The g₂^P Analysis Update

Detectors & Simulation

Jie Liu University of Virginia

Outline

Detector Calibration

✓ VDC t₀
✓ LHRS Cherenkov
✓ LHRS Pion Rejector

Efficiency Study

✓LHRS PID Optimization✓VDC Multi-track Efficiency

Data Quality Check

✓ VDC t₀ , Tracking variable
✓ Multi-track Efficiency

Simulation Study

✓ Energy Loss Model✓ Packing Fraction Simulation

CompletedIn progress

VDC t_0 Calibration

- Align timing reference t_0 for each VDC wire
- Time = TDC resolution * (t_0 offset channel rawtime channel)

11/14/2014

 g_2^{P} Collaboration Meeting

VDC t_0 **Effects**

- Timing reference t_0 choice
 - ✓ Maximum slope
 - Maximum slope extrapolate to zero

11/14/2014

 g_2^P Collaboration Meeting

Cherenkov Calibration

- Align single photoelectron peak
 - Contamination from both pedestal and main photoelectron peak
 - Need Timing and track information to select the clean peak

Green region: selected for Single photoelectron

11/14/2014

 g_2^{P} Collaboration Meeting

Cherenkov Calibration

Single photoelectron peak

11/14/2014

 g_2^P Collaboration Meeting

ADC Pedastal for Block #22

Pion Rejector Calibration

- Not a full energy absorption detector, radiation length $\sim 11.4 X_0$
- Align Pedestal and Main Electron peak first for blocks in one layer

ADC Main Peak for Block #22

11/14/2014

 g_2^P Collaboration Meeting

Pion Rejector Calibration

- Optimize additional gain factor for each layer
- Longitudinal shower model

11/14/2014

 g_2^{P} Collaboration Meeting

VDC Multi-track Efficiency

• Motivation: VDC one track events probability gets as low as 70% around elastic region

LHRS One-track Events Probability

11/14/2014

 g_2^P Collaboration Meeting

VDC Multi-track Efficiency

• Method: point the track from VDC to calorimeters and sum up the total energy in the surrounding lead glass blocks 3*2.

11/14/2014

 g_2^P Collaboration Meeting

VDC Multi-track Study

Requirements:

- A good position database for lead glass (can reconstruct from data).
- A detailed case study for cluster energy contamination between tracks.

Cluster center comparison for prl1

11/14/2014

 g_2^P Collaboration Meeting

VDC Multi-track Efficiency

 The VDC efficiency systematic uncertainty down to below 1% for most kinematic settings.

11/14/2014

g_2^{P} Collaboration Meeting

VDC t_0 Check

• t_0 check for all production runs for VDC each player

13

VDC Track Variable Check

Track Variable mean value check for all production runs

Energy Loss Model

• Use g2sim to simulate the real experiment, energy loss step by step

11/14/2014

 g_2^P Collaboration Meeting

Energy Loss Model

Bremesstrahlung

✓ External Bremesstrahlung

 \Box sample an energy loss $I_e(E_0, E, t) = bt(E_0 - E)^{-1} \left[\frac{E}{E_0} + \frac{3}{4} (\frac{E_0 - E}{E_0})^2\right] (\ln \frac{E_0}{E})^{bt}$

Internal Bremesstrahlung

equivalent radiator approximation

Ionization

- Landau distribution
- ✓ Mean Energy Loss fluctuation Model

 \square Excite with two energy levels or ionization with energy loss according to E^{-2}

- □ Can be used for any thickness of media
- □ Approach the Landau distribution at the limit of validity of Landau theroy

11/14/2014

 g_2^{P} Collaboration Meeting

Simulation versus Data

• Comparison between simulated dp versus optics run dp

2.2 GeV, straight through Carbon without LHe run

11/14/2014

 g_2^{P} Collaboration Meeting

Jie Liu <jie@jlab.org>

17

Packing Fraction Study--Simulation

- Packing Fraction: Ratio of NH_3 volume to the whole cell
- Method: Compare the experiment yields with the simulated yields

11/14/2014

 g_2^{P} Collaboration Meeting

Packing Fraction Study--Simulation

 $\delta(\sigma_N/\sigma_{He})$ vs. scattering angle

19

Packing Fraction Study--Simulation

• 2.2GeV, 5T, Longitudinal, Material 18

Runs	Туре	Exp. Yields	Beam ×/mm	Beam y/mm	Beam th/mr	Beam ph/mr
5649	Carbon	855025	0.22	-3.84	-0.54	0.10
5650	Empty	481113	0.16	-3.59	-0.30	0.02
5651	Dummy	480956	-0.23	-3.76	-0.53	-0.40
5652	Production	832366	0.34	-3.65	-0.40	0.19

• $p_f = 0.51$

 assume run 5652, 5649, 5650, relative beam shift is small, bpm absolute uncertainty 1mrad

•
$$\delta\left(\frac{\sigma_{He}}{\sigma_{He1}}\right) = \delta\left(\frac{\sigma_{He2}}{\sigma_{He1}}\right) = \delta\left(\frac{\sigma_{He3}}{\sigma_{He1}}\right) = 0, \ \delta\left(\frac{\sigma_{N}}{\sigma_{He1}}\right) = 4.74\%, \ \delta\left(\frac{\sigma_{H}}{\sigma_{He1}}\right) = -0.95\%, \ \delta\left(\frac{\sigma_{C}}{\sigma_{He1}}\right) = 3.63\%$$

• ${}^{\delta_{Pf}}/_{Pf} = 7.61\%$, 1mrad uncertainty

11/14/2014

 g_2^{P} Collaboration Meeting

Graduate Plan

- Shorterm
- \Box dp simulation study and simulation package (1 month)
- Longterm
- □ Finalize thesis topic and publish
- Expected graduate by summer 2016, depends
- Prefer an academic work