The g_2^p Experiment

Toby Badman
The University of New Hampshire
On Behalf of the E08-027 Collaboration
Overview

• Theory
• Motivation
• Experimental Setup
• Analysis
• Online Results
• Conclusions
E08-027 Collaboration

Spokespeople
Alexander Camsonne
J.P. Chen
Don Crabb
Karl Slifer

Post Docs
Kalyan Allada
Vince Sulkosky
Jixie Zhang
James Maxwell

Graduate Students
Toby Badman
Melissa Cummings
Chao Gu
Min Huang
Jie Liu
Pengjia Zhu
Ryan Zielinski
Inclusive Electron Scattering

\[\frac{d\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{1} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) tan^2 \theta \right] \]

Unpolarized nucleon structure functions.
Inclusive Electron Scattering

\[
\frac{d\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) tan^2 \frac{\theta}{2} + \gamma g_1(x, Q^2) + \delta g_2(x, Q^2) \right]
\]

Polarized nucleon spin structure functions.

Polarized \(e^- \) beam

Polarized target
Inclusive Electron Scattering

\[\Delta \sigma_{\parallel} = \sigma_{\uparrow\uparrow} - \sigma_{\downarrow\downarrow} = \frac{4\alpha^2 E'}{MvQ^2E} \left[(E + E'\cos\theta)g_1(x, Q^2) - \frac{Q^2}{v} g_2(x, Q^2) \right] \]

\[\Delta \sigma_{\perp} = \sigma_{\uparrow\downarrow} - \sigma_{\downarrow\uparrow} = \frac{4\alpha^2 \sin\theta E'Q^2}{Mv^2Q^2E} \left[\nu g_1(x, Q^2) + 2E g_2(x, Q^2) \right] \]
Motivation

• Measure the proton structure function, g_2, in the low Q^2 region for the first time.

• Provides a unique opportunity to test the Burkhardt-Cottingham Sum Rule in the low Q^2 region.

• Benchmark test of Chiral Perturbation Theory by extracting the generalized longitudinal-transverse spin polarizability.

• Improve calculations of Proton Hyperfine Splitting.
The Burkhardt-Cottingham Sum Rule

\[\int_0^1 g_2(x, Q^2) \, dx = 0 \]

This Sum Rule will fail if \(g_2 \):

- exhibits non-Regge behavior.
- exhibits a delta function at \(x = 0 \).
Spin Polarizability

\[\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} dx \, x^2 [g_1(x, Q^2) + g_2(x, Q^2)] \]

- Neutron data shows large deviation from \(\chi_{PT} \) calculations.
- No proton data yet.
- A disagreement with \(\chi_{PT} \) calculations could indicate short distance contributions.
Existing g_2^p Data at large Q^2

SLAC

JLAB SANE

Very Preliminary
Experimental Setup

Jefferson Lab Linear Accelerator Facility
Experimental Setup

Jefferson Lab Linear Accelerator Facility

Hall A
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

\textbf{NH}_3 \textbf{Target}: 5T superconducting split-pair magnet for polarizing solid \textit{NH}_3 target material.
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

Slow/Fast Raster: Two dipole magnets in each raster force beam to trace out a \(~2\text{cm}\) circular pattern at target
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

Chicane: Two dipole magnets bend beam to compensate for target field.
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

Local Dump: For some energy/target field settings beam cannot make it to hall dump so it is deposited in a local dump immediately downstream of the target.
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

Beam Current Monitors: Resonant cavities with antenna tuned to beam frequency. Calibrated using a Tungsten Calorimeter.
Experimental Setup

Hall A beamline and High Resolution Spectrometer layout

Beam Position Monitors: Four antenna situated at 90° to each other, perpendicular to the beamline for high resolution position measurement.
Hall A beamline and High Resolution Spectrometer layout

High Resolution Spectrometers: Two Hall A spectrometer arms rotated to ± 12.5° relative to beamline.
Hall A beamline and High Resolution Spectrometer layout

Septum Magnets: Allow access to lowest possible Q^2 by bending 5.6° scattered electrons to 12.5° (HRS minimum)
Kinematics and Projections

\[0.02 < Q^2 < 0.2 GeV^2 \]

<table>
<thead>
<tr>
<th>Beam Energy (GeV)</th>
<th>Target Field (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.254</td>
<td>2.5</td>
</tr>
<tr>
<td>1.706</td>
<td>2.5</td>
</tr>
<tr>
<td>1.158</td>
<td>2.5</td>
</tr>
<tr>
<td>2.254</td>
<td>5.0</td>
</tr>
<tr>
<td>3.352</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Used Local Dump
Detector Calibrations and Efficiencies

Left Arm:
Gas Cherenkov
Scintillator 1, Scintillator 2
Vertical Drift Chamber
PionRejector 1, Pion Rejector 2

Right Arm:
Gas Cherenkov
Scintillator 1, Scintillator 2m
Vertical Drift Chamber
Preshower, Shower
Detector Calibrations and Efficiencies

- Gas Cherenkov calibrated by aligning single photo electron peaks to ADC channel 100.

LHRS Gas Cherenkov Calibration Stability Check

![Graph showing calibration stability check for different energy levels across ADC channels and momentum.](image)

Courtesy M. Cummings
Detector Calibrations and Efficiencies

- Shower calibrated using Fumili minimization technique. Checked by plotting $\frac{E_{tot}}{p}$.

Courtesy J. Liu and M. Cummings
Trigger Efficiencies

![Graph showing trigger efficiencies versus run number.](Courtesy R. Zielinski)
BPM Calibration

- BPM consists of 4 antenna: x_+, x_-, y_+, y_-

- Harp data used to calibrate BPM antenna using new method (due to chicane and low current.)

- Position reconstruction in the target still underway.
Target Polarization Analysis

- Target polarization measured via NMR and recorded every 30s.
Target Polarization Analysis

- Offline calibration done using thermal equilibrium measurements on each of 18 different target materials used.
- Polarization averaged across each production run.
- Detailed systematic uncertainty study in progress.
Optics

- Due to the right septum magnet catching on fire twice, production is broken up into three “septum settings”.

<table>
<thead>
<tr>
<th>Right Septum Configuration</th>
<th>Number of Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Ideal)</td>
<td>48-48-16</td>
</tr>
<tr>
<td>2</td>
<td>40-32-16</td>
</tr>
<tr>
<td>3</td>
<td>40-0-16</td>
</tr>
</tbody>
</table>
Optics

- 1st and 3rd Septum Configuration calibrations complete for 5.0T 0° target field setting.

- No target field optics complete.

- 1st iteration of pointing calibration to determine central angle complete.

- Simulation work being done to help target field ‘on’ optics.

- Work is currently being done to calibrate transverse target field optics.
Optics

LHRS Delta Scan at 6°, no target field.

Sieve slit data before calibration

After optics matrix calibration

Optics Matrix Calibration

Courtesy M. Huang
Online Results

Nitrogen Elastic

Proton Elastic/Nitrogen Quasi-Elastic

E = 2.2 GeV HRS-L

Δ - Resonance

W (MeV)

Toby Badman GHP April 2013

Courtesy R. Zielinski
Online Results

Longitudinal 5T Physics Asymmetry at E=2254MeV
Summary

- The g_2^p Experiment ran very successfully in spring, 2012.
- New instrumentation and beam requirements (and fires) introduced many challenges to the running and analysis.
- A first pass of production data is now complete and data quality checks are underway!
- We hope to have offline asymmetries and cross-sections by fall of this year.

Thank You!

Toby Badman GHP April 2013