BPM summary

Pengjia Zhu
<table>
<thead>
<tr>
<th>Date range</th>
<th>Gain type</th>
<th>Run type</th>
<th>Position uncert(mm)</th>
<th>Angle uncert(mrad)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-3.6</td>
<td>Autogain fastbus</td>
<td>optics</td>
<td>1.2</td>
<td>1.4</td>
<td>Best situation</td>
</tr>
<tr>
<td>3.6-3.17</td>
<td>autogain</td>
<td>optics</td>
<td>1.8</td>
<td>2.3</td>
<td>Use div=3 calib constant for optics(div=4)</td>
</tr>
<tr>
<td>3.28-3.29</td>
<td>autogain</td>
<td>optics</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3.29-3.31</td>
<td>Fixed gain</td>
<td>Optics production</td>
<td>2</td>
<td>2.2</td>
<td>Large pedestal uncertainty</td>
</tr>
<tr>
<td>3.31-4.10</td>
<td>Fixed gain</td>
<td>production</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4.11-4.26</td>
<td>Fixed gain</td>
<td>production</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4.26-4.30</td>
<td>Fixed gain</td>
<td>production</td>
<td>2</td>
<td>2</td>
<td>BPM B calibrated by A and harp</td>
</tr>
<tr>
<td>5.3-5.7</td>
<td>Fixed gain</td>
<td>Production optics</td>
<td>1</td>
<td>1.1</td>
<td>Best situation</td>
</tr>
<tr>
<td>5.7-5.17</td>
<td>Fixed gain</td>
<td>production</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

Uncertainty for each run please check sql database
backup
New BPM Receiver

\[
\sin \theta \sin \phi = \frac{1}{2} \cos (\theta - \phi) - \frac{1}{2} \cos (\theta + \phi)
\]

\[
|R| = \sqrt{I^2 + Q^2}
\]

\[
\phi = \tan^{-1} \left(\frac{Q}{I}\right)
\]

Harmonic sampling
Sample Rate: 36MSPS

Cascaded integrator-comb filter

Infinite impulse response filter

\(BW = 175\text{Hz}\)

\(\int a \frac{d}{dt} \)

Epics

DAQ

0~10V

DAC

We can not see fast raster signal

Last week
BPM calibration

1. raw signal received in antenna VS recorded ADC data (linear region):

\[\phi = f(A_+ - A_0 +) = a(A_+ - A_0 + b) \]

2. rewrited diff/sum value (temp value):

\[x_b = \frac{(A_+ - A_0 + b_+)}{(A_+ - A_0 + b)} \cdot g_x(A_- - A_0 - b_-) + g_x(A_- - A_0 - b_-) \]

3. nonlinearity correction for diff/sum (temp value):

\[x = r x_b \left(\frac{1}{x_b^2 + y_b^2} - \frac{1}{\sqrt{x_b^2 + y_b^2}} \frac{1}{\sqrt{x_b^2 + y_b^2}} - 1 \right) \]

4. Calibrate with harp data

\[x_{harp} = c_0 + c_1 x + c_2 y \]

\[y_{harp} = c_0' + c_1' y + c_2' x \]

Position from harp, already transferred to BPM local coordinate (use survey data)
Constants

\[\phi = f(A_+ - A_0 +) = a(A_+ - A_+ 0 + b) \]

b: got from linear fit for current VS recorded ADC data

- Some bpm calibrations did the calibration for several currents
- Each harp scan position (one point) corresponding to several runs with different current (100nA, 75nA, 50nA)
- Assumption: those runs with different current have same beam position
- Influence: key parameter to eliminate the current effect, let calculated position immune to fluctuating current (50~100nA), especially for the difference of \(b_+ - b_- \)
Calibration constant for optics runs near 3185 (div=2)
Difficulties: no straight through calibrations for div=2

The most closed result for div=2 calibration is 3/6 div=3
Calibration for 3/6-3/28 (autogain): without subtracting pedestal
3185 run position calculated by using 3/6 div=3 calibration const
-0.84mm(x) 2.39mm (y) at target

<table>
<thead>
<tr>
<th>Fitted X_{beam}</th>
<th>-3.5mm</th>
</tr>
</thead>
</table>

Compared with the fitted result x from optics