
Physics Goals & Overview

E08-027/007 Collaboration meeting

K. Slífer, UNH Sept. 30, 2010

Inclusive Scattering

Construct the most general Tensor W consistent with Lorentz and gauge invariance

 $\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$ $+ \gamma q_1(x, Q^2) + \delta g_2(x, Q^2)$ SFs parameterize everything we don't know about hadron vertex

Inclusive Polarized Cross Section

E08-027 : Proton g_2 Structure Function

Fundamental spin observable has never been measured at low or moderate Q^2

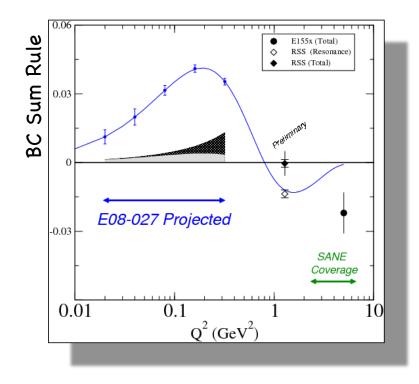
A⁻ rating by PAC33

Camsonne, Crabb, Chen, Slifer*

<u>BC</u> Sum Rule : violation suggested for proton at large Q², but found satisfied for the neutron & ³He.

<u>Spin Polarizability</u> : Major failure (>8 σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.

E08-027 : Proton g_2 Structure Function

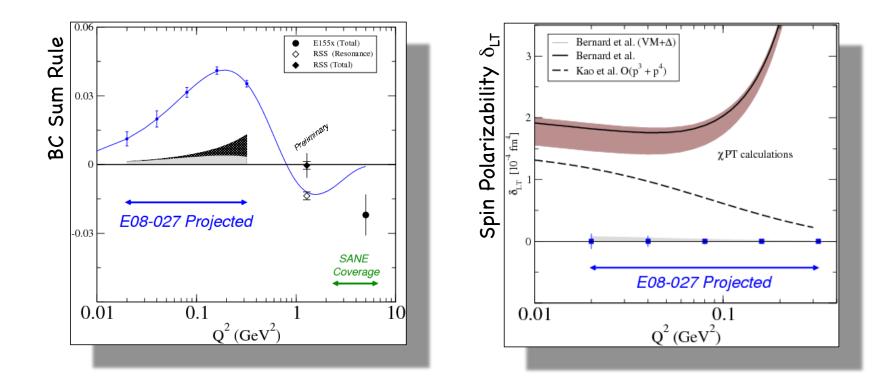

Fundamental spin observable has never been measured at low or moderate Q^2

A⁻ rating by PAC33

Camsonne, Crabb, Chen, Slifer*

<u>BC</u> Sum Rule : violation suggested for proton at large Q², but found satisfied for the neutron & ³He.

<u>Spin Polarizability</u> : Major failure (>8 σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.


E08–027 : Proton g_2 Structure Function Fundamental spin observable has never been measured at low or moderate Q^2

A- rating by PAC33

Camsonne, Crabb, Chen, Slifer*

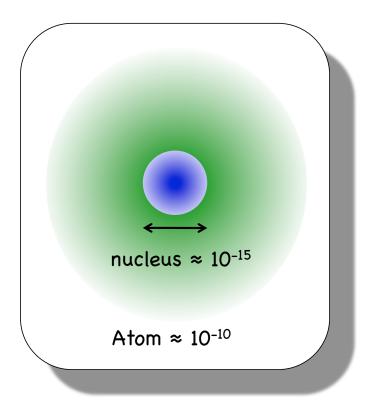
<u>BC Sum Rule</u> : violation suggested for proton at large Q², but found satisfied for the neutron & ³He.

<u>Spin Polarizability</u> : Major failure (>8 σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.

E08-027 : Proton g_2 Structure Function

Fundamental spin observable has never been measured at low or moderate Q^2

A⁻ rating by PAC33


Camsonne, Crabb, Chen, Slifer*

<u>BC Sum Rule</u> : violation suggested for proton at large Q², but found satisfied for the neutron & ³He.

<u>Spin Polarizability</u> : Major failure (>8 σ) of χ PT for neutron δ_{LT} . Need g_2 isospin separation to solve.

Hydrogen HyperFine Splitting : Lack of knowledge of g_2 at low Q^2 is one of the leading uncertainties.

<u>Proton Charge Radius</u> : also one of the leading uncertainties in extraction of $\langle R_p \rangle$ from μ -H Lamb shift.

The finite size of the nucleon (QCD) plays a small but significant role in calculating atomic energy levels in QED.

