Spectrometer Optics Calibration for g2p Experiment

Chao Gu
University of Virginia
On Behalf of the E08-027 Collaboration
E08-027 Collaboration

Spokespeople
Alexander Camsonne (JLab)
J.P. Chen (JLab)
Don Crabb (UVA)
Karl Slifer (UNH)

Post Docs
Kalyan Allada
James Maxwell
Vince Sulkosky
Jixie Zhang

Graduate Students
Toby Badman
Melissa Cummings
Chao Gu
Min Huang
Jie Liu
Pengjia Zhu
Ryan Zielinski
Introduction

• The g2p experiment will measure the proton structure function g_2 in the low Q^2 region (0.02–0.2 GeV2) for the first time

• Goal: 5% systematic uncertainty when measuring cross section

• Hall A High Resolution Spectrometer (HRS)
 • 10^{-4} momentum resolution
HRS Optics

• Optics study:
 • Reconstruct the kinematics variables of the scattered electrons with the tracking information

• Optics Goal:
 • <1.0% systematic uncertainty of scattering angle, which will contribute <4.0% to the uncertainty of cross section

 \[\sigma \sim 1/\sin^4(\theta/2) \]

• The final systematic uncertainty is not sensitive to the uncertainty of the momentum of the scattered electrons
HRS Optics

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentums
HRS Optics

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentum
- Septa magnet
HRS Optics

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentums
- Septa magnet
- 2.5T/5.0T Target field
HRS Optics

- Optics study will provide a matrix to transform VDC readouts to kinematics variables which represents the effects of these magnets

\[
\begin{pmatrix}
\delta \\
\theta \\
y \\
\phi
\end{pmatrix} =
\begin{pmatrix}
\langle \delta | x \rangle & \langle \delta | \theta \rangle \\
\langle \theta | x \rangle & \langle \theta | \theta \rangle \\
\langle y | y \rangle & \langle y | \phi \rangle \\
\langle \phi | y \rangle & \langle \phi | \phi \rangle
\end{pmatrix}
\begin{pmatrix}
x \\
\theta \\
y \\
\phi
\end{pmatrix}
\]

First Order Matrix
Angle Calibration

- Angle Calibration:
 - Decide the center scattering angle
 - Calibrate the angle matrix elements

\[\theta = \arccos \frac{\cos \theta_0 - \phi_{tg} \sin \theta_0}{\sqrt{1 + \theta_{tg}^2 + \phi_{tg}^2}} \]
Angle Calibration

- Angle Calibration:
 - Decide the center scattering angle
 - Calibrate the angle matrix elements

- Decide the center scattering angle

- Direct measurement: \(\sim 1 \text{mrad} \)

- Idea: Use elastic scattering on different target materials (Carbon foil in LHe, or CH\(_2\))

\[
\Delta E' = \frac{E}{1 + \frac{E}{M_1}(1 - \cos \theta)} \quad - \quad \frac{E}{1 + \frac{E}{M_2}(1 - \cos \theta)}
\]

- The accuracy to determine this difference is \(<50\text{KeV} \rightarrow <0.5\text{mrad}\)
Angle Calibration

• Calibrate the matrix elements:
 • Fit with data which we already know the real scattering angle
 • Sieve slit
 • Allow to calculate the scattering angle with geometry

![Diagram of target, sieve slit, and septa with dimensions and labels]

*Dimensions in inches
Angle Calibration

Before Optimize

After Calibration

Resolution (FWHM): ~1.5mrad
Momentum Calibration

- Idea is same as the calibration of the angle matrix element
- Fit with data which we already know the real scattering momentum
- Elastic scattering on Carbon target
- Resolution (FWHM) \(~2 \times 10^{-4}\)
HRS Optics Study

- To include target field
- Sieve slit method is not useful
HRS Optics Study

- To include target field
 - Sieve slit method is not useful
- Idea: separate reconstruction process to 2 parts:
 - Use the no target field result to deal with the reconstruction from VDC to sieve slit
 - Use the field map to do a ray trace of the scattered particle from sieve slit to target
HRS Optics Study

- Use a Monte-Carlo simulation to check this idea
 - Compare the kinematics of the generated electrons and the reconstructed result
 - The result shows a good consistence <1%

![Scattering Angle](image1)

![Relative Momentum](image2)
• Optics study with out target field works well
• Optics study with target field
 • Ideas is tested with simulation and appeared to work
 • Need to check with data
Thanks

- I would like to thank the following people for their guidance and helpful discussions!
 - John Lerose
 - Jian-ping Chen
 - Nilanga Liyanage
 - Min Huang, Jixie Zhang, Vince Sulkosky
 - Jin Huang, Xin Qian, Yi Qiang, Zhihong Ye
Backups
Experiment Setup

- Hall A High Resolution Spectrometer
 - High momentum resolution: 10^{-4} level over a range of 0.8-4.0 GeV/c
 - High momentum acceptance: $|\delta p/p| < 4.5\%$
 - Wide range of angular settings: 12.5°~150° for left arm, 12.5°~130° for right arm
 - Angular acceptance: ±30 mrad (Horizontal) and ±60 mrad (Vertical)