see sections 4.13.1 and 4.13.2).
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The second part is done by two standard CLAS software packages running in succession

- “GSIM” and “GPP”(see sections 4.13.3 and 4.13.4). And, finally, the standard CLAS

package “RECSIS” is used to reconstruct the events in the same way as for the real data.

4.13.1 RCSLACPOL

The simulation for the standard model cross sections proceeds as follows. We use

the code “RCSLACPOL” [98] that can generate polarized and unpolarized cross sections

(both Born and radiated) based on the approach by Shumeiko and Kuhto [99] as well as Mo

and Tsai [100], including external radiation in the target.This code has been extensively

tested and used for the analysis of SLAC experiments E142, E143, E154, E155 and E155x

as well as Jefferson Lab experiments like EG1a and EG1b. It has been updated with

the most recent models on polarized and unpolarized structure functions (F1,F2,A1 and

A2) [101, 98, 102, 103] and an implementation of the folding algorithm developed by W.

Melnitchouk and Y. Kahn [58] for structure functions of the deuteron. The models have

been fitted to and tested with data from EG1b as well as world data on bothA1 andA2 over

a wide range ofQ2 andW, including the resonance region and the DIS region.

For EG4, we have “married” the “RCSLACPOL” code with that of the event generator

“STEG”. This generator uses a grid of (radiated) cross sections generated by our modified

version of RCSLACPOL to generate events that are distributed according to these cross

sections (i.e., the number of events generated in a given binis proportional to the cross

section integrated over this bin).

4.13.2 EVENT GENERATOR

The concept and some part of the generator skeleton was inherited from the STEG

(SimplesT Event Generator) program obtained from INFN, in Genova, Italy. The old

event sampling part (which made the program run extremely slow) of the code was re-

placed by a new one developed by myself which made the event generation process much

faster. The cross section calculating part was replaced by codes from an updated version

of RCSLACPOL (see Sec. 4.13.1).

The generator works in two stages. In the first stage, it generates two two-dimensional

maps or tables of radiated inclusive polarized cross differences (for the scattering of po-

larized electrons from a longitudinally polarized deuteron target, by using RCSLACPOL)

in various kinematic bins encompassing the kinematic region covered by EG4 data. These
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cross section maps (and the corresponding events later on) were generated in the follow-

ing angular and momentum ranges: 5.0-45.0 degrees forθ , 250.0-325.0 degrees forφ (to

ensure the CLAS 6th sector is completely covered) and (0.2,Ebeam) GeV for the momenta,

where the beam energyEbeam took values of 1.337 and 1.993 GeV, corresponding to the

two ND3 data sets of EG4. In our case, the map was created by dividing the kinematic

phase space into a grid of small rectangles and then calculating the differential cross-

section at the geometric center of each of those squares (such as ABCD in Fig. 64). For our

application, we need to generate two such maps (because of the impossibility of generating

events according to negative cross-sections) and run the program twice - once correspond-

ing to positive polarization and the next for the negative one. For all bins in which the

integrated cross section∆σ ≥ 0, we fill the first table (“positive map”) which is therefore

positive-definite. For all bins in which this cross section is below 0, we fill a second table

(“negative map”) , but with the absolute (i.e. negative) value of this cross section.

In the second stage, events are thrown according to the crosssection maps produced in

the first stage. The events are given the vertex coordinates that are uniformly distributed

over the volume of a 1 cm long cylinder with radius 0.01 cm around the beam line - with

the center of this volume being at the EG4 target position of (0,0,-100.93 cm). Nearly

equal numbers of events are generated for each polarization, they are finally normalized

according to their total cross sections (integrals of the corresponding maps).

The kinematic and other information (positions, momenta, charge) of these generated

events are recorded and saved in the BOS format12 output files which organizes data into

banks. In our case, HEAD, MCEV, MCTK, and MCVX banks are used for the generator

output. The generator is also capable of producing output inthe hbook format which

makes it possible to study the Monte Carlo data using PAW (or ROOT because the h2root

program easily converts “hbook” files into “root” files).

4.13.3 GSIM - CLAS DETECTOR SIMULATION

The Monte Carlo events thus generated are next fed into GSIM -the CLAS Monte

Carlo simulation program using GEANT 3.21 libraries from CERN [104]. It simulates

the CLAS detector response by implementing a complete modelof the detector as well

as the propagation of particles through different materials including all physics processes,

such as multiple scattering, energy loss, pair production,and nuclear interactions. The

12Existing versions of GSIM, GPP and RECSIS accept only BOS format for input files.
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FIG. 64. Corners of a typical bin highlighted in the kinematic space covered by the event

generator.

program takes the input event particles and then, based on their types, momenta and po-

sitions, “swims” (traces) them through all volumes of different materials that are defined

using various library routines and the detector parameters. Charged particles are also sub-

jected to the effects of the torus and target magnetic fields of the same strength as in the

actual experiment (for this the same field maps are used as in the track reconstruction

process using RECSIS). All the ingredients of the program (field maps, active detection

volumes, passive volumes of detector support structures etc) are modeled as accurately as

possible with the help of engineering designs and actual detector measurements. Special

subroutines corresponding to various active parts of the detector produce outputs resem-

bling the real detector signals which can then be reconstructed and analyzed just as the real

experimental data [77][105]. GSIM is configured to match with the conditions of a given

experiment by giving it proper values of input parameters via a command line input file

which contains various “ffread cards” some of which are listed in table-2 along with their

values that were used in our simulation.

4.13.4 GSIM POST PROCESSOR (GPP)

The GSIM output is next passed onto GPP - another standard CLAS software package
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- to process the simulated data further so that the detector response is accounted for more

accurately. This package improves the response by smearingthe detector signals and re-

moving them if there are dead regions (determined by querying a data base which in turn

is made by looking at the raw data of the experiment).

A lot of known, unknown, quantified, and unquantified factorssuch as temperature,

alignment, dead channels, electronic malfunction etc affect the performance of the CLAS

detector. But, GSIM does not include all these effects and, hence, the efficiency of the

detector is always less than what the simulation provides us. To make the simulation more

realistic by taking into account some of those effects, another CLAS software called GSIM

Post Processor (GPP) is used to process the GSIM output. The GPP can change the DC,

SC, CC and EC signals produced in the simulation. The DC signals can be changed by (a)

accounting for the dead wires according to the calibration database, (b) shifting the DOCA

mean value, and (3) smearing the hit signals according to theresolution determined by the

calibration database or according to the command line input. Likewise, SC signals can be

changed with a parameter input for smearing the time resolution. And, for the CC and EC

signals, the GPP can use the hardware thresholds[106].

As the experimental conditions and detector configurationscan change from one ex-

periment to another, in order to run the GPP, we must have our own experiment specific

calibration constants and parameters such as the run number(R), the DC smearing scale

values for regions 1, 2 and 3 (a, b, c) and the SC smearing scalevalue (f). Even for a

given experiment, these constants and parameters are determined to be different for differ-

ent data sets (corresponding to a given beam energy, for example). The value for R can

be any run number belonging to a specific data set. This numberis used to identify the

entry of the calibration constants in the database that corresponds to the given data set.

In order to simplify the job, we decided to use the timing resolutions determined by the

calibration database assuming that they are good enough andneed only to determine new

values for the DC smearing. To further simplify the job, we assumed that the three DC

Regions had identical resolutions, so the DC smear parameters a, b, and c would have the

same values, and the common DC-smear value is what is determined from the procedure

described below.

In order to determine the DC-smear, we generated a statistically significant number

(about half million) of elastic-electron events distributed according to the elastic cross

section and then ran them through GSIM, GPP and RECSIS. The pure proton target events,
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turning off the radiative effects are generated using the existing STEG event generator.

The simulated elastic events are then fed into GSIM, GPP and RECSIS, with GSIM

and RECSIS used in the same configuration as when processing the CLAS data during

the “pass-1” phase, and GPP run with different values of DC-smear scales as inputs. The

reconstructed data coming out of RECSIS corresponding to a given value of DC-smear is

then histogrammed in∆E again and fitted to a Gaussian to get itsσ (characterizing width)

of and mean (characterizing position). As we can see in figures 4.65(a) and 4.65(b), the

width of the elastic peak increases with the DC-smear but theposition stays more or less

the same as expected. In fact, when the two are plotted against DC-smear (as in figures

4.66(a) and 4.66(b)) the width shows a linear dependance.
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FIG. 65.∆E of 2.3 GeV simulated elastic-only proton-target events passing through GSIM,

GPP (with two different Dc-smear scales), and RECSIS.

4.13.5 FINDING THE WIDTH OF THE REAL CLAS DATA ELASTIC PEAK.

With the knowledge of the DC-smear dependence of energy resolution (Fig. 4.66(a)),

if we also know the resolution in the real data, we can determine the right value of DC-

smear which would make make the resolution in the simulationcomparable with that in

the real data. So, the next step is to find the resolution in thereal CLAS data, which

is done again by measuring the width of the elastic peak in thereal data. But, because
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FIG. 66. Graphs showing the dependence of width and position(obtained from the Gaus-

sian fits as shown in the fig (4.13.4) of the elastic peaks on theDC-smear applied to GPP.

the real data is a very complex mixture of events coming from various reaction channels,

we must first have a way to separate the elastic data from the rest. One method entails

histogramming∆E from both the NH3 and 12C target data (for a given beam energy)

and subtracting the latter (after the cross-normalization) from the former (as in fig (67)) to

effectively remove the contribution from nitrogen component of the NH3 target leaving the

contribution coming only (mostly) from the proton component. Another method consists

of using only the NH3 data but this time calculating the helicity dependent cross-section

difference in the elastic region Fig. (68). In the latter method, the difference removes

the contribution from the unpolarized nuclear background because they have the same

contribution to the opposite helicity state cross-sections. After the elastic data is separated,

its ∆E distribution is fitted to a Gaussian as with the simulation data and we arrive at the

experimental energy resolution.