Proton Charge Radius from μP lamb shift disagrees with eP scattering result by about 6%

 $\langle R_{p} \rangle = 0.84184 \pm 0.00067 \text{ fm}$

 $\langle R_{p} \rangle = 0.897 \pm 0.018 \text{ fm}$

Lamb shift in muonic hydrogen R. Pohl et.al Nature, July 2010

World analysis of eP scattering

Proton Charge Radius from μP lamb shift disagrees with eP scattering result by about 6%

 $\langle R_{p} \rangle = 0.84184 \pm 0.00067 \text{ fm}$ Lamb shift in muonic hydrogen R. Pohl et.al Nature, July 2010 <R_p> = 0.897 ± 0.018 fm World analysis of eP scattering $\langle R_{p} \rangle = 0.8768 \pm 0.0069 \text{ fm}$ CODATA world average

Possible Implications :

Some experimental mistake ? Fairly straightforward spectroscopy. Rydberg constant off by 5σ ? Really unlikely. We don't know how to calculate in QED ? Missing some terms? Something about muons we don't understand ? Underestimating finite size effect uncertainties?

Vol 466 8 July 2010 doi:10.1038/nature09250

LETTERS

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶†, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles[®], Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸†, Tobias Nebel¹, Paul Rabinowitz", Joaquim M. F. dos Santos", Lukas A. Schaller", Karsten Schuhmann¹⁰, Catherine Schwob², David Taggu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

The proton is the primary building block of the visible Universe, of the trailing digits of the given number). An H-independent but less alous magnetic moment-are not well understood. The root-mean-of electron-scattering experiments' square charge radius, rathas been determined with an accuracy of 2 A much better determination of the proton radius is possible by per cent (at best) by electron-proton scattering experiments^{1,2}. The measuring the Lamb shift in muonic hydrogen (µp, an atom formed present most accurate value of r_0 (with an uncertainty of 1 per cent) by a proton, p, and a negative muon, μ^-). The muon is about 200 is given by the CODATA compilation of physical constants'. This times heavier than the electron. The atomic Bohr radius is correvalue is based mainly on precision spectroscopy of atomic hydrogen4-7 and calculations of bound-state quantum electrody-

but many of its properties-such as its charge radius and its anom-precise value of r₀ = 0.897(18) fm was obtained in a recent reanalysis

The main uncertainties originate from the proton polarizability, and from different values of the Zemach radius.

<u>Polarizability</u> : Integrals of g_1 and g_2 weighted by $1/Q^4$

<u>Zemach radius</u>: Integral of $G_F G_M$ weighted by $1/Q^2$

Dominated by Kinematic region of E08-027 and E08-007

General Announcements

Mailing lists:

<u>g2p@jlab.org</u> : general collaboration information <u>g2p_ana@jlab.org</u> : Analysis and day-2-day info

g2p wiki : https://hallaweb.jlab.org/wiki/index.php/g2p

g2p analysis logbook: <u>https://hallaweb.jlab.org/dvcslog/g2p</u>

Weekly Meetings (join in!) :

Tues 8:30 : Instrumentation/Beamline @MCC Weds 2:30 : Analysis and experiment preparation Thurs 1:30 : Target preparations (bi-weekly)

Lessons learned, courtesy O. Rondon

Subsystem	SANE/RSS	Suggestions for g2p/gep
Beam line	Chicane Beam Geometry drawing is very helpful http://hallcweb.jlab.org/experiments/sane/ general/beamline/RSS-chicane.pdf	Request equivalent drawings as for RSS/GEn https://hallcweb.jlab.org/experiments/sane/ wiki/index.php/Upstream_Beam_Line
	Slow raster Wavetek waveform generators and PCM amplifiers needed repeated replacement. Circular shape stability: X-Y phase drifted. Phase shifter limited to 45°.	Procure new generators (now Fluke 271), refurbish amplifiers. 90° capable phase shifter or other method of setting X-Y phases
	No SEM. Rely on slow raster ADC for event-by-event beam position. Large out- of-plane (vertical) beam position affects HMS momentum reconstruction.	Effect of vertical beam offset on HRS should be understood, single arm elastic data with peak near center of momentum acceptance is useful.
Target	Target rotation was restricted to one direction (CW from above) due to OVC protrusions, total angle 80°.	Check clearances, plan for rotation sense.
	Full target system not ready before beam delivery: issues not detected until beam was in Hall, limited operator training.	Target should polarize material (do TE's) 1-2 weeks before beam delivery.
	Magnet had only been ramped with the same polarity for years. Quench protection failed due to bad diode that was only needed for the opposite polarity.	Ramping with both polarities should be tested (parallel field at 0° vs 180°; only one polarity – down-bending - is possible for 90°)

