Rastered Beam Position Reconstruction

Pengjia Zhu 2/17/2012

Signal Delay from BPM Receiver

Analog Delay < 1µs

This Delay time is fixed

To get this delay, there have 2 methods:

- 1. ask John Musson to give us this number
- 2. reconstruct the phase

Nonlinearity and x,y couple

Some nonlinearity need to be checked in event-by-event position reconstruction:

- 1. from raster magnet itself
- 2. from quadruple magnet

Beam Position Reconstruction

$$X = \langle X \rangle + X(I_{sr}) + X(I_{fr})$$

<X> is average beam position in 1000~2000 events gotten from BPM $X(I_{Sr})$, $X(I_{fr})$'s the position offset calculated by 2 rasters' current If ignore linearity, $X(I_{sr}) = m_{sr} \cdot (I_{sr} - \langle I_{sr} \rangle)$, $X(I_{fr}) = m_{fr} \cdot (I_{fr} - \langle I_{fr} \rangle)$

To get $X(I_{Sr})$ and $X(I_{fr})$, we need to do raster calibration

Slow Raster Calibration Procedure:

- 1. Change X shape to sin(ωt), close Y
- 2. Take data, Get relationship between BPM readout and slow raster current readout, BPM information need to take phase reconstruction
- 3. do the same thing as Y

Phase Reconstruction:

Raster Current:
$$R_{im} = R_{a} \cdot \cos(\omega t_{i})$$

$$BPM \ value: \qquad B_{im} = B_{a} \cdot \cos(\omega t_{i} - \phi) + B_{off}$$

$$True \ Position: \qquad B_{itrue} = B_{a} \cdot \cos(\omega t_{i}) + B_{off}$$

$$\begin{vmatrix} \sum_{i=1}^{N} \left[\frac{R_{im}}{R_{a}} - \frac{B_{im} - B_{off}}{B_{a}} \right] \\ \sum_{i=1}^{N} \left[\frac{R_{im}}{R_{a}} + \frac{B_{im} - B_{off}}{B_{a}} \right] \end{vmatrix}$$

$$\omega t_{i} = \arccos\left(\frac{R_{im}}{R_{a}}\right)$$

Phase Reconstruction at BPM