Using the first of the two methods mentioned above, the real data resolutions were

evaluated for three different polar angle (θ ) cuts - allθ (in fact θ ≥ 7o), θ > 15o, and

θ > 20o. The dependence of these experimental resolutions on the beam energy for these

cases are shown together in the Fig. 69, along with the resolution for the case “allθ ”, but

determined from the cross-section difference method. Likewise, as described above, the

DC-smear dependence of the simulated resolution were determined separately for all these

three cases of angle cuts, so that we could compare the experimental resolutions with the
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FIG. 67. Histograms illustrating the extraction of elasticpeak for 2.3 GeV by using carbon-

12 data for background removal from the total-cross section(all good electrons withθ > 7

used).

simulations correspondingly. One such comparison is illustrated in the figure 70, where

we show resolutions evaluated for the case of “allθ ” - first two for the experimental data

and the rest for the simulated data.

Looking at Fig. 69, it is obvious that the resolution isθ -dependent as expected. When

the experimental and simulated resolutions are compared for the three different cases of

θ cuts, we realize that the GPP asks for theθ dependent DC-smearing, which makes

the simulation work very complicated with the current version of GPP. To simplify the

situation, we decide to have a global (θ independent) value of DC-smearing (for a given

beam energy) by comparing the experimental and simulated resolutions corresponding to

the case of “allθ ” cut. That should be good enough for practical purposes. By taking

into account the fact that there seems to be an inherent uncertainty in the measurement of



145

dE_hel0
Entries  486101

-0.2 0 0.2 0.4 0.6 0.8

0

10000

20000

30000

40000

50000

60000

70000

dE_hel0
Entries  486101

 for helicity-0mes - EexpE = E∆ xsDifcomb
Entries  160

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0

10000

20000

30000

40000

50000

60000

70000

xsDifcomb
Entries  160

Fit: Mean = 0.001785
     Sigma = 0.006070

combined XS-diff near elastic peak

FIG. 68. Plots showing the cross-section difference for 2.3GeV NH3 target data with the

right one zoomed in around the elastic region (all good electrons withθ > 7 used).

the resolutions (evident from the discrepancy of the experimental resolutions determined

from the two different methods) and comparing the experimental and simulated results,

the values as listed in Table. 1 are chosen for the DC-smearing scales for the GPP.
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FIG. 69. Graphs showing the dependence of width (σ ) of the elastic peaks (from experi-

mental data) on the beam energy (GeV).
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TABLE 1. DC-smearing scales determined for different beam energies.

Ebeam(GeV) 1.054 1.339 1.989 2.256 2.999

DC-smear 2.6 2.0 2.0 2.0 1.7

4.14 COMPARISON OF DATA AND SIMULATION

Using our final values for the smear parameters, the simulated data were passed through

GPP and then reconstructed with RECSIS. Finally, all applicable cuts and corrections were

applied to both sets of polarized simulation data. Because the CC was turned of in GSIM

for the simulation, all experimental data cuts except thosedepending on CC were applied

to the simulated data. However, the cuts were modified (see Sec. 4.6) to account for

differences between simulation and data.

In the end, we had two sets of simulated events (for the two cases of ∆σ ≥ 0 and

∆σ < 0) in each kinematic bin. The number of these two type of events in each bin were

then cross-normalized with respect to each other by their respective cross-section map

integrals and the number of generated Monte-Carlo events and then combined to make

the simulated polarized count difference∆n. To do that, the number of simulated event

counts in a kinematic bin corresponding to the positive polarization was kept unchanged

but the one corresponding to the negative polarization was multiplied with the following

normalization factor:

norm− =
σ−

tot

σ+
tot

× N+

N− (132)

whereσ+/−
tot andN+/− are the total integral of the cross section map and the corresponding

number of Monte-Carlo events generated for each of the polarization cases (+/-).

The next step was to properly cross-normalize the simulatedevents to the data, as

outlined in the introduction. For this, we found the scale factor SF necessary to have the

same∆n in the quasi-elastic region (e.g., 0.9≤W ≤ 1.0). This factor represents the ratio

SF=
n+−n−

∆n(simul)
(133)

since we assume that the simulation for the cross section difference in this region is reliable

and all other factors are common to the simulation and the data. In fact, we chose oneQ2

bin (the 20th one - for which the agreement between the data and simulationwas among
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FIG. 71. Comparison (in differentQ2 bins) of polarized count differences from 1.3 GeV

experimental (red points with error bars) and two versions of normalized simulation data.

The black continuous histograms are for “standard” simulation with values ofA1 set as

given by the used model. The blue dotted histograms are for “non-standard” simulated

data withA1 changed toA1+0.1. ).
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FIG. 72. Comparison (in differentQ2 bins) of polarized count differences from 2.0 GeV

experimental (red points with error bars) and two versions of normalized simulation data.

The black continuous histograms are for “standard” simulation with values ofA1 set as

given by the used model. The blue dotted histograms are for “non-standard” simulated

data withA1 changed toA1+0.1.
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the best) and calculated above ratio to get the global preliminary value of the scaling factor

SF20. The simulated∆n was then multiplied with this factor to get our best “prediction” of

the real data in all the kinematic bins, in order to directly compare it with the real data (see

Figs. 71 and 72).

After this normalization, the ratios(n+−n−)/∆n(simul) in the quasi-elastic region for

all Q2 bins were calculated and plotted versusQ2 as well asθ (see Figs. 4.73(a) - 4.76(a))

along with the corresponding statistical errors as given by
√

(n++n−)/∆n(simul). As the

figures show, the ratio in the quasi-elastic region drops offrapidly at smallQ2. The fall-off

is likely due to CC inefficiencies for very high momenta and very forward angles. Also,

our simple cross section model for the deuteron is less accurate at lowQ2. Figs. 4.73(b) -

4.76(b) show that the∆-resonance region does not suffer from similar problems.

The final normalization was obtained by calculating the error weighted averageSFaverage

of above ratios in the quasi-elastic region. The average wascalculated using only thoseQ2

bins which had ratios reasonably stable and closer to each other. Because, the ratios are

reasonably stable only aboveQ2 ≈ 0.045 GeV2 andQ2 ≈ 0.09 GeV2 in the 1.337 and 2.0

GeV data sets respectively (as can be seen from Figs. 4.73(a)and 4.75(a)), only thoseQ2

bins above these two limits were used in calculating the weighted average of these ratios.

In addition, even above those two limits, some of those whichhad too large ratios - greater

than 2.0 (or 2.5) for 1.337 (or 2.0) GeV data set- were not usedin the weighted average.

However, it should be noted that the bins not used in the average ratio calculations were

not entirely discarded from the final analysis. Only those below Q2 = 0.02 GeV2 were

completely thrown out from the final analysis because they did not cover the resonance

(particularly the∆) region very well. The resulting simulated data in the form of count dif-

ferences∆n in variousQ2 bins are shown in Figs. 71 and 72 along with the corresponding

experimental data.

A complete systematic error analysis was done to study the effect of the overall scaling

factorSF on the extractedg1 (see below) and to estimate its statistical (due to the number

of counts) and systematic (due to model uncertainties and backgrounds) error.
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(b) Data/Sim ratio vsQ2 in ∆-resonance region of 1.3 GeV data.

FIG. 73.Q2 dependence of ratios of 1.3 GeV data and simulation in the quasi-elastic and

∆-resonance regions.
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(a) Data/Sim ratio vsθ in 1.3 GeV quasi-elastic data.
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(b) Data/Sim ratio vsθ in ∆-resonance region of 1.3 GeV data.

FIG. 74. The same data as in Fig. 73, but plotted versus average scattering angle (θ ).
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(b) Data/Sim ratio vsQ2 in ∆-resonance region of 2.0 GeV data.

FIG. 75.Q2 dependence of ratios of 2.0 GeV data and simulation in the quasi-elastic and

∆-resonance regions.
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(b) Data/Sim ratio vsθ in ∆-resonance region of 2.0 GeV data.

FIG. 76. The same data as in Fig. 75, but plotted versus average scattering angle (θ ).
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4.15 METHOD TO EXTRACT g1 AND A1F1

4.15.1 ‘VARIATION” OF THE STANDARD SIMULATION

The whole chain of steps outlined in the previous sections for the standard simulation

is repeated with just one major difference: the model input for the asymmetriesA1 for both

the proton and the neutron are increased by a constant value13 of 0.1. With all other model

ingredients being kept constant, this change leads to a change of the spin structure function

g1 that can be straightforwardly calculated for each kinematic bin within the model:

δg1(W,Q2) = δA1×F1
ν2

ν2+Q2 (134)

Correspondingly, the simulated count difference∆n(W,Q2) will change to a new value

∆n′. This “non-standard” simulation withA1 = A1(standard)+0.1 is performed gener-

ating an about equal number of Monte-Carlo events. The final reconstructed data is then

multiplied with the same overall scaling factor SF as for thestandard simulation and then

further (cross-)normalized by one additional factorSFext = (σ p
1 /σ p

2 )/(N1/N2) to account

for the change in cross section map and the (slight) difference in the number of the gener-

ated events between the standard and non-standard simulations. Here,σ p
1 andσ p

2 are the

total cross sections for the positive∆σ maps used for the standard and non-standard sim-

ulations and,N1 andN2 are the corresponding numbers of generated events. See Fig.(77)

to see how the polarized count differences look (in one particularQ2 bin) in experimental

and simulated data after such normalizations (for all otherQ2 bins, see Figs. 71 and 72).

This change of the simulated∆n(W,Q2) to a new value∆n′ can be correlated to the

increase ing1 by solving for the two parametersA andB of the linear equation,

∆n(simul) = A+B ·δg1, (135)

whereA(W,Q2) is the result for the simulated∆n for the standard set of model inputs i.e.,

A(W,Q2) = ∆nstandard(W,Q2), andB(W,Q2) is the proportionality factor representing the

change in∆n(sim) per unit change ing1, as given by:

B(W,Q2) =
∆n′−∆n

δg1
. (136)

The proportionality factorB(W,Q2) is then determined for each of the kinematic bins

13We arbitrarily chose 0.1 in the inelastic region, but could also have used any other value (not too big,

however).
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FIG. 77.∆n of experimental data and two versions of simulations in one particularQ2 bin

for 1.3 GeV case (for data on moreQ2 bins, see Fig. 71).

