Transverse spin densities of the Nucleon in a light-front Constituent Quark Model

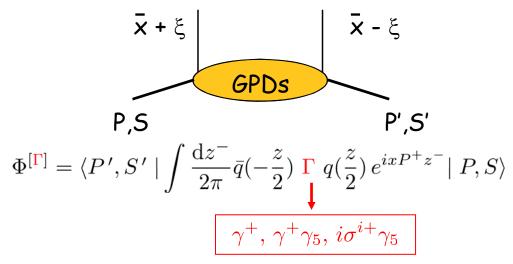
Barbara Pasquini in collaboration with Sigfrido Boffi University of Pavia and INFN Pavia, Italy

GPDs in the light-cone wave function overlap representation

Light-cone model for the valence quark contribution to nucleon wave function

Spin densities for transverse and longitudinal polarization

Generalized Parton Distributions



 $> P \neq P' \Rightarrow$ GPDs depend on two momentum fractions \bar{x}, ξ , and t

$$\bar{x} = \frac{(k+k')^+}{(P+P')^+} = \frac{\bar{k}^+}{\bar{P}^+} \qquad \qquad \xi = \frac{(P-P')^+}{(P+P')^+} = -$$

average fraction of the longitudinal momentum carried by partons

 $-\frac{\Delta^+}{2\bar{P}^+}$

skewness parameter

 $\Phi^{[\gamma^+]} \implies H(\bar{x},\xi,t), \ E(\bar{x},\xi,t)$ Unpolarized GPDs

* Longitudinally Pol. GPDs $\Phi^{[\gamma^+\gamma_5]} \longrightarrow \tilde{H}(\bar{x},\xi,t), \ \tilde{E}(\bar{x},\xi,t)$

 $\mathbf{t} = (P - P')^2$

t-channel momentum transfer squared Forward Limit $H^{q}(x, 0, 0) = q(x)$

 $\hat{H}^q(x,0,0) = \Delta q(x)$

 $H_T^q(x,0,0) = h_1^q(x)$

complete relativistic many-particle basis constructed from the ground state

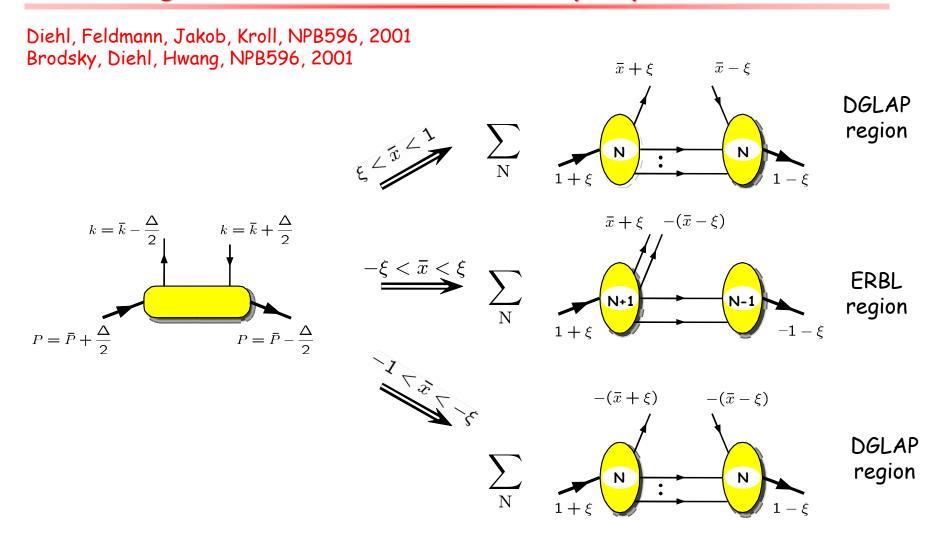
$$\ket{N, \beta; k_1, k_2, \cdots, k_N} = \prod_i b_{q_i}^{\dagger}(w_i) \prod_j d_{q_j}^{\dagger}(w_j) \prod_l a^{\dagger}(w_l) \ket{0}$$

Fock-space expansion of the nucleon bound state

 $\succ \Psi^f_{\lambda,N,\beta}(x_i, \vec{k}_{\perp,i})$: frame INdependent

probability amplitude to find the N parton configuration with the complex of quantum number β in the nucleon with helicity λ

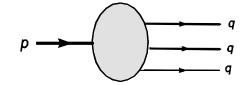
Light-Cone Wave Function Overlap Representation