Lessons learned, courtesy O. Rondon

Subsystem	SANE/RSS	Suggestions for g2p/gep	
Target (continued)	Multiple subsystem failures: leaks in refrigerator, overheated mechanical pumps, target movement freezes (two damaged inserts), hard disk crash, no He nose level readout	Current planing is on track to avoid repeats. Plan for unexpected, consider redundant systems, e.g. additional nose He level readout would have allowed for much better anneals, no polarization drops, nose overfills, frozen inserts,	
	Operator training: data lost to operators not tracking microwave frequency	Seriously consider automating microwave frequency control	
DAQ/Analysis	No redundant scalers for helicity- dependent signals	Record scalers for both helicities for all helicity dependent signals (triggers, beam charge,)	
	Half-wave plate setting changes requested by other Halls added unnecessary variable to analysis.	Use other methods other than HWP to control false asymmetries (not needed for our polarized target).	
Detectors	BETA was novel, untested detector. Takes a long time and lots of effort to understand.	Reconstruction with septa-HRS and target field should be simulated extensively as early as possible. Single arm elastic peak is key.	
Installation	Scheduling multiple projects in parallel in Hall resulted in conflicts, lead to delays.	Single top priority project should have veto power over parallel ones.	
	Installation of untested/not well understood/understaffed equipment lead to unexpected issues (target, SEM,)	Test all equipment to be fully operational and have experts totally familiar with operation/readout before installing in Hall.	

runplan / Schedule

Major Milestones

- May 14, 2011 : Start of 6 month down. Installation begins in 100 days.
- Nov 19, 2011 : Beam to hall. Commissioning begins in 289 days.
- Dec 03, 2011 : Production data @ 6 degrees.
- Jan 23-Mar 16, 2012 : Septa removed.
- Mar 17, 2012 : Start Production data @ 12.5 degrees.
- April 26, 2012 : Completion of production data.
- May 14, 2012 : Start of 12 month upgrade.

Target Milestones

Magnet arrival. Soon?

Magnet cooldown in EEL : Quench test. Demonstrate Ramping in both polarities.

Full cooldown.

All subsystems operational: uwaves,NMR, fridge+pumps. Demonstrate material Polarization. T.E.'s

Target Fully Operational in Hall A

T.E. in Hall A atleast 2 weeks before experiment starts. much sooner would be better

g2p and Gep

E0 (GeV)	Angle (deg)	Time (phys+overhead)
2.2 (commisioning)	6	14
2.2	6	12
1.1	6	8
1.6	6	8
3.3	6	10
2.2 (no commissioning)	12.5	19
3.3	12.5	20 days

Overhead

Overhead	Number	Time Per (hr)	(hr)
Target anneal	35	2.5	87.5
Target rotation	11	8.0	88.0
Target swap	3	8.0	24.0
Target T.E.	6	4.0	24.0
Pass change	6	4.0	24.0
Packing Fraction	37	0.50	18.5
Linac change	2	8.0	16.0
Momentum change	74	0.25	18.5
Moller measurement	6	2.0	12.0
Septum angle change	0	8.0	0.0
Elastic calibration	5	8.0	40.0
Arc Energy Meas.	6	2.0	12.0
BCM calibration	2	3.0	6.0
Beamline survey	6	8.0	48.0