(in (W,Q2) ) in which the experimental data has been histogrammed. For this purpose,

using the RCSLACPOL program, we produce two values of structure functiong1 in each

kinematic bin - one (gStandard
1 ) corresponding to the standard simulation and the other

(gnon−standard
1 ) corresponding to the non-standard simulation. By, dividing the above change

in the count difference with the differenceδg1 of the two structure functions, we get the

proportionality factor for the bin.

In principle (and ignoring the other enumerated possible sources of disagreement be-

tween data and simulation), we can then easily find the “amount of change”δg1 to be

added to the standard modelg1 to get perfect agreement:

gextr
1 (W,Q2) = gStandard

1 +
∆ndata(W,Q2)−∆nstandard(W,Q2)

B(W,Q2)
(137)
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FIG. 78. Plots showing the change in modelg1 due to the change ofA1 to A1+ 0.1.

where the values of∆ndata and∆nstandardcome from the polarized count differences∆n in

the experimental data and the standard simulation respectively (as shown, for example, by

the red points and black histograms in Fig. 77 for one particular Q2 bin).

It is also straightforward to propagate the statistical error to the extractedg1. The

statistical error in this extracted quantity totally comesfrom the error in the experimental

counts∆ndata (assuming there is no error in the model quantities involvedand also in the

simulation counts because we did our simulation with large enough statistics to warrant

ignoring the errors) as follows:

σ(gextr
1 (W,Q2)) =

σ(∆ndata(W,Q2))

B(W,Q2)
. (138)

The values ofg1 and its errors thus extracted from 1.3 GeV data for oneQ2 bin is

shown in Fig. (4.80(b)). Similar results for all the bins from two beam energy data sets in

different kinematic bins can be seen in Fig. 90 (next chapter).

Because we are also interested in measuring the forward spinpolarizability and the

extended GDH integral, we also extract the productA1F1 which enter these integrals. We

followed the exact same procedure forg1 as outlined above. We determined new pro-

portionality factors in each kinematic bin, again using Eq.140 as before but with the

denominator replaced, this time, with the corresponding change inA1F1 (instead of the

change ing1). Then we can use the following expression (similar to equation 137) to
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FIG. 79. Plots for∆n(sim) and the corresponding proportionality factors.

extractA1F1(W,Q2) :

A1Fextr
1 (W,Q2) = A1FStandard

1 +
∆ndata(W,Q2)−∆nstandard(W,Q2)

BA1F1(W,Q2)
(139)

where

BA1F1(W,Q2) =
∆n′−∆n
δA1F1

. (140)

And, the errors onA1F1 can also be dealt in the same way as ong1.
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FIG. 80. Plots for∆n and the corresponding extractedg1.

4.16 SYSTEMATIC ERROR ESTIMATIONS IN g1 AND A1F1

The following systematic error contributions on the final extractedg1(W,Q2) can be

separated into two categories [97]:

1. Overall scale errors (see Sec. 4.16.1). These are errors that affect the proportionality

constantB defined in Sec. 4.15.1 equally in all bins and are mostly due touncer-

tainties inPbPt and target thickness. The total scale uncertainty should beevaluated

separate from the remaining systematic errors and quoted asa percent error in the

final presentation of the data.

2. Point-to-point uncorrelated errors. These are mostly additive errors, although there

may be some kinematic-dependent uncertainty in quantitieslike the CC, EC and

tracking efficiency. These errors are evaluated in sequence, as additional uncertain-

ties ong1 bin by bin, and added in quadrature to get the overall uncertainty. For

integrals overg1, these errors are added incoherently (in quadrature) with the appro-

priate weights; e.g., forΓ3(Q2) = Σ(g1(x,Q2)x2∆x) the corresponding systematic

error would beδΓ3(Q2) = [Σ(δg1(x,Q2)x2∆x)2]1/2.

3. Model errors which vary point to point but are correlated.
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4.16.1 CROSS NORMALIZATION SIMULATION / DATA

Since the normalization factorSF comes from a comparison of data and simulation in

the quasi-elastic region 0.9≤W ≤ 1.0, one has to evaluate all systematic effects that can

influence either one of these ingredients. The first and most important systematic error due

to this factor is simply the statistical error described at the end of Sec. 4.13. The remaining

systematic errors are listed below and have to be added in quadrature to the statistical one.

One should check if the overallχ2 for the comparison over allQ2 bins is compatible with

the combined statistical and systematic error onSF; otherwise, it may be necessary to

increase the total error accordingly.

On the simulation side, one has to account for the following:

1. The calculated cross section difference depends most sensitively on the beam energy

and the scattering angle. Since radiative effects are a second order effect here, it suf-

fices to calculate the theoretical Born cross section differences for both the standard

beam energy and average angle for eachQ2 bin, and then repeat the calculation for

i) a beam energy increased by 5 MeV and ii) a decrease of the scattered electron en-

ergy by 5 MeV and iii) a scattering angle increased by 1 mrad. The relative change

in δσ contributes to the total error for each bin.

2. To a lesser extent, the model input for the form factorsGE,GM for both proton and

neutron also contribute to the simulated uncertainty. Therefore, the model Born

asymmetry also has to be recalculated with the following changes: i) use the simple

dipole fit forGp
M ii) use the dipole fit forGn

M iii) use the dipole fit forGp
E and iv) use

Gn
E = 0.

3. Vary the scale factor within the uncertainty for thekinematics-dependentpart of the

CC, EC and tracking efficiencies in the quasi-elastic region(an overall trigger and

tracking efficiency will drop out).

4. The main effect of radiation is to decrease the measured cross section difference

in the quasi-elastic region (”out”-radiation). Any discrepancy between simulated

and “true” depletion due to that effect yields a systematic error on the scale factor.

By looking at various models of radiative effects (e.g., a simple-minded ”equivalent

radiator” model vs. the full-blown RCSLACPOL code) one can quantify this uncer-

tainty. However, we did not do this in the end. Instead, we just assumed an overall
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error consistent with the observed fluctuation byQ2 bin of 10% on the overall scale

factor.

For the data, one has to vary the possible background contributions within their sys-

tematic uncertainties: Contributions toδn in the quasi-elastic region due to possible con-

tributions from bound and free polarized protons (contributions from bound deuterons are

minimal and cancel mostly), and contributions from mis-identified pions and pair symmet-

ric electrons.

In the present analysis, we considered ten distinct contributions to the systematic error

in the measuredg1 (and similarly toA1F1) as follows:

1. Possible Error in the overall scaling factor

2. Effect due to the contaminations of polarized H in the target andπ−in the scattered

electrons.

3. Possible error in the beam energy measurement

4. Possible error in the CC-inefficiency estimation

5. Effect due to thee+e−pair symmetric contamination

6. Possible error in the estimation of radiation lengths (especially RADA)

7. Model variation using preliminary version (v1) ofA1 model by Guler/Kuhn (2008-9)

8. Model variation using old version ofA2 resonance model

9. Model variation ofF2 (and proportionally ofF1)

10. Model variation of R (F2 changed)

For the ease of description later on, these ten components will be referred to by the index

”k” with its value indicating the position in the list. So, the error due to scaling factor will

be identified with k=1 and so on.

Possible Error due to the overall scaling factor This error is due to the uncertainties

in the overall scaling factor (SF) (see Sec. 4.16.1). This contribution is estimated by

assuming that the uncertainties in SF is not more than 10%. Thus considering the worst

case scenario of 10% error in SF, we estimate the corresponding error ing1 as follows:

∆gSF
1 (W,Q2) = gstd

1 (W,Q2)+
∆ndata(W,Q2)−1.1 ·∆nstd(W,Q2)

1.1 ·B(W,Q2)
−gdata

1 (W,Q2) (141)
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with “std” shorthand used for “standard” model or the corresponding simulation.

Error from Polarized H in target and π−contaminations This contribution from po-

larized H in target andπ−contamination is evaluated as follows,

∆gcont
1 (W,Q2) = gstd

1 (W,Q2)+
∆ndata(W,Q2) ·1.025−∆nstd(W,Q2)

B(W,Q2)
−gdata

1 (W,Q2)

(142)

where we assume that the contamination is not more than 2.5%.

Possible error in the beam energy measurement This contribution is evaluated as-

suming the error in beam energy measurement is not more than 10 MeV, so the either the

experimental data or the standard-simulation data can be analyzed assuming the beam en-

ergy was different by 10 MeV. In this analysis, the the energywas increased by 10 MeV in

the simulated data.

∆gEb
1 (W,Q2) = gstd

1 (W,Q2)+
∆ndata(W,Q2)−∆nstd

Eb+(W,Q2)

B(W,Q2)
−gdata

1 (W,Q2) (143)

where∆nstd
Eb+ is now the simulated∆nstd obtained by analyzing the data from the standard

simulation as usual but with a beam energy that was 10 MeV morethan the standard value.

Possible error in the CC-inefficiency estimation This contribution is estimated by as-

suming a maximum of 50% error in the estimated inefficiency asfollows:

∆gEb
1 (W,Q2) = gstd

1 (W,Q2)+
∆ndata(W,Q2)−∆nstd

0.5CCi(W,Q2)

B(W,Q2)
−gdata

1 (W,Q2) (144)

where∆nstd
0.5CCi is now the simulated∆nstd obtained after applying 50% more inefficiency

instead of the actually estimated value.

Possible error due toe+e−pair symmetric contamination The contribution due to

e+e−pair symmetric contamination is calculated as follows:

∆gEb
1 (W,Q2) = gstd

1 +
∆ndata· 1

1+ f (e+e−) −∆nstd

B(W,Q2)
−gdata

1 (W,Q2) (145)

where f(e+e−) is thee+e−fraction from the EG1b fit by N. Guler [35] (used the closest

available energies).
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Radiative correction uncertainty Here, we need to change the parameter that most in-

fluences radiative corrections, the number of radiation lengths before (RADB) and after

(RADA) the scattering. By increasing both numbers by 10%, weshould have a safe up-

per limit on practically all uncertainties coming from the radiative procedure itself. But,

to simplify the situation, we increased the RADA parameter in RCSLACPOL by 20%

and repeated the full-statistic simulation. As a result thesimulated count difference in

each kinematic bin changed from∆nstandard to a new value∆nrad. This change can be

converted to the corresponding inferred change ing1 by using the same proportionality

factorsB(W,Q2) as used earlier in theg1 (or A1F1) extraction/calculation. In other words,

for a given kinematic bin this particular contribution to the systematic error is calculated

as:

∆grad
1 (W,Q2) = gstd

1 +
∆ndata(W,Q2)−∆nstandard(W,Q2)

B(W,Q2)
−gdata

1 (W,Q2) (146)

where the proportionality factorB(W,Q2) for the bin is exactly the same as that used to

calculateg1 earlier.