 $\begin{aligned} & \text{GPDs} \sim \sum_{N} \int d\mathbf{k}_{N} \ \Psi_{N}(\mathbf{k}_{N}) \ \Psi_{N}^{*}(\mathbf{k}_{N}') \ \delta(\dots) & \text{interference of probability amplitudes} \\ & \text{PDF} \sim \sum_{N} \int d\mathbf{k}_{N} \ | \ \Psi_{N}(\mathbf{k}_{N})|^{2} \ \delta(\dots) & \text{probability density} \end{aligned}$

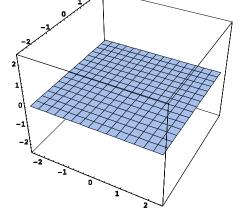
N=3 VALENCE QUARK \Rightarrow Light-cone Constituent quark model

$$|N\rangle \simeq \Psi^N_{(3q)}|N(qqq)\rangle + \cdots$$

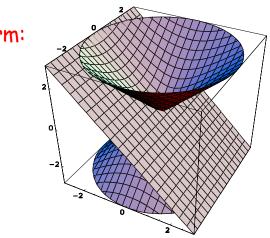


Valence auarks: Light-Cone CQM





Light-front form: x⁺ time; x⁻, x_⊥ space



> Light-front eigenvalue equation

$$\mathcal{M}|M, j_f, \mu_f\rangle_f = [M_0 + \mathcal{V}]|M, j_f, \mu_f\rangle_f$$

 $M_0 = \sum_i^N \sqrt{m_i^2 + ec{k}_i^2}:$ free mass operator $\mathcal{V}:$ interaction operator

> Instant Form (canonical) eigenvalue equation

$$M | M, j_c, \mu_c \rangle_c = [M_0 + V] | M, j_c, \mu_c \rangle_c$$

$$\mathcal{M} = \mathcal{R}^{\dagger} M \mathcal{R} \longrightarrow \mathcal{R} = \prod_{i=1}^{N} R_{M}(\vec{k}_{\perp,i}, x_{i}, m_{i}) : \text{generalized Melosh rotations}$$

$$\Psi_{N}^{f} = \langle \{x_{i}, \vec{k}_{\perp,i}, \lambda_{i}\}_{N} | M, j_{f}, \mu_{f} \rangle_{f} = \frac{2(2\pi)^{3}}{\sqrt{M_{0}}} \prod_{i=1}^{N} \sqrt{\frac{E_{i}}{x_{i}}} \sum_{\{\lambda_{i}'\}} \langle \{\lambda_{i}\} | \mathcal{R}^{\dagger} | \{\lambda_{i}'\} \rangle \Psi_{N}^{c}$$

Boffi, B.P., Traini, '03

Model Calculation

- * Instant-form wave function: $\Psi = \Phi^I \otimes \Phi^S \otimes \tilde{\Psi}(\{\vec{k}_i\})$
 - ✓ spin and isospin component: SU(6) symmetric
 - ✓ momentum-space component: s wave

$$\tilde{\Psi} = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \text{ with } M_0 = \sum_i \sqrt{k_i^2 + m_q^2}$$

Three free parameters: $m_q,\,\beta,\,\gamma$ fitted to reproduce the magnetic moment of the proton and the axial coupling constant g_A