Table 3: Overhead

360.5

More Overhead

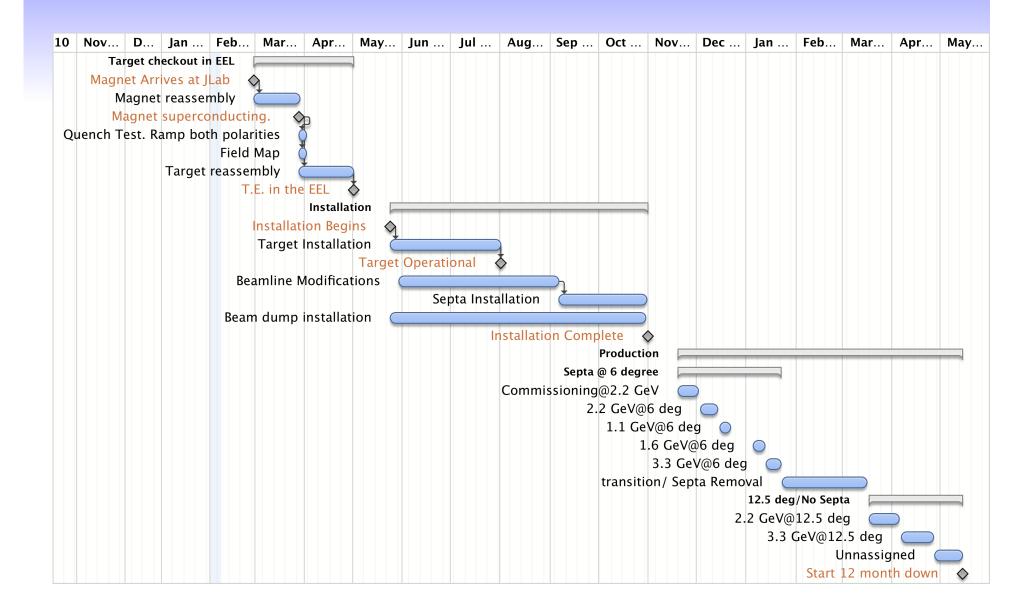
<u>Calibrations</u>

BPM Tungsten Calorimeter : 3 shifts (beginning, mid, end)

<u>Compton</u>

tune difficult, and incompatible with Moller tune 1 shift: perform once at end of 6deg running FOM best for 3.3 GeV

<u>Moller</u>


Once per energy.

<u>Optics</u>

Once per energy

Dummy Runs

(carbon,empty, helium, nitrogen?) Very frequently.

Task	Start
• 1) Target checkout in EEL	2/28/11
 1.1) Magnet Arrives at JLab 	2/28/11
 1.2) Magnet reassembly 	2/28/11
 1.3) Magnet superconducting. 	3/28/11
• 1.4) Quench Test. Ramp both polarities	3/28/11
• 1.5) Field Map	3/28/11
 1.6) Target reassembly 	3/28/11
◆ 1.7) T.E. in the EEL	5/1/11
• 2) Installation	5/24/11
• 2.1) Installation Begins	5/24/11
 2.2) Target Installation 	5/25/11
 2.3) Target Operational 	8/1/11
 2.4) Beamline Modifications 	5/29/11
 2.5) Septa Installation 	9/6/11
 2.6) Beam dump installation 	5/24/11
 2.7) Installation Complete 	10/31/11
• 3) Production	11/19/11
• 3.1) Septa @ 6 degree	11/19/11
 3.1.1) Commissioning@2.2 GeV 	11/19/11
• 3.1.2) 2.2 GeV@6 deg	12/3/11
• 3.1.3) 1.1 GeV@6 deg	12/15/11
• 3.1.4) 1.6 GeV@6 deg	1/5/12
• 3.1.5) 3.3 GeV@6 deg	1/13/12
 3.2) transition/ Septa Removal 	1/23/12
• 3.3) 12.5 deg/No Septa	3/17/12
 3.3.1) 2.2 GeV@12.5 deg 	3/17/12
 3.3.2) 3.3 GeV@12.5 deg 	4/6/12
 3.3.3) Unnassigned 	4/27/12
 4) Start 12 month down 	5/14/12

tasks/manpower discussion

Physics Manpower

Post-Docs

Jixie Zhang (JLab) Kalyan Allada (JLab) Post-doc (UNH) onsite by 5/11

<u>Part-time</u>

Vince Sulkosky (MIT) Narbe K. (UVa) Hovannes B. (UVa)

Graduate Students

Melissa Cummings (W&M) Chao Gu (Uva) Min Huang (Duke) Pengjia Zhu (USTC) Ryan Zielinski (UNH)

<u>Expected</u> Student (Temple University) Student (Jerusalem) Tobias Badman (UNH)

JLAB Staff

Jian-Ping Chen Alexandre Camsonne Doug Higinbothan

Faculty

Guy Ron

Karl Slifer onsite fulltime 5/11-1/12 onsite partime 1/12-end

<u>Tasks in progress</u>

Geant4 Simulations : Jixie

3rd Arm Detector : Kalyan, Min

Beamline oversight : Alex?

BPM: Pengjia

Compton : Alex

Target: J.P., Pengjia, Karl

Radiative Tails: Karl, Jixie

Optix: Jixie, Min

Runplan: Karl, Guy, Doug

SNAKE/MUDIFI: Min

Target Stick : Chao Gu

GEM Trackers: Nilanga

Energy loss in Irradiations : Penjxia

Additional manpower

Melissa Cummings (W&M) Student (Temple University) Ryan Zielinski (UNH) *Tobias Badman* (UNH)* Post-doc (UNH) Chao Gu (Uva)

Unassigned Target Tasks

Need atleast 2 dedicated students and one post-doc. As many more trained as possible.

Target Field Alignment:

Target Field Map:

NH3 Material budget:

Heat load (400W) from beam dump. Target fridge ok with this?