4.16.2 MODEL UNCERTAINTIES

The remaining four components in the total systematic uncertainty (the last four in the

list 4.16.1) account for the model uncertainty contributions. For this purpose, we changed

the values of two of the model parameters “AsymChoice” and “SFchoice” (each takes

value of 11, in the standard case)

We repeated the full statistics simulation four more times by changing the values of

two RCSLACPOL parameters “AsymChoice” and “SFchoice” (which controls the values

of model asymmetries and the structure functions, with eachtaking a value of 11 in the

standard case) one by one corresponding to the following four model variations:

1. Variation-1: AsymChoice=12, SFchoic=11

2. Variation-2: AsymChoice=15, SFchoic=11

3. Variation-3: AsymChoice=11, SFchoic=12

4. Variation-4: AsymChoice=11, SFchoic=13

where, the different values of the two RCSLACPOL parameterscorrespond to the follow-

ing model choices:

1. AsymChoicevalues are used to determine specificA1/A2 models used in the RC-

SLACPOL program
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(a) 11: Standard Resonance Model 2008-9 Guler/Kuhn (Used for standard sim-

ulation)

(b) 12: Variation ofA1 model

(c) 15: Variation ofA2 resonance model: Vary the virtual photon asymmetryA2 in

the resonance region within its fit errors.

2. SFchoicevalues are used to determine specificF1/F2 models.

(a) 11: 2009 version ofFn
1 /F p

1 /Fd
1 by Peter Bosted/Eric Christie 2009, HERMES

(Used for standard simulation) (with d in Fd
1 denoting a deuteron).

(b) 12: Same version as 11, but with fit errors added toF2 (and proportionallyF1)

(c) 13: Same version as 11, but with fit errors subtracted fromR (F2 unchanged)

After the simulation data for the above four cases were available, four more data tables

(TM1,TM2,TM3 and TM4) were produced for the corresponding model values ofg1, A1,

F1 etc. Then, the contributions to the systematic error from each of these four cases of

model variation were given as follows:

∆gi
1(W,Q2) = gstandard

1 (W,Q2)−gi
1(W,Q2)+

∆ni(W,Q2)−∆nstandard(W,Q2)

B(W,Q2)
(147)

with “i” indicating any of the four cases of model variation,gi
1 being the model prediction

for theith case as obtained from the corresponding data table “TMi” andthe proportionality

factorB(W,Q2) again being exactly the same as used to calculateg1 as earlier.

Figs. (82 and 83) show, for example, the different components of the systematic er-

rors (along with the grand total) ong1 (from 1.3 GeV data) evaluated in the manner just

outlined. Likewise, Figs. (84 and 85) show similar plots forthe 2.0 GeV data.

These ten different components of systematic errors ong1 (and similarly onA1F1) thus

calculated separately for both beam energies are later combined as follows:

4.16.3 COMBINING DATA FROM THE TWO BEAM ENERGIES

Once the datag1 andA1F1 and their corresponding errors are evaluated from each beam

energy data set, they are combined as follows [67] (to make the description simple, only

procedure is described only forg1, but, in the end, the exact same procedure is followed

for A1F1 as well):
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1. First a table is made, separately for each beam energy, of all (Q2,W) bins with with

calculated values ofg1, their statistical errors and each of the ten components of the

systematic errors (making sure to keep the correct signs of the systematic changes)

in separate columns (one row is for one bin in(Q2,W).

2. Then another table is made for the combined values ofg1, which are evaluated as

follows:

(a) If for a given(W,Q2) bin, g1 comes only from one beam energy, then all the

entries from that energy go into the ”combined” table

(b) If g1 has measurements from both beam energies, we combine them with sta-

tistical weights as follows:

Sum1 = ∑
i

g1(i)
(∆g1)2(i)

Sum2= ∑
i

1
(∆g1)2(i)

(148)

g1(combined) = Sum1/Sum2 σg1(combined) =
√

1/Sum2(149)

where the index ’i’ represents two beam energy (1.3 and 2.0 GeV) data sets.

and∆g1 indicates the statistical error ing1.

3. In principle, each of the individual contributions to thesystematic error can also be

combined using the same equations. However, we must be careful to distinguish

between correlated and uncorrelated errors.

(a) The variations due to scale factor (k=1), beam energy (k=3) and CC-efficiency

(k=4) are all un-correlated and, therefore, added in quadrature as follows:

δg1(k=8,10,11, combined) =

√

√

√

√

(

∑
i

(δg1)2(i)
(∆g1)2(i)

)

/Sum2 (150)

where,δ represents thekth component of the systematic error, whereas, ’Sum2’,

’i’ and ∆ have the same meanings as before.

(b) while all other variations are correlated between the two beam energies and

should be averaged linearly (WITH sign):

δg1(other k, combined) =

(

∑
i

(δg1)(i)
(∆g1)2(i)

)

/Sum2 (151)
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4. Once each of thekth component of the systematic errors are combined between the

two beam energies, we then proceed to combine them all to get agrand total. This is

done by simply adding the ten combined systematic errors in quadrature and taking

the square-root of the sum.

The figures 86 and 88 show the breakdown of the total contribution to the systematic

error from different sources. We can see that the dominant contribution comes from the

uncertainties in the overall scale factor (the cyan band indicated with SF-err in the legend)

which is used to normalize the simulated data to make them comparable with data. This

uncertainty comes mainly from those inPbPt and target size measurements. Next big con-

tributions seem to come from the model and radiative corrections. Near the∆-resonance

region, the effect of beam energy uncertainty also seems to be very pronounced. The

breakdown of the different components (but combined between the two beam energies) of

the total systematic errors are also shown separately in thefigures 86 and 88
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FIG. 81. Various components of systematic error (see Secs. 4.16 and 4.16.1) ong1 plotted

againstW in a Q2 bin (1.3 GeV data). The band width represents the size of the errors.

The vertical position of each band has no physical meaning (arbitrarily chosen for the

convenience of display). The first five (blue) bands are the contributions due toe+e−-

contamination (see Sec. 4.16.1), CC-inefficiency (see Sec.4.16.1), errors in beam energy

measurement (see Sec. 4.16.1), polarized background (H,π−etc - see Sec. 4.16.1) and

scaling factor uncertainties (see Sec. 4.16.1) respectively. The first (top) magenta band is

the contribution due to the uncertainties in the radiative corrections (see Sec. 4.16.1), next

four (magenta) are due to model uncertainties (see Sec. 4.16.2) and the last (green) one is

the total error after properly combining all components. For similar plots in otherQ2 bins

see Figs. 82 and 83.
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FIG. 82. Plots like that shown in Fig. 81 showing various components of systematic error

on g1 plotted againstW in differentQ2 bins for 1.3 GeV data.
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FIG. 83. Systematic error components in remainingQ2 bins (continuation of Fig. 82.
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FIG. 84. Plots similar to those shown in Fig. 82 but for 2.0 GeV, showing various compo-

nents of systematic error ong1 plotted againstW in differentQ2 bins.
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FIG. 85. Systematic error components in remainingQ2 bins (continuation of Fig. 84.
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FIG. 86. Breakdown of systematic errors ing1 (after combining data from the two energy

data sets) in the first fewQ2 bins. See Fig. 81 for the description of the different systematic

error components.
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FIG. 87. Plots as in Fig. 86 but in the remaining higherQ2 bins.
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FIG. 88. Breakdown of systematic errors inA1F1 (after combining data from the two

energy data sets) in the first fewQ2 bins. See Fig. 81 for the description of the different

systematic error components.
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FIG. 89. Plots as in Fig. 88 but in the remaining higherQ2 bins.
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CHAPTER 5

RESULTS

5.1 THE EXTRACTED VALUES OF g1 AND A1F1

With the methods outlined in the previous chapter,g1, A1F1, and and their uncertainties

were determined from the EG4 deuteron target data. These data were divided into 21Q2

bins (between about 0.02 and 0.7 GeV2 in Q2) and within eachQ2 bin, they were further

divided into W bins of size 20 MeV each. The results ong1 andA1F1 that came from two

beam energy data sets were further combined into a single setof energy independent data

points. Finally, within eachQ2 bin, the newly extractedg1 andA1F1 values were used to

evaluate three integrals. All of these results are shown anddescribed below.

5.2 EXTRACTED g1 AND A1F1

Figures 90 and 91 show the extracted values ofg1 and their errors from two different

beam energies (1.337 GeV and 1.989 GeV).It can be seen that the two energies give results

that are in good agreement (in the overlapping kinematic regions).

These results from lowQ2 measurements clearly show the resonant structure in the

regionW ≤ 2.0. Especially, the∆-resonance stands out through its strongly negative sig-

nal. In addition, in the second resonance region around W=1.5 GeV whereN∗(1520) and

N∗(1535) (also denoted by D11 and S13 respectively) overlap, we see a drastic transition

of g1 (or cross section) from strongly negative values (not well described by the model

because it is unconstrained there due to the lack of experimental data) at lowQ2 to clearly

positive values at highQ2 indicating that the dominance of the spin-flip helicity amplitude

AT
3
2

on cross section drastically diminishes withQ2 and the non-flip amplitudeAT
1
2

becomes

stronger (see Eq. 35). We have pushed the lower limit onQ2 in the resonance region

with reduced systematic and statistical errors that will contribute greatly to the world data

set. Our data will help MAID and other phenomenological models to better constrain their

parameters enabling them to make better predictions in the future.
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Likewise, Figs. 92 and 93 shows the extracted values ofA1F1 and their errors from

two different beam energies (1.337 GeV and 1.989 GeV).Thesevalues also show similar

behavior asg1.

