Transverse target-spin asymmetries for production of pions and kaons in semi-inclusive deep-inelastic scattering

Andy Miller

on behalf of the HERMES Collaboration

Thanks to all my Hermes colleagues whose pretty slides I hacked!

Trento June 11, 2007

What's on the menu?

- Preliminary Collins and Sivers asymmetries from the complete 2002-2005 HERMES data set with a transversely polarized hydrogen target
- Some technical issues about how we extract the results
- An invitation for advice about how we might present such results in publications
- An invitation for advice about where we might deploy our analysis resources in future

The HERMES Experiment at HERA

27.5 GeV HERA positron beam HERMES Spectrometer

2002-2005

! " ≈ **Transversely polarized atomic hydrogen (P ≈ 80%) Rapid spin flipping!**

mmmm

The HERMES Spectrometer

Angular acceptance: 40 $mrad < |\theta_y| < 140$ $mrad$ $|\theta_x| < 170$ $mrad$ Resolution: $\delta p \le 2.6\%$; $\delta \vartheta \le 1$ *mrad*

Extraction of Azimuthal Amplitudes (I)

Unbinned Maximum-Likelihood fit of several amplitudes together

Accounting for the full kinematic dependence of the amplitudes, the Probability Density Function (PDF) of events is defined as:

Target polarization distⁿ - 1 < P < 1

\n**Acceptance**

\n**Azimuthally averaged x-section**

\n
$$
F(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h, P, x, y, z, P_t, \phi, \phi_S) = \rho(P) \epsilon(x, y, z, P_t, \phi, \phi_S) \underbrace{\sigma_{UU}(x, y, z, P_t)}_{\sigma_{UU}(x, y, z, P_t) \cos(2\phi)} \times \left\{ 1 + 2 \langle \cos \phi \rangle_{UU}^h(x, y, z, P_t) \cos \phi + 2 \langle \cos 2\phi \rangle_{UU}^h(x, y, z, P_t) \cos(2\phi) + P \left[2 \langle \sin(\phi + \phi_S) \rangle_{UT}^h(x, y, z, P_t) \sin(\phi + \phi_S) + 2 \langle \sin(\phi - \phi_S) \rangle_{UT}^h(x, y, z, P_t) \sin(\phi - \phi_S) \right] \right\}
$$
\n**The Likelihood is then defined as:**

\n**Collect the distribution of the following matrices:**

\n**Center weights for particle ID**

\n
$$
L(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h) = \prod_{i=1}^N F(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h, P_i, x_i, y_i, z_i, P_t, \phi_i, \phi_{Si})^{W_i}
$$

Two major conveniences:

- Z parameters, if the total event sample is unpolarized: $\int\! \mathrm{d} P\, P \rho(P)$ $=$ 0 • The normalization of the PDF is automatically independent of the fitted
- Acceptance *ε* and azimuthally averaged cross section σ *UU* do not depend on the fitted parameters \Rightarrow they can be omitted in calculation of the likelihood

However, integrating PDF over 3 kinematic variables involves an approximation

Extraction of Azimuthal Amplitudes (II)

After integrating over 3 kinematic variables, and binning in a fourth, the complete PDF is:

$$
F(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h, P, \phi, \phi_S) = \rho(P) \epsilon(\phi, \phi_S) \underline{\sigma}_{UU} \times
$$

$$
\left\{ 1 + 2 \langle \cos \phi \rangle_{UU}^h \cos \phi + 2 \langle \cos 2\phi \rangle_{UU}^h \cos(2\phi)
$$

$$
+ P \left[2 \langle \sin(\phi + \phi_S) \rangle_{UT}^h \sin(\phi + \phi_S) + 2 \langle \sin(\phi - \phi_S) \rangle_{UT}^h \sin(\phi - \phi_S) \right] \right\}
$$

$$
+ 2 \langle \sin(3\phi - \phi_S) \rangle_{UT}^h \sin(3\phi - \phi_S) + 2 \langle \sin(2\phi - \phi_S) \rangle_{UT}^h \sin(2\phi - \phi_S) + 2 \langle \sin \phi_S \rangle_{UT}^h \sin \phi_S \left[\right] \right\}
$$

and the Likelihood is

 $L(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h)$ = *N* ∏ *i*=1 $F(\langle \sin(\phi + \phi_S) \rangle_{UT}^h, \langle \sin(\phi - \phi_S) \rangle_{UT}^h, P_i, \phi_i, \phi_{Si})^{W_i}$