$$m_a$$
 = 263 MeV β = 607 MeV γ = 3.5

Schlumpf, PhD thesis, hep-ph/9211255

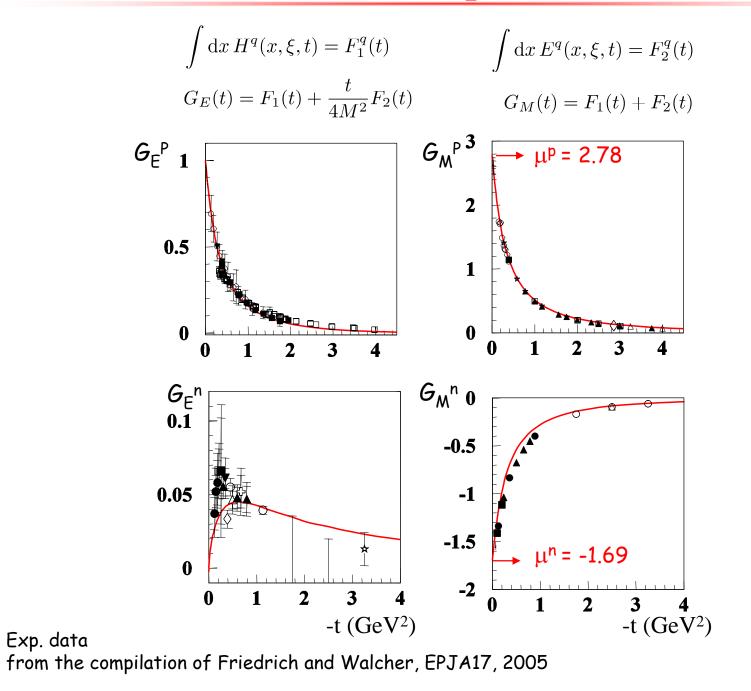
Light-cone wavefunction

- ✓ breaking of SU(6) symmetry
- ✓ non-zero quark orbital angular momentum

$$\frac{q_{LC}^{\uparrow} = w \left[(k^{+} + m_q) q_I^{\uparrow} + (k_x + ik_y) q_I^{\downarrow} \right]}{q_{LC}^{\downarrow} = w \left[-(k_x - ik_y) q_I^{\uparrow} + (k^{+} + m_q) q_I^{\downarrow} \right]} \quad (w = \left[(k^{+} + m_q)^2 + k_{\perp}^2 \right]^{-1/2})$$

The boost to infinite momentum frame (Melosh Rotations) introduces a non trivial spin structure and a correlation between quark spin and quark orbital angular momentum

Nucleon Electromagnetic Form Factors



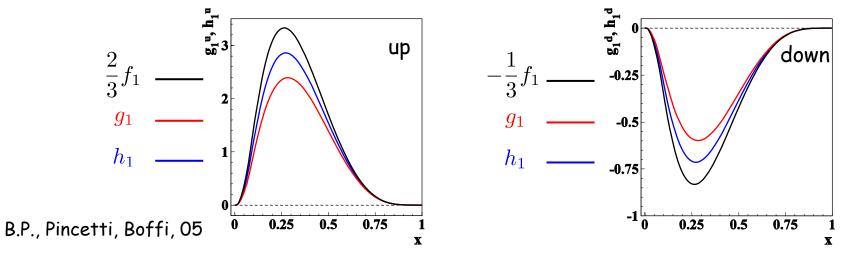
Light cone wave function overlap representation of Parton Distributions

$$\begin{split} f_1^q(x) &= \left(2\delta_{\tau_q 1/2} + \delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \\ h_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\uparrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\downarrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\downarrow}(\{x_i\}, \{\vec{k}_{\perp,i}\}|^2 \mathcal{M}_q \\ g_1^q(x) &= \left(\frac{4}{3}\delta_{\tau_q 1/2} - \frac{1}{3}\delta_{\tau_q - 1/2}\right) \int [dx]_3 [d\vec{k}_{\perp}]_3 \,\delta(x - x_3) |\tilde{\psi}_{\downarrow}(\{x_i\}, \{x_i\}, \{$$

Melosh rotations: relativistic effects due to the quark transverse motion

$$\mathcal{M}_{T} = \frac{(m+x_{3}M_{0})^{2}}{(m+x_{3}M_{0})^{2} + \vec{k}_{\perp,3}^{2}} \qquad \qquad \mathcal{M} = \frac{(m+x_{3}M_{0})^{2} - \vec{k}_{\perp,3}^{2}}{(m+x_{3}M_{0})^{2} + \vec{k}_{\perp,3}^{2}}$$
$$2h_{1}^{u}(x) = g_{1}^{u}(x) + \frac{2}{3}f_{1}^{u}(x) \qquad \qquad 2h_{1}^{d}(x) = g_{1}^{d}(x) - \frac{1}{3}f_{1}^{d}(x)$$

♦ Non relativistic limit $(k_{\perp} \rightarrow 0)$: $\mathcal{M}_T = \mathcal{M} = I \rightarrow h_1^q(x) = g_1^q(x)$



Nucleon Spin densities

* Fourier transform of <u>Unpolarized GPD</u> at $\xi = 0$: distribution of quarks with longitudinal momentum fraction x and transverse location b_{\perp} from the nucleon centre of momentum