Figs. 94, 95, 96 and 97 show the values ofg1andA1F1and their errors after combining

the corresponding results from the two different beam energies as described in the previous

chapter.
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FIG. 90. Extractedg1 for deuteron (in the first 12Q2 bins) from the two different beam

energy data sets. The statistical errors are indicated by error bars, while the systematic

uncertainties are given by the bands (cyan, top: 1.3 GeV andgreen, bottom: 2 GeV).
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FIG. 91. Extractedg1 for deuteron (in the last 9Q2 bins (see Fig. 90 for the first 12 bins))

from the two different beam energy data sets.
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FIG. 92. ExtractedA1F1 for deuteron (in the first 12Q2 bins) from the two different beam

energy data sets. The statistical errors are indicated by error bars, while the systematic

uncertainties are given by the bands (cyan, top: 1.3 GeV andgreen, bottom: 2 GeV).
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FIG. 93. ExtractedA1F1 for for deuteron (in the last 9Q2 bins (see Fig. 92 for the first 12

bins)) from the two different beam energy data sets..
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FIG. 94. Extractedg1 for deuteron after combining the results from the two beam energies

(in the first 12Q2 bins). The red data points with error bars in each of the panels are the

combined extracted results, the blue continuous line is theused model ofg1 and the green

band represents the corresponding total systematic errors.
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FIG. 95. Similar plots as in Fig. 94 showing the combined results ong1 in the next 9Q2

bins.
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FIG. 96. A1F1 after combining the results from the two beam energies (in the first 12Q2

bins). The red data points with error bars in each of the panels are the combined extracted

results, the blue continuous line is the used model ofg1 and the green band represents the

corresponding total systematic errors.
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FIG. 97. Similar plots as in Fig. 96 showing the combined results ong1 in the next 9Q2

bins.
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5.3 MOMENTS OF DEUTERON SPIN STRUCTURE FUNCTIONS

Using the measured values ofg1 and A1F1, three integrals were evaluated for each

of the Q2 bins in which these data were measured. These integrals havebeen calculated

in two ways - using only the new EG4 measurements, and adding model contributions

to the data for regions not covered by our measurements. The integrals with the model

contributions were calculated fromx= 0.001 to the onset of the resonance region (i.e. to

the pion production threshold ofW ≈ 1.08 GeV), dividing the sum into three parts for each

Q2 bin. For example,Γ1 was evaluated by adding up the productg1∆x over the following

three kinematic regions:

Γ1(Q
2) =

∫ x(Wdata)

x=0.001
g1(x,Q

2)dx model (152)

+
∫ W=1.15

x(Wdata)
g1(x,Q

2)dx data (or model for gaps) (153)

+
∫ W=1.08

W=1.15
g1(x,Q

2)dx model (154)

whereWdata indicates the upper edge of the lastW bin in which the EG4 data is available

in a givenQ2 bin (theW variable was divided into 70 bins of size 20 MeV in the range

W=(0.7,2.1) GeV). The first part of the integral as given by Eq. 152 is evaluated by using

the model values ofg1 and using∆x corresponding to a W bin of size 10.0 MeV (The

∆W is converted to∆x by usingx = Q2/(Q2+W2−M2) to evaluatex at the two edges

of eachW bin and taking the difference.). The second part given by Eq.153 is evaluated

similarly but using the EG4 results forg1 if there is no measurement gap in between. If

there is any gap, the same method as in the first part is used to get a model contribution

for the gap and added to the data contribution. Lastly, the the third contribution given by

Eq. 153 again were evaluated from from model values (quasi-elastic part turned off from

the model in all of these cases) but with finer W bins (1 MeV) because the integrals are

very sensitive to the region near the∆ resonance due to the fact that the structure functions

show rapid changes in this region. The reason to calculate the third integral using model

values rather than data values is to avoid having contributions in the integrals from the

quasi-elastic contamination.

The statistical errors are evaluated by adding the statistical error contribution in each

W or x bin in quadrature. For example, if the integral is evaluatedin a Q2 bin by cal-

culating the sum

(

∑
W bins

g1 ·∆x

)

, then the corresponding statistical error is evaluated by
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calculating
√

∑
W bins

g1 ·∆x. Because, the model contribution is assumed to have no statis-

tical uncertainties, the statistical errors in the integrals come solely from the propagation

of the statistical error of the measuredg1 or A1F1.

The other two integrals and their errors are evaluated in thesame manner, withg1

replaced by their corresponding integrands and again calculating the three parts of the

integrals separately.

These integrals are then compared with the latest availablepredictions from different

theories (mainlyχPT) and phenomenological calculations along with EG1b or DIS data

whenever applicable.

5.3.1 FIRST MOMENT OF g1 (Γ1)

The first integral of interest is the first moment ofg1 i.e., Γ1 (see Eq. 61) , which was

calculated for allQ2 bins for which the new data are available. Figs. 98 and 99 show

the two calculations (with and without model input) along with EG1b data and several

χPT and model predictions. One important observation here isthat our measurements

provide the only data points in the very lowQ2 region (i.e forQ2 < 0.05 GeV2) where

χPT is thought to be able to make rigorous calculations. Therefore, our data will provide

important benchmarks for the future calculations in this kinematics. Particularly, the latest

χPT prediction by Bernardet al. [37] seems to agree remarkably well in the very lowQ2

region.

While all other higherQ2 predictions, except that of Jiet al., seem to be within the

uncertainties of our measurements, it can be seen that the phenomenological predictions

of Soffer et al. compare slightly better with data than others (excluding, of course, the

Bernardet al. prediction).

5.3.2 THE EXTENDED GDH INTEGRAL ĪTT

Using the measured values ofA1F1, the generalized GDH integral̄ITT =2M2/Q2∫ A1F1(x,Q2)dx

was also calculated and compared (see Figs. 100 and 101) withthe latestχPT calculation

from Bernardet al. [37]. We can see that at the very lowQ2, theχPT prediction and the

measurement get very close. TheχPT methods determine the higher powers ofQ2 in the

Taylor expansion of the integral around the photon pointQ2 = 0, beyond the prediction

of the GDH sum rule which determines the lowest order term. Our data seem indeed to

converge towards the GDH sum rule at our lowestQ2. However, only one or two higher or-

der terms can be calculated confidently, since higher ordersrequire additional (unknown)
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FIG. 98. ExtractedΓ1 for deuteron compared with some of the past measurements and

various theoretical predictions with a linear scale used for Q2.

constants. Therefore,χPT predictions do reasonably well at ultra-lowQ2 but cannot be

expected to work at the higherQ2, where the data show a turn-around and a transition

towards positive values.

5.3.3 THE GENERALIZED FORWARD SPIN POLARIZABILITY γ0

Finally, the generalized forward polarizability (as givenby Eq. 65) for the deuteron

was also calculated using the measured values ofA1F1 and then compared with various

predictions as shown in Figs. 102 and 103. The comparison shows that bothχPT calcula-

tions by Bernardet al. and Kaoet al. converge with data at the lowestQ2 bins. The MAID

prediction is shown for reference but seems to be somewhat off the current results.
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CHAPTER 6

CONCLUSION

The EG4 experiment collected a large amount of very low momentum transfer (Q2)

data for the helicity dependent inclusive cross section (difference) for the scattering of

longitudinally polarized electrons off longitudinally polarized protons and deuterons (from

DNP polarized NH3 and ND3 targets respectively). The use of low beam energies (1.0−
3.0 GeV) (from CEBAF accelerator) and the modified CLAS detector optimized for low

scattering angle measurements (down to 6 degrees), alloweddata collection at an unprece-

dented level of precision and lowQ2 coverage. The deuteron data (collected using 1.337

and 2.0 GeV beam energies) which is the subject of this thesishas the kinematic coverage

of (0.02 GeV2 < Q2 < 0.7 GeV2) and (1.08 GeV< W < 2.0 GeV2). Although, past

measurements from EG1b go as low as 0.05 GeV2 in Q2, the new measurements have

higher precision (due to higher statistics and better detection efficiency) in the overlap-

ping region in addition to new high precision data in the previously unmeasured lowerQ2

region.

The new deuteron data were used to extract the deuteron’s spin structure functiong1 by

comparing the experimental data with simulated data produced by using a realistic cross

section model for the deuteron under similar kinematic conditions. The newly extracted

data pushes the lower limit onQ2 in the resonance region with reduced systematic and

statistical uncertainties that will contribute greatly tothe world data set. It is observed

that the data from two beam energies give results that are in good agreement. The lowQ2

results clearly show resonance structure in the regionW ≤ 2.0 which smooths out asQ2

becomes larger. In particular, the∆-resonance shows a strongly and consistently negative

signal at allQ2, but the second resonance region (around W=1.5 GeV) shows a rather

unexpected rapid transition ofg1 (or cross section) from strongly negative values at low

Q2 to clearly positive values at highQ2. is not well described by the model because it is

not constrained in the region due to the lack of experimentaldata and indicates that the

spin-flip helicity amplitudeAT
3
2

dominates the cross section at lowQ2 while the non-flip

amplitudeAT
1
2

becomes stronger at higherQ2.
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The productA1F1 of the virtual photon asymmetryA1 and the unpolarized structure

function F1 was also extracted from the same data and method. The extracted results

on g1 andA1F1 were then used to evaluate the following three important moments - the

first momentΓd
1 of g1, the generalized GDH integral̄Id

TT and the generalized forward

spin polarizabilityγd
0 - in each of theQ2 bins in which the newg1 andA1F1 have been

extracted. The new lowQ2 measurements of the moments evaluated both with and without

model inputs for the unmeasured kinematic regions were thencompared with variousχPT

calculations, phenomenological predictions and past measurements, particularly the EG1b

or DIS data whenever applicable.

The EG4 results provide the only data points in the very lowQ2 region (i.e forQ2 <

0.05 GeV2) whereχPT is thought to be able to make rigorous calculations. The high preci-

sion data will provide important benchmarks for the future calculations in this kinematics.