- The "stationary approximation" employed in the kinematic integration were studied in Monte Carlo, and assigned as a systematic uncertainty (more later...)
- Approximate values for the $cos(n\phi)$ amplitudes were extracted from data and used in the fit; the difference was assigned as a systematic uncertainty
- The addition of the three last terms had negligible influence on the Collins and Sivers amplitudes, and those three amplitudes are consistent with zero

Our statistical treatment is completely standard

and according to the Particle Data Group

The definition of statistical uncertainty is not "a matter of taste": It is defined in terms of the fundamental concept of **repeatability**

Definition:

The statistical uncertainty in any single parameter from a fit is the standard deviation of the distribution in that parameter obtained by fitting a large number of statistically independent such data sets (from e.g. a simulation)

We have used numerical simulations to demonstrate that our uncertainties for azimuthal amplitudes from our Maximum Likelihood fits satisfy this definition.

 $\begin{array}{ccc} \n\end{array}$ A likelihood contour for two parameters

- Each 1 σ uncertainty corresponds to 68% probability content of one band or the other
- Correlations between the parameters are fully accounted for by the covariance matrix

Why do we need to define our uncertainty?

Some groups fitting experimental data use a different approach

e.g. two groups doing NLO QCD fits to g_1 data $\qquad \qquad \mu$

They require the **ellipse** to contain 68% probability, which requires a larger ellipse

Consequence: the uncertainty of each parameter depends on the total number of parameters, even if they're uncorrelated, while that total is often a matter of taste

Assuming the χ^2 surface is paraboloidal, they do this by increasing the MINUIT parameter "UP" to the number of parameters

The uncertainties scale as √UP

 θ_i $\hat{\theta}_i$ σ_i σ_i $\rho_{ij}\sigma_i$ σ_{inner} A likelihood contour for two parameters

 $\hat{\theta}_j$

 $-\sigma_j$

Table 32.2∴ MINUIT by which uncertainties for decription of the same data sample in the m parameters are defined. \bullet The UP value is the parameter in

 σ_i

 ϕ

^j . In this case the

 θ_i

 $-\sigma_j \longrightarrow$

- \bullet or \bullet reduces a 10 encorrently for single parameters. \bullet UP=1 defines a 1 σ uncertainty
	- $\overline{68.27}$ $\overline{58.30}$ $\frac{9}{1 - 1}$ expansion to the poor. parameters to be simultaneously iocated inside the hypercontour. UP \approx npar corresponds to the 1 σ uncertainty for the npar
	- **O** UP large: compensation for p_1 unknown systematic effects.

Lepton-beam or virtual-photon asymmetries?

Sivers lepton-beam asymmetry:

$$
2\left\langle \sin(\phi+\phi_S)\right\rangle_{UT}^h(\bar{x},\bar{z}) \simeq \frac{\sum_q e_q^2 \int dx dy \frac{B(y)}{xy^2} \delta q(x) \int dz H_1^{\perp(1)}(z)[q \to h]}{\sum_q e_q^2 \int dx dy \frac{A(x,y)}{xy^2} q(x) \int dz D_1(z)[q \to h]}
$$

Collins lepton-beam asymmetry:

$$
2\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^h (\bar{x}, \bar{z}) \simeq -\frac{\sum_q e_q^2 \int dx \, dy \, \frac{A(x, y)}{xy^2} \, f_{1T}^{\perp(1)}(x) \, \int dz D_1(z) [q \to h]}{\sum_q e_q^2 \int dx \, dy \, \frac{A(x, y)}{xy^2} \, q(x) \, \int dz D_1(z) [q \to h]}
$$

$$
B(y) \equiv (1 - y)
$$

$$
A(x, y) \equiv \frac{y^2}{2} + (1 - y) \frac{1 + R(x, y)}{1 + \gamma(x, y)^2}
$$