NMR coil placement: in material vs. saddle coil effect on radiative tails effect on NMR precision

Realistic estimate of necessary carbon/empty/helium runs.

Ceramic cups:

Microwave feedback:

Target operator training:

Unassigned analysis tasks (pre-run)

<u>Specific</u>

Saftey Docs : modify SANE docs for g2p.

Analysis coordinator: scripts, replay, workspace...

Optix : Kalyan?

Detector Calibrations and efficiencies calorimeter cerenkov hodoscopes

Online PbPt:

Target polarimetry :

do we need nitrogen dummy target.

Ensure **UNAMBIGUOS** HWP status

Unassigned analysis tasks (long term)

Radiative Corrections

PbPt:

Target polarimetry :

Analysis (PhD) Topics

Target polarimetry:

Spin Asymmetries:

g2p, A2, structure functions:

Polarizabilities :

δ_{LT} γ_o

Sum rules: Burkhardt-Cottingham GDH

Finite size effects: Hyperfine Splitting Charge radius

Much more physics. Let's start thinking about it.

Date of next Collaboration Meeting

March 14-18? Spring break, but only 6 weeks from now

March 21-25? 7 weeks

March 28-31 8 weeks.

Possible Conflicts CLAS PARIS : March 7-11 Spring break : March 14-18 DIS11: April 11-15 April 4 rb April 30-May 3 : GHP Annaheim May 14 : 6mo down starts May 17-20 : NSTAR @ jlab Jun1-3 : Hall A Meeting

<u>147-162 K in confirmed user contributions</u>

(as of June 24)

<u>Argonne</u> : 10K parts or machining.

+ 2 tech staff that can help with design work.

<u>**Rutgers</u>** : 25–30K machining in Rutgers shop (CNC available).</u>

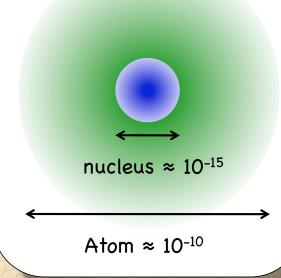
<u>Tel Aviv</u> : 10–20K machining of beamline components.

<u>**Temple**</u> : 10K in beamline parts or machining.

<u>UVa</u> : 60K in target magnet repairs at Oxford. 5K to repair target refrigerator.

<u>UVa(2)</u>: 10K in machining and parts (+tungsten beam dump).

<u>UNH</u> : 10K in parts or machining. 2K in target stick repair.


<u>William&Mary</u> : 5K in parts or machining + manpower.

Additional anticipated contributions

<u>UNH</u> : 20K supplemental request for parts/machining.

Spokesman Guy Ron will move from post-doc to faculty position with associated startup funding within the next few months.

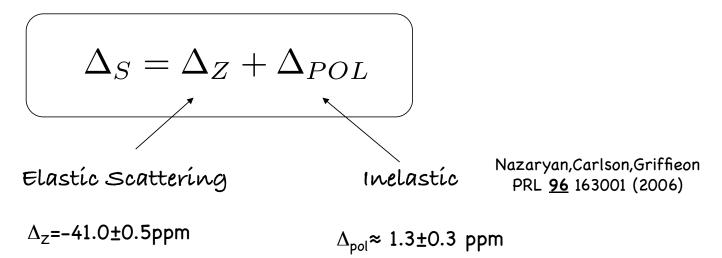
Applications to Atomic Physics

The finite size of the nucleus plays a small but significant role in atomic energy levels.

Hydrogen HF Splitting

 $\Delta E = 1420.405\ 751\ 766\ 7(9)$ MHz = $(1+\delta)E_F$

 $\delta = (\delta_{QED} + \delta_R + \delta_{small}) + \Delta_S$


≈1ppm ≈5ppm

<1ppm

≈40ppm

Friar & Sick PLB <u>579</u> 285(2003)

Structure dependence of Hydrogen HF Splitting

Elastic piece larger but with similar uncertainty

$$\Delta_Z = -2\alpha m_e r_Z (1 + \delta_Z^{\rm rad})$$

$$r_Z = -rac{4}{\pi} \int_0^\infty rac{dQ}{Q^2} \bigg[G_E(Q^2) rac{G_M(Q^2)}{1+\kappa_p} - 1 \bigg]$$

$$\Delta_{POL}=$$
 0.2265 $(\Delta_1+\Delta_2)$ ppm

 Δ_1 well determined from F_2, g_1 data

 $\Delta_{\rm 2}$ Not well determined at all, assumed small.

If assume Maid Model instead of Eg1 model, the uncertainty on g_2 would be 2X uncertainty from g_1