In the case of the first momentΓd
1, the EG4 results show remarkable agreement with the

latestχPT prediction by Bernardet al. [37] in the very lowQ2 region. The phenomeno-

logical predictions which have much largerQ2 coverage also seem to agree within the

uncertainties of our measurements, with the predictions ofSoffer et al. showing slightly

better comparison than others. Likewise, the very lowQ2 results of the generalized GDH

integral ĪTT are indeed observed to converge towards the GDH sum rule and thus getting

very close to theχPT predictions by Bernardet al. [37]. Finally, the generalized forward

polarizability (γd
0 ) for the deuteron calculated from the EG4 data and theχPT calculations

by Bernardet al. and Kaoet al. seem to converge at the lowestQ2 bins. The MAID

prediction, however, seems to be somewhat off the current results.

The deuteron data in combination with the EG4 proton data taken under similar condi-

tions (currently being analyzed by another collaborator and results expected to come very

soon) will be useful in extracting neutron quantities in near future, which is valuable be-

cause of the unavailability of the free neutron targets. Moreover, due to the complexities of

the nuclear medium effects, neutron data from deuteron willbe very important to enhance

confidence in similar neutron results extracted from other nuclear targets particularly3He.

The new data on spin structure functions will help MAID and other phenomenologi-

cal models to better constrain their parameters enabling them to make better predictions

in the future. With the availability of the high precision data in the previously (largely)

unmeasured region that has the potential to help constrain the theories and models, it is

hoped that a unified description of spin structure functionsover all kinematic regions will

be possible in future.



197

BIBLIOGRAPHY

[1] D. R. Smith, C. Truesdell,An introduction to continuum mechanics - after Trues-

dell and Noll(Kluwer Academic Publishers, P.O. Box 17,3300 AA Dordrecht, The

Netherlands, 1993) ISBN 0-7923-2454-4

[2] D. J. Griffiths,Introduction to Quantum Mechanics, 2nd ed. (Pearson Prentice Hall,

Upper Saddle River, NJ 07458, 2005) pp. 183–4

[3] W. Gerlach and O. Stern, Zeitschrift fr Physik9, 353 (1922), ISSN 0044-3328

[4] D. Drechsel and L. Tiator,GDH 2000: Proceedings of the Symposium on the

Gerasimov-Drell-Hearn Sum Rule and the Nucleon Spin Structure in the Reso-

nance Region : Mainz, Germany, 14-17 June 2000(World Scientific, 2001) ISBN

9789810245740

[5] S. Kuhn, inProceedings of the 12th Annual HUGS at CEBAF(1997) article based

on six lectures on the subject during the 1997 Hampton University Graduate Sum-

mer School.

[6] J. Aubertet al., Physics Letters B123, 275 (1983), ISSN 0370-2693

[7] K. Gottfried, Phys. Rev. Lett.18, 1174 (Jun 1967)

[8] M. Arneodoet al., Phys. Rev. D50, R1 (Jul 1994)

[9] J. Ashman and other, Physics Letters B206, 364 (1988), ISSN 0370-2693

[10] O. Piguet, G. Pollak, and M. Schweda, Nucl.Phys.B328, 527 (1989)

[11] K. G. V. G. Dharmawardane,Spin Structure Functions of the Deuteron Measured

with CLAS in and above the Resonance region, Ph.D. thesis, Old Dominion Univer-

sity (May 2004)

[12] D. Gross and F. Wilczek, Phys. Rev. Lett.30, 1343 (1973)

[13] J. P. Chen and others, “The GDH Sum Rule and the Spin Structure of3He and the

Neutron using Nearly-Real Photons,” JLab Hall A Proposal (1997), PR97-110

[14] M. Hosoda and K. Yamamoto, Prog. Theor. Phys.30, 425 (1966)

http://dx.doi.org/10.1007/BF01326984
http://dx.doi.org/10.1007/BF01326984
http://www.sciencedirect.com/science/article/pii/0370269383904379
http://dx.doi.org/10.1103/PhysRevLett.18.1174
http://dx.doi.org/10.1103/PhysRevD.50.R1
http://www.sciencedirect.com/science/article/pii/0370269388915237
http://dx.doi.org/10.1016/0550-3213(89)90341-6
http://www.jlab.org/exp_prog/proposals/97/PR97-110.pdf


198

[15] K. Slifer, A Measurement of the Extended GDH Integral and the Burkhardt-

Cottingham Sum Rule, Ph.D. thesis, Temple University (August 2004)

[16] M. Anselminoet al., in Proceedings of the International School of Physics “Enrico

Fermi” (Varenna On Lake Como Italy, 2011)

[17] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys. Rept. 378, 99 (2003),

arXiv:hep-ph/0212124 [hep-ph]

[18] S. Kuhn, J.-P. Chen, and E. Leader, Prog.Part.Nucl.Phys. 63, 1 (2009),

arXiv:0812.3535 [hep-ph]

[19] V. A. Sulkosky,The Spin Structure of3He and the neutron at low Q2: A measurment

of the generalized GDH integrand, Ph.D. thesis, The College of William and Mary

(August 2007)

[20] C. S. B. Povh, K. Rith and F. Zetsche,Particles and Nuclei, 3rd ed. (Springer, Berlin,

2002)

[21] J. Beringeret al. (Particle Data Group), Phys. Rev. D86, 010001 (Jul 2012)

[22] Y. L. Dokshitzer, Sov.Phys.JETP46, 641 (1977)

[23] V. Gribov and L. Lipatov, Sov.J.Nucl.Phys.15, 438 (1972)

[24] G. Altarelli and G. Parisi, Nucl.Phys.B126, 298 (1977)

[25] S. Gerasimov, Yad. Fiz.2, 598 (1965)

[26] S. D. Drell and A. C. Hearn, Phys. Rev. Lett.16, 908 (May 1966)

[27] H. Dutz et al. (GDH Collaboration), Phys. Rev. Lett.91, 192001 (Nov 2003),

http://link.aps.org/doi/10.1103/PhysRevLett.91.192001

[28] H. Dutz et al. (GDH Collaboration), Phys. Rev. Lett.94, 162001 (Apr 2005),

http://link.aps.org/doi/10.1103/PhysRevLett.94.162001

[29] D. Drechsel and L. Tiator, Ann.Rev.Nucl.Part.Sci.54, 69 (2004),

arXiv:nucl-th/0406059 [nucl-th]

[30] S. Hoblit et al. (LEGS-Spin Collaboration), Phys. Rev. Lett.102, 172002 (Apr

2009),http://link.aps.org/doi/10.1103/PhysRevLett.102.172002

http://dx.doi.org/10.1016/S0370-1573(02)00636-1
http://arxiv.org/abs/hep-ph/0212124
http://dx.doi.org/10.1016/j.ppnp.2009.02.001
http://arxiv.org/abs/0812.3535
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevLett.16.908
http://dx.doi.org/10.1103/PhysRevLett.91.192001
http://link.aps.org/doi/10.1103/PhysRevLett.91.192001
http://dx.doi.org/10.1103/PhysRevLett.94.162001
http://link.aps.org/doi/10.1103/PhysRevLett.94.162001
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181159
http://arxiv.org/abs/nucl-th/0406059
http://dx.doi.org/10.1103/PhysRevLett.102.172002
http://link.aps.org/doi/10.1103/PhysRevLett.102.172002


199

[31] M. Anselmino, B. Ioffe, and E. Leader, Sov.J.Nucl.Phys. 49, 136 (1989)

[32] A. Deuret al., “Measurement of the Gerasimov-Drell-Hearn Integral at low Q2 on

the Neutron and Deuteron,” CLAS Proposal (Dec. 2006), pR06-017

[33] M. Burkardt, AIP Conf. Proc.1155, 26 (2009), arXiv:0905.4079 [hep-ph]

[34] M. Anghinolfi and others, “The GDH Sum Rule with Nearly-Real Photons and the

Protong1 Structure Function at Low Momentum Transfer,” CLAS Proposal (2003),

PR03-006

[35] N. Guler,Spin Structure of the Deuteron, Ph.D. thesis, Old Dominion University

(December 2009)

[36] C.-W. Kao, B. Pasquini, and M. Vanderhaeghen, Phys. Rev. D70, 114004 (2004),

arXiv:hep-ph/0408095 [hep-ph]

[37] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meissner, Phys. Rev.D87, 054032

(2013), arXiv:1209.2523 [hep-ph]

[38] D. Drechsel, S. Kamalov, and L. Tiator, Eur.Phys.J.A34, 69 (2007),

arXiv:0710.0306 [nucl-th]

[39] C. W. Kao, T. Spitzenberg, and M. Vanderhaeghen, Phys. Rev. D 67, 016001 (Jan

2003)

[40] V. Bernard, T. R. Hemmert, and U.-G. Meissner, Phys. Rev. D67, 076008 (2003),

arXiv:hep-ph/0212033 [hep-ph]

[41] V. D. Burkert, Phys. Rev.D63, 097904 (2001), arXiv:nucl-th/0004001 [nucl-th]

[42] K. G. Wilson, Phys. Rev.179, 1499 (Mar 1969)

[43] X.-D. Ji and W. Melnitchouk, Phys.Rev. D56, 1 (1997),

arXiv:hep-ph/9703363 [hep-ph]

[44] Z. Meziani, W. Melnitchouk, J.-P. Chen, S. Choi, T. Averett,et al., Phys.Lett.B613,

148 (2005), arXiv:hep-ph/0404066 [hep-ph]

[45] S. Larin, T. van Ritbergen, and J. Vermaseren, Phys.Lett. B404, 153 (1997),

arXiv:hep-ph/9702435 [hep-ph]

http://dx.doi.org/10.1063/1.3203298
http://arxiv.org/abs/0905.4079
http://www.jlab.org/exp_prog/proposals/03/PR03-006.pdf
http://dx.doi.org/10.1103/PhysRevD.70.114004
http://arxiv.org/abs/hep-ph/0408095
http://dx.doi.org/10.1103/PhysRevD.87.054032
http://arxiv.org/abs/1209.2523
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://arxiv.org/abs/0710.0306
http://dx.doi.org/10.1103/PhysRevD.67.016001
http://link.aps.org/doi/10.1103/PhysRevD.67.016001
http://dx.doi.org/10.1103/PhysRevD.67.076008
http://arxiv.org/abs/hep-ph/0212033
http://dx.doi.org/10.1103/PhysRevD.63.097904
http://arxiv.org/abs/nucl-th/0004001
http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1103/PhysRevD.56.R1
http://arxiv.org/abs/hep-ph/9703363
http://dx.doi.org/10.1016/j.j.physletb.2005.03.046
http://arxiv.org/abs/hep-ph/0404066
http://dx.doi.org/10.1016/S0370-2693(97)00534-0
http://arxiv.org/abs/hep-ph/9702435


