Spectrometer Optics Calibration for g2p Experiment

Chao Gu University of Virginia On Behalf of the E08-027 Collaboration

E08-027 Collaboration

Spokespeople

Alexander Camsonne (JLab)

J.P. Chen (JLab)

Don Crabb (UVA)

Karl Slifer (UNH)

Post Docs

Kalyan Allada

James Maxwell

Vince Sulkosky

Jixie Zhang

Graduate Students

Toby Badman

Melissa Cummings

Chao Gu

Min Huang

Jie Liu

Pengjia Zhu

Ryan Zielinski

Introduction

- The g2p experiment will measure the proton structure function g_2 in the low Q^2 region (0.02-0.2 GeV²) for the first time
- Goal: 5% systematic uncertainty when measuring cross section
- Hall A High Resolution Spectrometer (HRS)
 - 10⁻⁴ momentum resolution

- Optics study:
 - Reconstruct the kinematics variables of the scattered electrons with the tracking information
- Optics Goal:
 - <1.0% systematic uncertainty of scattering angle, which will contribute <4.0% to the uncertainty of cross section

$$\sigma \sim 1/\sin^4(\theta/2)$$

 The final systematic uncertainty is not sensitive to the uncertainty of the momentum of the scattered electrons

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentums

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentums
- Septa magnet

- HRS has a series of magnets
 - 3 quadrupoles to focus
 - 1 dipole to disperse on momentums
- Septa magnet

 Optics study will provide a matrix to transform VDC readouts to kinematics variables which represents the effects of these magnets

- Angle Calibration:
 - Decide the center scattering angle
 - Calibrate the angle matrix elements

$$\theta = \arccos \frac{\cos \theta_0 - \phi_{tg} \sin \theta_0}{\sqrt{1 + \theta_{tg}^2 + \phi_{tg}^2}}$$

- Angle Calibration:
 - Decide the center scattering angle
 - Calibrate the angle matrix elements
- Decide the center scattering angle
 - Direct measurement: ~1mrad
 - Idea: Use elastic scattering on different target materials (Carbon foil in LHe, or CH₂)

$$\Delta E' = \frac{E}{1 + \frac{E}{M_1} (1 - \cos \theta)} - \frac{E}{1 + \frac{E}{M_2} (1 - \cos \theta)}$$

 The accuracy to determine this difference is <50KeV -> <0.5mrad

- Calibrate the matrix elements:
 - Fit with data which we already know the real scattering angle
 - Sieve slit
 - Allow to calculate the scattering angle with geometry

Momentum Calibration

- Idea is same as the calibration of the angle matrix element
- Fit with data which we already know the real scattering momentum
- Elastic scattering on Carbon target
- Resolution (FWHM)
 ~2×10⁻⁴

HRS Optics Study

- To include target field
 - Sieve slit method is not useful

HRS Optics Study

- To include target field
 - Sieve slit method is not useful
- Idea: separate reconstruction process to 2 parts:
 - Use the no target field result to deal with the reconstruction from VDC to sieve slit

HRS Optics Study

- Use a Monte-Carlo simulation to check this idea
 - Compare the kinematics of the generated electrons and the reconstructed result
 - The result shows a good consistence <1%

Black: generated

Red: reconstructed

Scattering Angle

Relative Momentum

Conclusion

- Optics study with out target field works well
- Optics study with target field
 - Ideas is tested with simulation and appeared to work
 - Need to check with data

Thanks

- I would like to thank the following people for their guidance and helpful discussions!
 - John Lerose
 - Jian-ping Chen
 - Nilanga Liyanage
 - Min Huang, Jixie Zhang, Vince Sulkosky
 - Jin Huang, Xin Qian, Yi Qiang, Zhihong Ye

Backups

Experiment Setup

- Hall A High Resolution Spectrometer
 - High momentum resolution: 10⁻⁴
 level over a range of 0.8-4.0 GeV/c
 - High momentum acceptance: |δp/p| <
 4.5%
 - Wide range of angular settings: 12.5°~150° for left arm, 12.5°~130° for right arm
 - Angular acceptance: ±30 mrad
 (Horizontal) and ±60 mrad (Vertical)