$$
R(x, y) \equiv \frac{\sigma_L(x, y)}{\sigma_T(x, y)}
$$

$$
\gamma(x, y)^2 \equiv \frac{Q^2}{\gamma^2}
$$

Up to now, most analyses have factorized the integrals by neglecting the y dependences of pdfs and fragmentation functions In any case, the above integrals involve the acceptance, and maybe be inconvenient for those interpreting the results We can easily account for *A* and *B* as event weights to provide VPAs $2(\sin(\phi + \phi_S))_{UT}^n(\bar{x}, \bar{z}) \simeq \frac{-\sqrt{4\pi}}{\sum_q e_q^2 \int dx dy \frac{A(x,y)}{xy^2} q(x) \int dz D_1(z)[q \to \bar{z}]\rho(\bar{x})$

Although the approximation of the single space of the single single $B(y) \equiv (1-y)$
 $B(y) \equiv (1-y)$
 $B(x,y) \equiv \frac{\sigma_L(x,y)}{\sigma_T(x,y)}$
 $B(x,y) \equiv \frac{\sigma_L(x$

The Collins asymmetries for charged pions

- π^+ asymmetries are positive no surprise: u-quark dominance and expect δu>0 since Δu>0
- Larger negative π⁻asymmetries were a surprise -- now understood to signify the disfavoured Collins function is large with opposite sign
- "Contamination" by decay of exclusively produced vector mesons is not completely negligible (2-16%)
- Systematic uncertainty (gray bands) account for effects of acceptance, smearing, and cosφ and cos2φ in the spin-averaged denominator of the asymmetry

The Collins asymmetries for charged kaons

compared to charged pions

- \textdegree K⁺amplitudes consistent with $\pi^\text{\textdegree}$ as expected from u-quark dominance
- \bullet K⁻may have the opposite sign from π^{-} (K⁻ is an all-sea object)

The Sivers asymmetries for charged pions

- \bullet π^+ asymmetries are substantial and positive
- First unambiguous evidence for a non-zero T-odd distribution function in DIS
- A signature for quark orbital angular momentum
- The implied negative sign of the u-quark Sivers function (in the Trento Convention) is consistent with Burkhardt's "Chromodynamic Lensing" picture!

Comparing Sivers charged kaons with pions

- K⁺ amplitude is now confirmed to be 2.3±0.3 times larger than for π^{+} , averaged over acceptance
- Conflicts with usual expectations based on uquark dominance
- Suggests substantial magnitudes of the Sivers function for the sea quarks
- \bullet Both K^- and π^- amplitudes are consistent with zero

Neutral pions

The results for the three pion charge states are consistent with isospin symmetry

"Contamination" by decay of vector mesons

Fractional yield contributions from Pythia simulation:

TTSA of VM prodⁿ and decay distribution not yet available for a correction

Sivers: a fit of Hermes, Compass pion data

Anselmino et al., Phys. Rev. D72, 094007 using Kretzer fragmentation functions Using Gaussian widths for intrinsic p_T , fragmentation k_T fitted to unpol. cos φ data

New kaon data suggest sea contributions may be significant

Alternative probe for Transversity: 2-hadrons

$$
A_{UT} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \qquad \propto |
$$

$$
\propto |\mathbf{S}_{\perp}|\sin(\phi_{R\perp}+\phi_{S})\frac{\sum_{q}e_{q}^{2}h_{1}^{q}H_{1}^{\measuredangle,sp}}{\sum_{q}e_{q}^{2}f_{1}^{q}D_{1}^{q}}
$$

$$
H_1^{\prec,sp}(z,M_h^2) =
$$

Advantages:

- · direct product of transversity and fragmentation function (no convolution)
- \cdot easier to calculate \mathbb{Q}^2 evolution

Disadvantages:

- · less statistics
- · cross section depends on 9 variables (sensitive to detector acceptance effects)

