Measurement of Double Spin Asymmetry A_{LT} in Semi-Inclusive Pion Electroproduction on a Transversely Polarized ³He Target

Jin Huang M.I.T. For 2009 APS April Meeting May 04, 2009 @ Denver

Experiment E06-010 in Jefferson Lab Hall A

Single Target-Spin Asymmetry in Semi-inclusive DIS

- Measuring Collins, Sivers and Pretzelosity Asymmetry
- See Yi Qiang's Talk (Q3.2)

Single Target-Spin Asymmetry in Inclusive DIS

- Using Two Photon Exchange Effects to Probe GPD
- See Joe Katich's talk (Q3.6)

Double Target-Beam Spin Asymmetry in Semi-inclusive DIS

- Target-Beam Double-Spin Asymmetry, A_{LT} , in Semi-Inclusive ${}^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$ Reaction on a Transversely Polarized 3 He Target
- Extracting g_{1T} Distribution Function
- To Be Discussed in this talk

"Leading-Twist" TMD Quark Distributions

g_{1T} Distribution Function

- g_{1T} DF describe quark longitudinal polarization in a transversely polarized nucleon
- Such polarization can be non-vanishing only if the Orbital Angular Momentum is non-zero
- Extractable from Double Beam-Target spin asymmetry in SIDIS with transversely polarized target: A_{LT}

One Prediction of g_{1T} and A_{LT}

- *p*_T weighted *g*^{*q*(1)}_{1T} could be estimated from data of *g*₁ DF through Lorentz Invariance Relations and Wandzura and Wilczek Relations
 - Ref to A. Kotzinian and P. J. Mulders, Phys. Rev. D 54, 1229 (1996)
- With assumption of $p_{\rm T}$ dependence, then $A_{\rm LT}$ could also be estimated

son Lab

Jin Huang <iinhuang@mit.edu> 2009 APS April Meeting

Existing Data

- No SIDIS A_{LT} Measurement until recent years $\widehat{P}_{\underline{r}}^{*}$
- Compass

erson Lab

- $A_{\rm LT}$ on Deuteron (p+n)
- Base on 2002-2004 runs
- Hermes could also measure A_{LT} on Proton Target
- Possible measurement in Drell-Yan Process

Zhun Lu, etc. PRD 75, 094012 (2007)

E06-010 Experiment Setup and Preliminary Performance

- Polarized ³He Target
 - 10 atm pressure; $L(n) \sim 10^{36} \text{cm}^{-2} \text{s}^{-1}$
 - Record* High 65% Pol. In Beam

Polarized Electron Beam

- ~80% Polarization
- Fast Flipping at 30Hz
- PPM Level Charge Asymmetry controlled by online charge feed back

BigBite at 30° as Electron Arm

- See Kalyan Allada's talk
- HRS_L at 16° as Hadron Arm
 - *P* ~ 2.35 GeV

erson Lab

Tracking/Timing/PID detectors

Jin Huang <jinhuang@mit.edu>

Data Projections

- First Neutron (³He) Measurement
- With Fast Beam Helicity Flip (30Hz)
- Projected Uncertainties (Stat. Only):
 - 2.3% at low x
 - 3.4% at high x

erson Lab

Samples of Analysis Progess

Jin Huang <jinhuang@mit.edu>

Analysis Progress Sample I/ Polarized ³He Target

- HRS Polarized HE Target
- Cell characterization & pol. cross Calibration
 underway; Preliminary Pol. ~ 65%
- > 20min / spin flip provide pol. monitoring
- See C. Dutta Talk for details

Analysis Progress Sample II/ Beam Polarization

Luminosity

30°

HRS

Polarized ³He Target **BigBite**

Analysis Progress Sample III/ **BigBite Spectrometer Timing**

- Scintillator plane in BigBite Spectrometer provides timing information
- BigBite Spectrometer timing resolution ~ 300ps
- Promising K $-\pi$ separation, combined with Timing information from Hadron Arm (as redundant approach to hadron arm PID)
- Possible to measure <u>Kaon A_{LT} too</u>

fferson Lab

HRS

Polarized ³He Target

 $\delta T_{\rm RF C} \approx 300 \rm ps$

Jin Huang <jinhuang@mit.edu>

Luminosity

BigBite

Conclusion

- First measurement of neutron A_{LT} from polarized ³He Target
- Systematic uncertainties is improved by Fast Beam Helicity Flip
- Data will cover valence range
- Absolute uncertainty is 2%~3%.
- Promising Kaon A_{LT} Data
- Preliminary result coming soon!
 Please stay tuned
- Precision 3D mapping possible after Jefferson Jab 12GeV upgrade