200

[46] S. Larin, Phys.Lett.B334, 192 (1994), arXiv:hep-ph/9403383 [hep-ph]

[47] L. Tiator and S. Kamalov, 16(2006), arXiv:nucl-th/0603012 [nucl-th]

[48] V. Burkert and B. Ioffe, Phys. Lett.B296, 223 (1992)

[49] V. Burkert and B. Ioffe, J.Exp.Theor.Phys.78, 619 (1994)

[50] J. Soffer and O. V. Teryaev, Phys. Lett.B545, 323 (2002),

arXiv:hep-ph/0207252 [hep-ph]

[51] R. S. Pasechnik, J. Soffer, and O. V. Teryaev, Phys. Rev.D82, 076007 (2010),

arXiv:1009.3355 [hep-ph]

[52] K. G. Wilson, Phys. Rev. D10, 2445 (Oct 1974)

[53] A. Bazavovet al., Rev. Mod. Phys.82, 1349 (May 2010),http://link.aps.org/

doi/10.1103/RevModPhys.82.1349

[54] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann,et al., Science322, 1224

(2008), arXiv:0906.3599 [hep-lat]

[55] U.-G. Meissner(2006), arXiv:hep-ph/0610200 [hep-ph]

[56] V. Bernard and U.-G. Meissner, Ann.Rev.Nucl.Part.Sci. 57, 33 (2007),

arXiv:hep-ph/0611231 [hep-ph]

[57] M. Garcon and J. Van Orden, Adv.Nucl.Phys.26, 293 (2001),

arXiv:nucl-th/0102049 [nucl-th]

[58] Y. Kahn, W. Melnitchouk, and S. A. Kulagin, Phys. Rev.C79, 035205 (2009),

arXiv:0809.4308 [nucl-th]

[59] “The CEBAF accelerator,”http://www.aip.org/png/html/cebaf.htm, [On-

line; accessed 22-Sep-2013]

[60] C. W. Leemann, D. R. Douglas, and G. A. Krafft,

Annual Review of Nuclear and Particle Science51, 413 (2001)

[61] “Jefferson lab,”http://www.jlab.org/news/facts/vocab.html, [Online; ac-

cessed 22-Sep-2013]

http://dx.doi.org/10.1016/0370-2693(94)90610-6
http://arxiv.org/abs/hep-ph/9403383
http://arxiv.org/abs/nucl-th/0603012
http://dx.doi.org/10.1016/0370-2693(92)90831-N
http://dx.doi.org/10.1016/S0370-2693(02)02617-5
http://arxiv.org/abs/hep-ph/0207252
http://dx.doi.org/10.1103/PhysRevD.82.076007
http://arxiv.org/abs/1009.3355
http://link.aps.org/doi/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://link.aps.org/doi/10.1103/RevModPhys.82.1349
http://link.aps.org/doi/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1126/science.1163233
http://arxiv.org/abs/0906.3599
http://arxiv.org/abs/hep-ph/0610200
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140449
http://arxiv.org/abs/hep-ph/0611231
http://dx.doi.org/10.1007/0-306-47915-X_4
http://arxiv.org/abs/nucl-th/0102049
http://dx.doi.org/10.1103/PhysRevC.79.035205
http://arxiv.org/abs/0809.4308
http://www.aip.org/png/html/cebaf.htm
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132327
http://www.jlab.org/news/facts/vocab.html


201

[62] X. Zheng,Precision Measurement of Neutron Spin Asymmetry An
1 at Large xB j Us-

ing CEBAF at 5.7 GeV, Ph.D. thesis, Massachusetts Institute of Techology (Decem-

ber 2002)

[63] J. Grames, D. W. Higinbotham, and H. E. Montgomery, Scholarpedia5, 10211

(2010)

[64] Kazimi et al., in Proceedings of EPAC 2004(Lucerne, Switzerland, 2004) ISBN

ISBN 92-9083-231-2

[65] R. G. Fersch,Measurement of Inclusive Proton Double-Spin Asymmetries and Po-

larized Structure Functions, Ph.D. thesis, The College of William and Mary (August

2008)

[66] R. D. Vita, Measurement of the Double Spin Asymmetry inπ+ electroproduction

with CLAS, Ph.D. thesis, University of Genova (2000)

[67] S. E. Kuhn, Private communications (2013)

[68] C. Leemann, D. Douglas, and G. Krafft, Ann.Rev.Nucl.Part.Sci.51, 413 (2001)

[69] M. F. Spata, CERN Document Server(2001)

[70] M. Williams, Measurement of Differential Cross Sections and Spin Density Matrix

Elements along with a Partial Wave Analysis forγ p→ pω using CLAS at Jefferson

Lab, Ph.D. thesis, Carnegie Mellon University (November 2007)

[71] R. Ursic et al., http://cdsweb.cern.ch/record/586314/files/p101.pdf,

[Online; accessed 22-Sep-2013]

[72] https://hallaweb.jlab.org/wiki/index.php/Practical_Primer_on_

the_UVa_Target, [Online; accessed 22-Sep-2013],https://hallaweb.jlab.

org/wiki/index.php/Practical_Primer_on_the_UVa_Target

[73] C. Keithet al., Nucl.Instrum.Meth.A501, 327 (2003)

[74] M. Goldman,Spin Temperature and Nuclear Magnetic Resonance in Solids(Oxford

University Press, Oxford, 1970) ISBN 0-19-851251-1

[75] M. Amarian et al., Nuclear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated Equipment460, 239

(2001), ISSN 0168-9002

http://www.scholarpedia.org/article/The_Thomas_Jefferson_National% _Accelerator_Facility
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132327
http://cdsweb.cern.ch/record/586314/files/p101.pdf
http://cdsweb.cern.ch/record/586314/files/p101.pdf
https://hallaweb.jlab.org/wiki/index.php/Practical_Primer_on_the_UVa_Target
https://hallaweb.jlab.org/wiki/index.php/Practical_Primer_on_the_UVa_Target
https://hallaweb.jlab.org/wiki/index.php/Practical_Primer_on_the_UVa_Target
https://hallaweb.jlab.org/wiki/index.php/Practical_Primer_on_the_UVa_Target
http://dx.doi.org/10.1016/S0168-9002(03)00429-7
http://www.sciencedirect.com/science/article/pii/S0168900200009967


202

[76] http://ikpe1101.ikp.kfa-juelich.de/cosy-11/exp/drift_chambers/

DriftChambers_E.html, [Online; accessed 22-Sep-2013]

[77] Brooks, W., “CLAS - a large acceptance spectrometer forintermediate energy elec-

tromagnetic nuclear physics,” in15th Particles and Nuclei International Conference

1999, Uppsala (SE), 06/10/1999–06/16/1999(1999)

[78] http://www-meg.phys.cmu.edu/~bellis/dc/dcintro.html, [Online; ac-

cessed 22-Sep-2013]

[79] B. Meckinget al., Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment503, 513 (2003),

ISSN 0168-9002

[80] D. C. Doughty Jr., J. Englert, R. Hale and S. Lemon,A VXIbus Based Trigger for

the CLAS Detector at CEBAF, Tech. Rep. CLAS-NOTE-91-017 (JLAB, 1991)

[81] “The eg4 wiki,” https://clasweb.jlab.org/rungroups/eg4/wiki/index.

php/Main_Page, [Online; accessed 22-Sep-2013]

[82] V. Blobel et al., “The BOS system for the CLAS detector: Dynamic Memory Man-

agement,” (1995)

[83] P. Bosted, Private communications (2010)

[84] P. Bosted, S. Kuhn, Y. Prok ,Raster Corrections for EG1b, Tech. Rep.

CLAS-Note 2003-008 (JLAB, 2003)

[85] A. Klimenko and S. Kuhn ,Momentum Corrections for E6, Tech. Rep.

CLAS-Note 2003-005 (JLAB, 2003)

[86] S. E. Kuhn,http://clasweb.jlab.org/rungroups/eg1-dvcs/wiki/index.

php, [Online; accessed 16-Jun-2009]

[87] S. Tkachenko, Neutron Structure Functions Measured with Spectator Tagging,

Ph.D. thesis, Old Dominion University (December 2009)

[88] P. Bosted and H Avakian ,Multiple Scattering and Stray Magnetic Field Correc-

tions for Tracking in the Presence of Target Field, Tech. Rep. CLAS-Note 2006-006

(JLAB, 2006)

http://ikpe1101.ikp.kfa-juelich.de/cosy-11/exp/drift_chambers/DriftChambers_E.html
http://ikpe1101.ikp.kfa-juelich.de/cosy-11/exp/drift_chambers/DriftChambers_E.html
http://www.osti.gov/scitech/servlets/purl/754039
http://www-meg.phys.cmu.edu/~bellis/dc/dcintro.html
http://www.sciencedirect.com/science/article/pii/S0168900203010015
http://wwwold.jlab.org/Hall-B/notes/clas_notes91/note91-017.pdf
https://clasweb.jlab.org/rungroups/eg4/wiki/index.php/Main_Page
https://clasweb.jlab.org/rungroups/eg4/wiki/index.php/Main_Page
http://www.jlab.org/Hall-B/notes/clas_notes03/03-008.pdf
http://www.jlab.org/Hall-B/notes/clas_notes03/03-005.pdf
http://clasweb.jlab.org/rungroups/eg1-dvcs/wiki/index.php
http://clasweb.jlab.org/rungroups/eg1-dvcs/wiki/index.php
https://www.jlab.org/Hall-B/general/thesis/Tkachenko_thesis.pdf
https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2006-006.pdf?documentId=260


203

[89] W. R. Leo,Techniques for nuclear and particle physics experiments: ahow-to ap-

proach(Springer, 1994)

[90] M. Osipenko, A. Vlassov and M. Taiuti,A VXIbus Based Trigger for the CLAS

Detector at CEBAF, Tech. Rep. CLAS NOTE 2004-020 (JLAB, 2004)

[91] K. Egiyan,Determination of Electron Energy Cut Due to the CLAS EC Threshold,

Tech. Rep. CLAS-NOTE-1999-007 (JLAB, 1999)

[92] “The eg4 collaboration,”http://clasweb.jlab.org/shift/eg4/, [Online; ac-

cessed 22-Sep-2013]

[93] P. Bosted, Pair-Symmetric and Pion Backgrounds for EG1b, Tech. Rep.

