Spectrometer Optics Calibration for g2p Experiment

Chao Gu University of Virginia On Behalf of the E08-027 Collaboration

HRS Optics

- HRS has a series of magnets
 - 3 quadrupoles to focus and 1 dipole to disperse on momentums
- Septa magnet
- Optics study will provide a matrix to transform VDC readouts to kinematics variables which represents the effects of these magnets

HRS Optics

- The g2p experiment will measure the proton structure function g_2 in the low Q^2 region (0.02-0.2 GeV²) for the first time
- Goal: 5% systematic uncertainty when measuring cross section
- Optics Goal:
 - <1.0% systematic uncertainty of scattering angle, which will contribute <4.0% to the uncertainty of cross section

$$\sigma \sim 1/\sin^4(\theta/2)$$

 Momentum uncertainty is not sensitive, but it is not hard to reach 10⁻⁴ level

Angle Calibration

- Decide the center scattering angle
 - Direct measurement: ~1mrad
 - Idea: Use elastic scattering on different target materials

$$\Delta E' = \frac{E}{1 + \frac{E}{M_1} (1 - \cos \theta)} - \frac{E}{1 + \frac{E}{M_2} (1 - \cos \theta)}$$

- Data taking: Carbon foil in LHe, or CH₂ foil
- The accuracy to determine this difference is <50KeV -> <0.5mrad

Matrix Calibration

- Calibrate the angle and momentum matrix elements:
 - Use carbon foil target and point beam
 - Use sieve slit to get the real scattering angle from geometry
 - Angle: Fit with data which we already know the real scattering angle
 - Momentum: Use the real scattering angle to calculate elastic

scattering momentum of carbon target

-000000

5 0000000

Matrix Calibration: Angle

Matrix Calibration: Angle

Sieve H [m]

Sieve H [m]

Matrix Calibration: Momentum

LHRS

Matrix Calibration: Momentum

RHRS

- To include target field
 - Normal sieve slit method is not useful
- Idea: separate reconstruction process to 2 parts:
 - Use HRS transform matrix to do the reconstruction from VDC to sieve slit

- Recalibrate the angle matrix elements:
 - Start with the transform matrix without target field
 - To fit the matrix element, need to know the effective theta and phi angle
 - Use a modified SAMC simulation to get these effective angles

- Reconstruct the scattering angle:
 - Use the HRS transform matrix to get the effective target variables
 - Project the effective target variables to sieve slit
 - Use the field map to calculate the trajectory of the scattered electron, which will tell us the real scattering angle

- Run simulation to decide the effective theta and phi
 - Assuming point beam
 - Beam energy 2.254GeV, Target field 2.5T

Sieve pattern after calibration

- Use carbon foil target and point beam
- Sieve pattern is decided by both the beam position and the reconstructed angle
- Directly use BPM readout to provide beam position here

 Compare reconstructed target theta and phi angle with the calculated result

Conclusion

- Optics study with out target field works well
- Optics study with target field
 - The reconstructed procedure is designed with help of simulation
 - The method is tested with 1 set of the data and could do the reconstruction
 - Will test the method on different settings

E08-027 Collaboration

Spokespeople

Alexander Camsonne (JLab)

J.P. Chen (JLab)

Don Crabb (UVA)

Karl Slifer (UNH)

Post Docs

Kalyan Allada

Elena Long

James Maxwell

Vince Sulkosky

Jixie Zhang

Graduate Students

Toby Badman

Melissa Cummings

Chao Gu

Min Huang

Jie Liu

Pengjia Zhu

Ryan Zielinski

Thanks

- I would like to thank the following people for their guidance and helpful discussions!
 - Min Huang and Ryan Zielinski who also did many calibration work
 - Jian-ping Chen
 - Nilanga Liyanage
 - Jixie Zhang, Vince Sulkosky
 - John Lerose
 - Jie Liu, Jin Huang, Xin Qian, Yi Qiang, Kiad Saenboonruang,
 Zhihong Ye