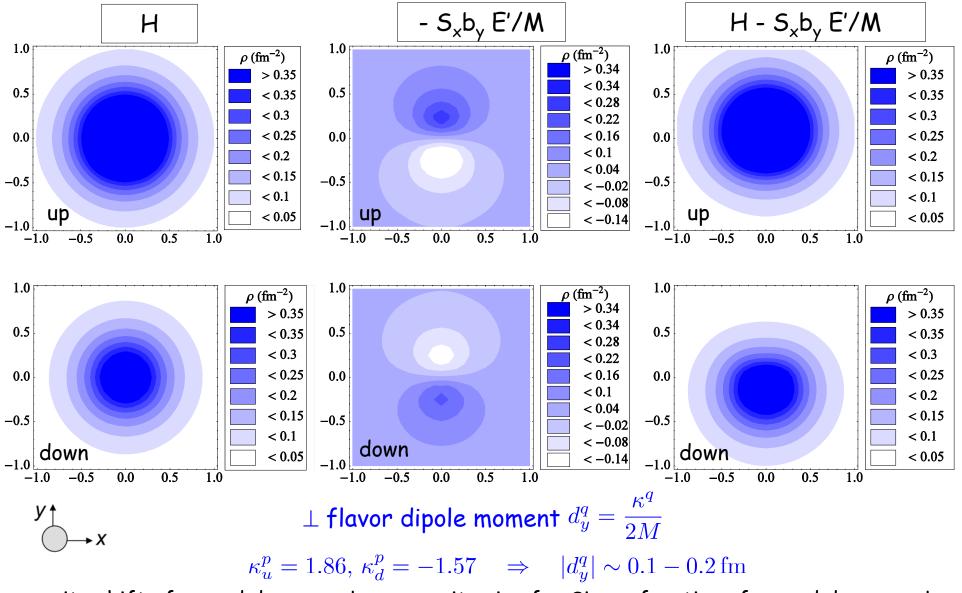
$$\rho(x,b_{\perp}) = \int \mathrm{d}^2 \Delta_{\perp} \, e^{i\Delta_{\perp} \cdot b_{\perp}} \, H(x,\xi=0,\Delta_{\perp}^2) = H(x,b_{\perp}^2)$$
 Burkardt, 2003

* Fourier transform of <u>Tensor GPDs at $\xi = 0$ </u>: distributions in the transverse plane of transversely polarized quarks in a transversely polarized nucleon

Diehl, Haegler, 2005

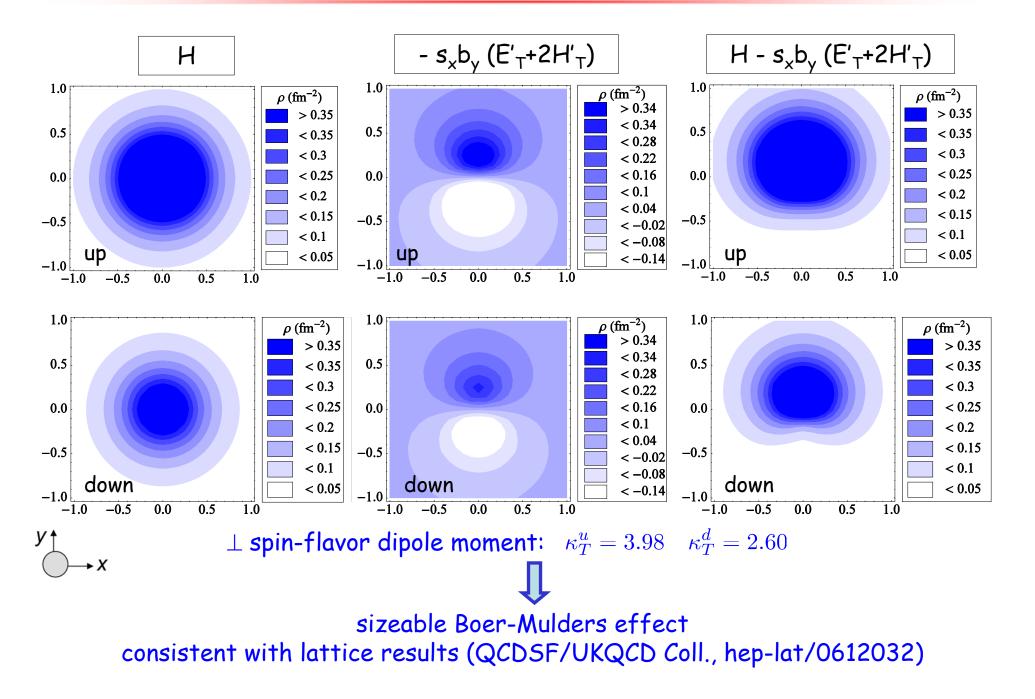
✤ First moments of p: transverse spin probability densities in impact parameter space