CLAS-NOTE-2004-005 (JLAB, 2004)

[94] S. P. Phillips,http://clasweb.jlab.org/rungroups/eg4/wiki/index.php/

October_14%2C_2011, [Online; accessed 22-Sep-2013]

[95] P. Bosted, NH3 Correction for ND3 Target: EG1-DVCS Technical Note

17, Tech. Rep. (2011)http://wwwold.jlab.org/Hall-B/secure/eg1-dvcs/

technotes/hind/hind.pdf

[96] S. Koirala,EG1-DVCS Part-C Target Contamination, Tech. Rep. (2012)

[97] S. Kuhn and K. Adhikari, “Data Analysis for EG4 - extraction of g1 from data,”

(2013)

[98] K. Abe et al. (E143 Collaboration), Phys. Rev. D58, 112003 (Oct 1998)

[99] T.V. Kuchto and N.M. Shumeiko, Nuclear Physics B219, 412 (1983), ISSN 0550-

3213

[100] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys.41, 205 (Jan 1969)

[101] P. Bosted and M. Christy, Phys.Rev.C77, 065206 (2008), arXiv:0711.0159 [hep-ph]

[102] R. G. Ferschet al., “Precise Determination of Proton Spin Structure Functions at

Low to ModerateQ2 with CLAS,” (October 2012), To be published

[103] N. Guleret al., “Precise Determination of Deuteron and Neutron Spin Structure

Functions at Low to ModerateQ2 with CLAS,” (October 2013), To be published

http://www.jlab.org/Hall-B/notes/clas_notes04/2004-020.pdf
http://wwwold.jlab.org/Hall-B/notes/clas_notes91/note91-017.pdf
http://clasweb.jlab.org/shift/eg4/
http://www.jlab.org/Hall-B/notes/clas_notes04/2004-005.ps
http://clasweb.jlab.org/rungroups/eg4/wiki/index.php/October_14%2C_2011
http://clasweb.jlab.org/rungroups/eg4/wiki/index.php/October_14%2C_2011
http://wwwold.jlab.org/Hall-B/secure/eg1-dvcs/technotes/hind/hind.pdf
http://wwwold.jlab.org/Hall-B/secure/eg1-dvcs/technotes/hind/hind.pdf
https://userweb.jlab.org/~kuhn/EG4/EG4_analysis.pdf
http://dx.doi.org/10.1103/PhysRevD.58.112003
http://www.sciencedirect.com/science/article/pii/0550321383906508
http://dx.doi.org/10.1103/RevModPhys.41.205
http://dx.doi.org/10.1103/PhysRevC.77.065206
http://arxiv.org/abs/0711.0159


204

[104] M. Holtrop, “GSIM: CLAS GEANT Simulation,”http://nuclear.unh.edu/

~maurik/gsim_info.shtml, [Online; accessed 22-Sep-2013]

[105] B. Dey,Differential cross section and polarization extractions for γ p→ K+Σ0 and

γ p→ φ p using CLAS at Jefferson Lab, towards a partial wave analysis in search of

missing baryon resonances, Ph.D. thesis, Carnegie Mellon University (July 2011)

[106] J. Zhang,Exclusiveπ− Electro-production from the Neutron in the Resonance Re-

gion, Ph.D. thesis, Old Dominion University (May 2010)

http://nuclear.unh.edu/~maurik/gsim_info.shtml
http://nuclear.unh.edu/~maurik/gsim_info.shtml


205

APPENDIX A

DERIVATION OF THE GDH SUM RULE

The real photon Gerasimov-Drell-Hearn (GDH) sum rule is derived [25, 26] using the gen-

eral assumptions of Lorentz and Gauge invariance (in the form of low energy theorem),

unitarity (in the form of optical theorem) and causality (inthe form of an unsubtracted

dispersion relation for the forward Compton scattering, also assuming crossing symmetry)

[32]. For the forward Compton scattering of a real photon on anucleon, the scattering am-

plitudeT(ν,θ = 0) is given as follows in terms of the spin-independent and spindependent

amplitudesf (ν) andg(ν):

T(ν) = ~ε∗ ·~ε f (ν)+ i~σ · (~ε∗×~ε)g(ν) (155)

where~ε and~ε∗ are the polarization vectors of the incident and scattered photons respec-

tively. In order for the crossing symmetry to hold true, the T-matrix must be symmetric

under the exchange of the incoming and the outgoing photons,~ε∗ ↔~ε andν →−ν, im-

plying that the amplitudes f and g are an even and odd functions of ν respectively. These

amplitudes can be separately determined by scattering circularly polarized photons off

a longitudinally polarized nucleon, with f and g obtained from the cases of parallel or

anti-parallel target polarization with respect to the photon momentum~q. The polarization

vectors for a left-handed (+1) and right-handed (-1) circularly polarized photons moving

along z-axis are given by:

ε± =± 1√
2
(êx± iêy) (156)

with the transverse gauge (ε ·q=0) used and photon 4-momentum and polarization defined

asq= (ν,~q) andε = (0,~ε with the conditionq ·q.

Unitarity of scattering matrix means that the imaginary parts of the forward amplitudes

f and g are connected to the total photoabsorption cross sections via the optical theorem as

follows:

Im f(ν) =
ν
8π

(

σ 1
2
(ν)+σ 3

2(ν)

)

=
ν
4π

σT (157)

and

Im g(ν) =
ν
8π

(

σ 1
2
(ν)−σ 3

2(ν)

)

=
ν
4π

σT T (158)
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with the helicity dependent cross-sections as defined earlier in section.

At small photon energies, the amplitudes can be expanded in powers ofν with the low

energy theorem (LET) resulting in

f (ν) =
Z2e2

4πM
+(α +β )ν2+O(ν4) (159)

g(ν) =
κ2e2

8πM2ν + γ0ν3+O(ν5) (160)

where Z is the charge of the target (in units of ”e”). In the expansion for the spin-

independent amplitudef (ν), the leading term f(0) is the classical Thomson scattering

result, theO(ν2 term describes Raleigh scattering in terms of the electric and magnetic

dipole polarizabilitiesα andβ respectively. On the other hand, in the expansion of the

spin-flip amplitude g, the leading term is associated with heanomalous magnetic moment

(κ), and the nextO(ν3) term is related to the forward spin polarizabilityγ0, which carries

the information on the spin structure.

Finally, the dispersion relations for the two forward amplitudes f (ν) and g(ν) are

derived using the analytic properties of the forward Compton scattering amplitudes with

unitarity and crossing symmetry. For the spin-averaged amplitude f (ν), the Kramers-

Kronig relation from optics, which connects the real part off with an integral over the

imaginary part of f:

Re f(ν) =
2
π

P

∫ ∞

ν0

dν ′ν ′ Im f(ν ′)
ν ′2−ν2 (161)

WhereP denotes the principal value of the integral. The imaginary part is next replaced

by the total cross-section using the optical theorem, so thedispersion relation becomes:

Re f(ν) = f (0)+
ν2

2π2P

∫ ∞

ν0

dν ′ σT(ν ′)
ν ′2−ν2 (162)

with f (0) being the Thomson limit of eq. 159. Because the total cross section rises in

a slow logarithmic manner above the resonance region, a subtraction is made atν = 0 to

ensure the integral converges.

Applying through the same method, an unsubtracted dispersion relation is derived for

the spin-dependent amplitude as follows:

Re g(ν) =
ν

4π2P

∫ ∞

ν0

dν ′ν ′
σ 1

2
(ν ′)−σ 3

2
(ν ′)

ν ′2−ν2 (163)
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where, now the optical theorem is used to replace the imaginary part of the amplitude

with the helicity dependent cross-section difference. In this spin-dependent case, the non-

subtraction hypothesis is used because unlike the total cross-section the helicity dependent

cross-section difference does not rise at largeν ′, but decreases fast enough to ensure the

convergence of the integral without any subtraction.

Finally, by comparing the first order i.e.O(ν) terms in Eq.160 and Eq.163, we arrive

at the GDH sum rule as follows:

I ≡− α
2M2κ2 =

1
4π2

∫ ∞

ν0

dν
ν

[

σ 1
2
(ν)−σ 3

2

]

(164)

whereα = e2

4π . One can similarly derive the sum rules for the electric and magnetic polar-

izabilities and the forward spin polarizability.
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APPENDIX B

FFREAD CARDS USED BY GSIM

TABLE 2. Some of the ffread cards & their values which are usedas GSIM input parame-

ters.
Cards Values

MAGTYPE 2

MAGSCALE -0.5829 0.0(for 1.337 GeV)

MAGSCALE -0.3886 0.0(for 1.993 GeV)

GEOM ’ALL’

NOMC ’EC’ ’SC’ ’CC’ ’DC’

NOGEOM ’MINI’ ’ST’ ’TG2’ ’TG’ ’SOL’

NOGEOM ’PTG’ ’FOIL’

NOMATE ’PTG’ ’FOIL’

PTGIFIELD 1

TMGIFIELD 1

TMGIFIELDM 1

TMGFIELDM 51.0

TMGSCALE 0.979

PTGMAXRAD 300.0

MGPOS 0.0 0.0 -100.93

BAFF 3. 9. 165.3 9. 180.5 9. 195.8

RUNG 50556

AUTO 1

KINE 1
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