The g, Spin Structure Function

Melissa Cummings The College of William and Mary DIS2014 April 30, 2014

Inclusive Electron Scattering

Inclusive Electron Scattering

Quark-Parton Model

• Infinite momentum frame: partons are point-like, non-interacting particles

• Structure functions can be written in terms of quark distribution functions:

$$F_1(x) = \frac{1}{2} \sum_f z_f^2 [q_f(x) + \bar{q}_f(x)]$$
$$F_2(x) = 2x F_1(x)$$
$$g_1(x) = \frac{1}{2} \sum_f z_f^2 [q_f(x) - \bar{q}_f(x)]$$

Quark-Parton Model

• Infinite momentum frame: partons are point-like, non-interacting particles

• Structure functions can be written in terms of quark distribution functions:

$$F_1(x) = \frac{1}{2} \sum_f z_f^2 [q_f(x) + \bar{q}_f(x)]$$

$$F_2(x) = 2x F_1(x)$$

$$g_1(x) = \frac{1}{2} \sum_f z_f^2 [q_f(x) - \bar{q}_f(x)]$$

No simple interpretation for g_2

g₂ includes contributions from quark gluon interactions

What is
$$g_2$$
? $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \overline{g}_2(x,Q^2)$ $\int_x^1 \frac{\partial}{\partial y} [\frac{mq}{M} h_T(y,Q^2) + \zeta(y,Q^2)] \frac{dy}{y}$ $h_{\overline{r}}$: Arises from quark transverse polarization distribution ζ : Arises from quark-gluon interactions (twist-3)

• Measurements of g_2 require a transversely polarized target – more difficult experimentally

Oth moment (no *x*-weighting): Burkhardt-Cottingham Sum Rule
 Valid at all Q²

$$\int_0^1 g_2(x, Q^2) dx = 0$$

• 1st moment (*x*² weighting):

•High $Q^2 - d_2$, twist-3 color polarizability, test of lattice QCD •Low Q^2 – spin polarizabilities, test of χ PT

Jefferson Lab

CEBAF

• High intensity electron accelerator based on CW SRF technology

- E_{max} = 6 GeV
- $I_{max} = 200 \ \mu A$
- Pol_{max} = 85%

Recently upgraded to 12 GeV

• Prior to measurements at JLab, first dedicated experiment was SLAC E155x

- g_2 Measurements on the neutron at JLab:
 - E97-103: W>2 GeV, $Q^2 \approx 1$ GeV², $x \approx 0.2$, study higher twist (published)
 - E99-117: W>2 GeV, high Q² (3-5 GeV²) (published)
 - E94-010: moments at low Q² (0.1-1 GeV²) (published)
 - E97-110: moments at very low *Q*² (0.02-0.3 GeV²) (analysis)
 - E01-012: moments at intermediate Q² (1-4 GeV²) (published)
 - E06-014: moments at high Q^2 (2-6 GeV²) (analysis)

- g_2 Measurements on the proton at JLab
- Hall C:
 - RSS: moments at intermediate Q² (1-2 Gev²) (published)
 - SANE: moments at high Q² (2-6 GeV²) (analysis)
- Hall A:
 - E08-027 (g₂^p): moments at very low Q² (0.02-0.2 GeV²) (analysis)

0^{th} Moment of g_2

$$\Gamma_2 = \int_0^1 g_2(x, Q^2) dx = 0$$

Brown: SLAC E155x Red: Hall C RSS Black: Hall A E94-010 Green: Hall A E97-110 (preliminary) Blue: Hall A E01-012 (preliminary)

BC Sum = Measured + Low x + Elastic *Measured:* open circles *Low x:* unmeasured low-*x* part of the integral – assume leading twist behavior *Elastic:* obtained from well known Form Factors

1st Moment: Spin Polarizabilities

- Generalized spin polarizabilities γ_0 and δ_{LT} are a benchmark test of χ PT
- At low Q^2 , generalized polarizabilities have been evaluated with χ PT calculations
 - Difficulty is how to include the nucleon resonance contributions
 - γ_0 is sensitive to resonances, δ_{LT} is not

Spin Polarizabilities

• Neutron results for γ_0 Preliminary • RBχPT calculation (including resonance contributions) agrees with the experimental results γ₀ 10^{-*} fm^{*} Large discrepancy between data and 10 Preliminary HB_χPT calculation (without explicit ao et al. O p^a + O p⁴ resonance contributions) Bernard et al. (VM + A) 0.2 0.05 0.1 0.15 0.25 Q² [GeV/c]² $\gamma_0 \left(Q^2 \right) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 \left(x, Q^2 \right) - \frac{4M^2}{Q^2} x^2 g_2 \left(x, Q^2 \right) \right] dx$