Unpolarized quarks in a transversely pol. nucleon

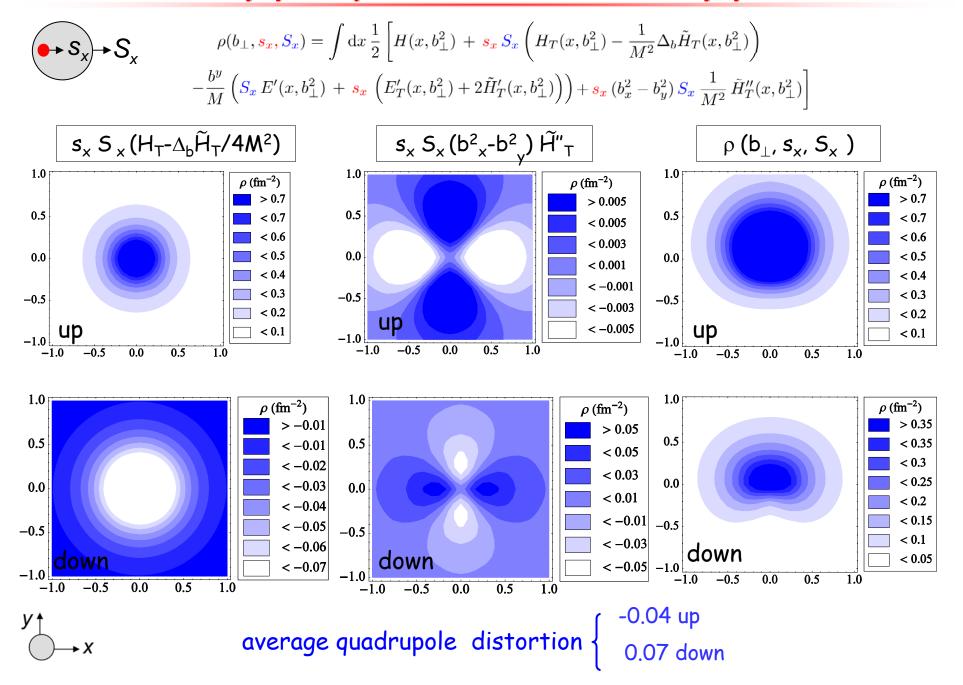


opposite shift of up and down quark \rightarrow opposite sign for Sivers function of up and down quark as confirmed by HERMES data (Phys. Rev. Lett. 94 (2005)) B.P., Boffi, hep-ph/0705.4345