2-hadron asymmetries for 2002-2004 -naaron asymmetries for zouz-zu

5.2.2 Ph⊥–Weighted Asymmetry Amplitudes 105 Why haven't we release P_T-weighted asymmetries?

5.2.2 Ph⊥–Weighted Asymmetry Amplitudes 105

MC Study of acceptance effects

$P_{h\perp}$ Distribution **MC: Acceptance Depends strongly on PT**

$P_{h\perp}$ Distribution **MC: Acceptance Depends strongly on PT**

Solutions under study

- Multi-dimensional unfolding based on a Monte Carlo smearing matrix \Rightarrow might work in 5D for the Boer-Mulders function, not 6D for TTSAs
	- Has the advantage that radiative effects are included
- Fit the multi-dimensional kinematic dependence of the azimuthal amplitudes
	- \Rightarrow Quantify ignorance of full kinematic dependence, propagate to result
	- \Rightarrow fit the full kinematic dependence on (x, y, z, P_t) using some set of $4D$ orthogonal functions, then fold result with known $\sigma_{\textsf{\scriptsize{UU}}}(\textsf{x},\textsf{y},\textsf{z},\textsf{P}_t)$
	- \Rightarrow This has been shown to work while analyzing MC data, but...
	- Problem: What to use for $\sigma_{UU}(x,y,z,P_t)$?
		- \Rightarrow Measured multiplicities? They don't contain, e.g., z-P_T correlations
		- \Rightarrow Monte Carlo tuned to data?

44-parameter 4D fit to fully differential MC model

44-parameter 4D fit to fully differential MC model

Analyses underway or under consideration

- 2005 data for 2-hadron asymmetries
- P_t -weighted Collins and Sivers asymmetries
	- Requires many-parameter kinematic fit plus model for σ _{UU}
- The Boer-Mulders function via <cos(2φ)>
	- Requires 5D unfolding
- $<$ cos(ϕ - ϕ s)>LT providing access to twist-2 function q_1 T[⊥]
- Inclusive pion photoproduction A_{UT} ("E704 Effect")

Express your preferences...

Summary

- The precision of these data for identified hadrons is now adequate for the quantitative extraction of the flavour dependence of both Transversity and the Sivers function
- There is evidence for substantial magnitudes of the Sivers function for sea quarks

Special thanks to the prime movers for this analysis: Ulrike Elschenbroich Markus Diefenthaler Luciano Pappalardo Gunar Schnell Paul van der Nat

Disfavoured Collins fragmentation? Quark polarimetry with the Collins effect

Transverse momentum conservation \Rightarrow any correlation of favoured pion $P_{\pi\perp}$ with any spin will be opposite for disfavoured pions

Sivers: a fit of Hermes, Compass pion SSA data

Anselmino et al., Phys. Rev. D72, 094007

Figure 3: The x-dependence of the first k[⊥] moment, according to Eq. (22), of our extracted Sivers functions. The solid line is obtained by using the central values of the

- Their result for d-quarks at least as large in magnitude as for u-quarks The recently reported the state of the state o
The recently understanding a theoretical evaluation of the state of the state of the state of the state of the idence distribution of T-odd distribution (and fragmentation) functions. We are HERMESS of T-odd the HERMESS o
- Dot-dashed: fit to Hermes data under large-Nc limit constraint $f_{1T}^{\perp u} = -f_{1T}^{\perp d}$ Efremov et al., Phys. Lett. B612, 233, 2005 $\left| \begin{array}{c} 1/d \ 1/T \end{array} \right|$
- Green-dashed: fit to inclusive pion SSA's D'Alesio et al., Phys. Rev. D70, 074009, 2004

namely appear with opposite sign in DY and SIDIS [17]. Our estimates show that both experiments could

be able to test this prediction, which would be a crucial check of the present understanding of T-odd

 $A_{\rm eff}$ is particle by BMBF and DFG of Germany, the $B_{\rm eff}$ and $B_{\rm eff}$ and $B_{\rm eff}$

project, the Transregio Bonn-Bochum-Giessen, and is part of the European Integrated Infrastructure Ini-

distribution functions and the QCD factorization approach to the description of SSA.

• Dotted: MIT Bag Model DOTTECT MITT Buy MOUET
Feng Yuan, Phys. Lett. B575, 45, 2003 On the basis of the obtained parameterizations we estimated SSA in the Drell-Yan process for the PAX of T-odd particular in $\mathcal{O}(C)$ the Sivers function should obey a particular universality relation, $\mathcal{O}(C)$