(V. Sulkosky)

Spin Polarizabilities

- δ_{LT} is seen as a more suitable testing ground insensitive to Δ -resonance
- \bullet Data is in significant disagreement with χPT calculations
- MAID predictions are in good agreement with the results

$$\delta_{LT} \left(Q^2 \right) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 \left(x, Q^2 \right) + g_2 \left(x, Q^2 \right) \right] dx$$

d₂ & Higher Twist

$$d_2(Q^2) = \int_0^1 dx x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2) \right)$$

$$= 3 \int_0^1 dx x^2 \left(g_2(x, Q^2) - g_2^{WW}(x, Q^2) \right)$$

- Doesn't contain any twist-2 contributions
- High *Q*²: parton model with gluon exchange
- Low *Q*²: ?
- High precision data at large Q² is necessary for a benchmark test of Lattice QCD predictions

g_2^{p} Experiment at JLab (E08-027)

- Will provide the first measurement of g_2 for the proton at low to moderate Q^2
- Will provide insight on several outstanding physics puzzles:
 - BC sum rule
 - Discrepancy suggested for high-Q² data
 - $\delta_{\scriptscriptstyle LT}$ polarizability
 - χPT calculations do not match data
 - Finite size effects:
 - Hydrogen hyperfine splitting: proton structure contributes to uncertainty
 - Proton charge radius: proton polarizability contributes to uncertainty
- Data was taken in Hall A in 2012 analysis is currently underway

Finite Size Effects

Nucleus ~ 10⁻¹⁵

Hyperfine Splitting of Hydrogen:

Splitting expressed in terms of Fermi Energy E_F :

$$\Delta_E = (1+\delta) E_F$$

Where:

Finite Size Effects

Proton Charge Radius:

- Proton charge radius from μP disagrees with eP scattering result by ${\sim}7\sigma$

$< R_p > = 0.84184 \pm 0.00067 \text{ fm}$	Lamb shift in muonic hydrogen
$< R_p > = 0.897 \pm 0.018 \text{ fm}$	World analysis of eP scattering
<r<sub>p> = 0.8768 ± 0.0069 fm</r<sub>	CODATA world average

• Main uncertainties arise from the proton polarizability and different value of the Zemach radius

$$\begin{split} \textbf{Experimental Technique} \\ \hline \textbf{e}^{e} \textbf{e}^$$

Summary

• $g_2^{\ p}$ experiment will provide first precision measurement for proton at low Q^2 0.02 < Q^2 < 0.2 GeV²

• Will provide insight on several outstanding physics puzzles

- BC Sum Rule: Violation suggested for proton at large Q^2 (SLAC E155x)
- \bullet Longitudinal-transverse spin polarizability: benchmark test of χPT , discrepancy seen for neutron data

• Hydrogen hyperfine splitting: correction for proton structure contributes to uncertainty

• Proton charge radius: contributions to uncertainty include proton polarizability

Future Experiments

- Upcoming measurements at JLab in the 12 GeV era
- Hall A
 - E12-06-122: *A1n* in valence quark region (8.8 and 6.6 GeV)
- Hall B

• E12-06-109: longitudinal spin structure of the nucleon

• Hall C

- E12-06-110: *A1n* in valence quark region (11 GeV)
- E12-06-121: g_2^n and d_2^n at high Q^2

Finite Size Effects

Nucleus ~ 10⁻¹⁵

Hyperfine Splitting of Hydrogen:

Splitting expressed in terms of Fermi Energy E_F:

$$\Delta_E = (1+\delta) E_F$$

Where:

Jefferson Lab

Error Budget

Systematic Error Budget for Polarized Cross Section Difference

Source	%
Cross Section	5-7
P _b P _t	4-5
Radiative Corrections	3
Parallel Contribution	< 1
Total	7-9

Error Budget

Experimental Observables:

$$A_{raw} = \frac{\frac{N^{+}}{LT^{+}Q^{+}} - \frac{N^{-}}{LT^{-}Q^{-}}}{\frac{N^{+}}{LT^{+}Q^{+}} + \frac{N^{-}}{LT^{-}Q^{-}}} \longrightarrow A_{\perp}^{exp} = \frac{A_{\perp}^{raw}}{fP_{t}P_{b}}$$

Source	%
Target Polarization	3-4
Beam Polarization	2-3
Dilution Factor/Packing Fraction	~1

Error Budget

Experimental Observables:

$$\sigma_0^{raw} = \frac{d\sigma^{raw}}{d\Omega dE'} = \frac{ps_1N}{N_{in}\rho LT\epsilon_{det}} \frac{1}{\Delta\Omega\Delta E'\Delta Z}$$

 $\sigma_0^{exp} = \sigma_0^{raw} - \sigma^{unpol}$