Transversely pol. quarks in a unpolarized nucleon

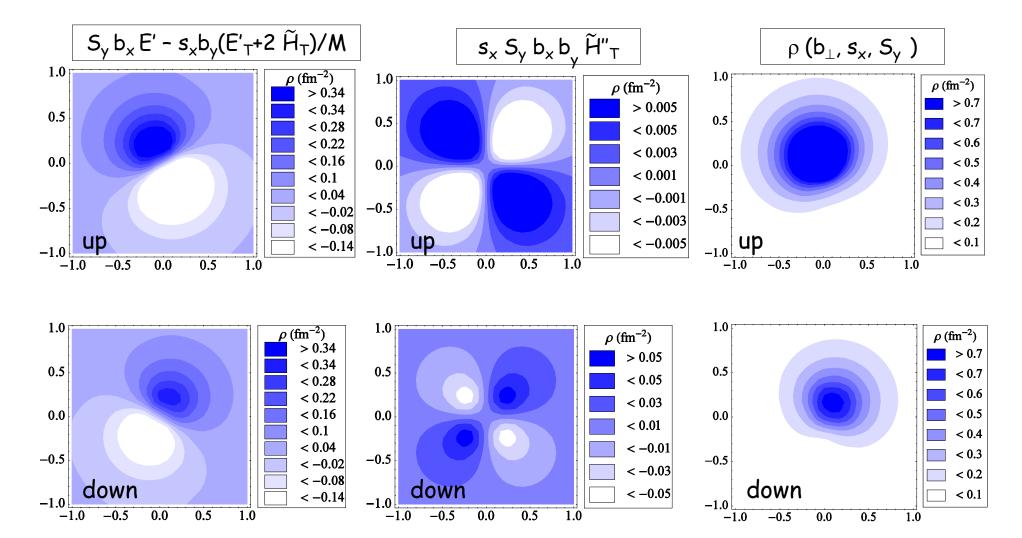


Transversely pol. quarks in a transversely pol. nucleon



Transversely pol. quarks in a transversely pol. nucleon

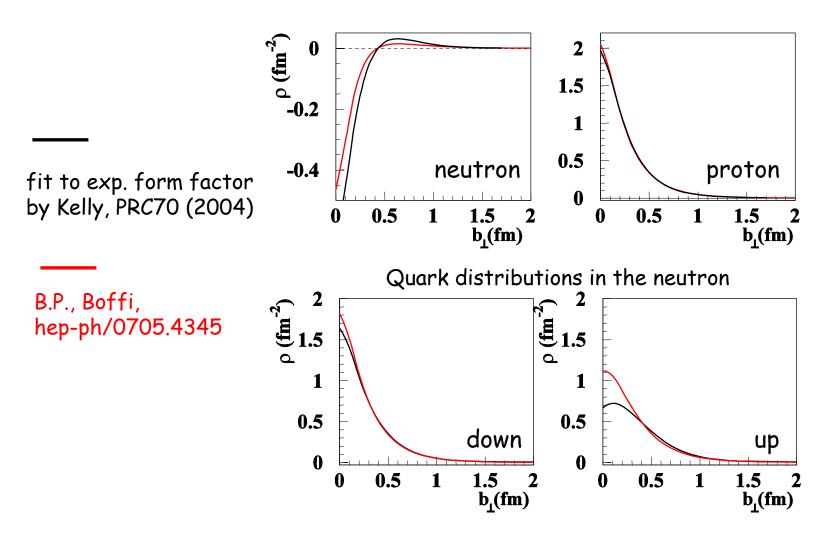
 $\rho(b_{\perp}, \boldsymbol{s_x}, \boldsymbol{S_y}) = \int \mathrm{d}x \, \frac{1}{2} \left[H(x, b_{\perp}^2) + \frac{1}{M} \left(b_x \, \boldsymbol{S_y} \, E'(x, b_{\perp}^2) - b_y \, \boldsymbol{s_x} \left(E'_T(x, b_{\perp}^2) + 2\tilde{H}'_T(x, b_{\perp}^2) \right) \right) + 2b_x b_y \, \boldsymbol{s_x} \, \boldsymbol{S_y} \frac{1}{M^2} \tilde{H}''_T(x, b_{\perp}^2) \right]$



Charge density of partons in the transverse plane

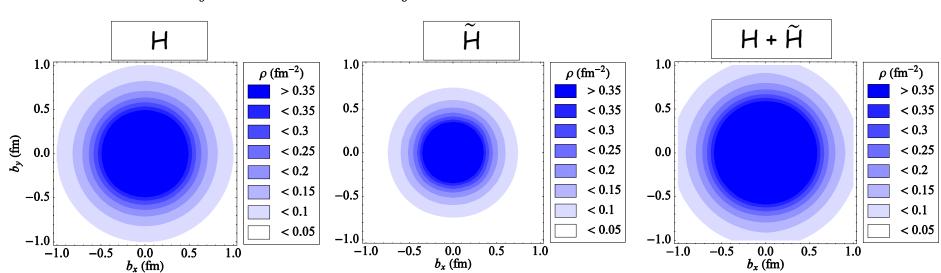
* Interpretation of two-dimensional Fourier Transform of F_1 as charge distribution in impact parameter space

$$\rho^{q}(b_{\perp}) = \int d^{2}\Delta_{\perp} e^{i\Delta_{\perp} \cdot b_{\perp}} \int dx \, H^{q}(x,\xi=0,\Delta_{\perp}^{2}) = \int d^{2}\Delta_{\perp} e^{i\Delta_{\perp} \cdot b_{\perp}} F_{1}^{q}(\Delta_{\perp}^{2})$$
G.A. Miller, nucl-th/0705.2409

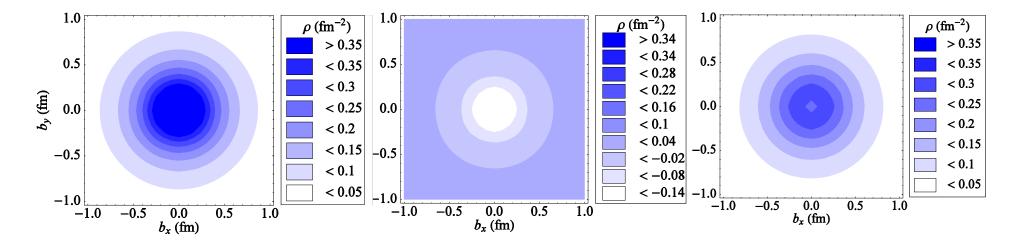


Longitudinally pol. quarks in a longitudinally pol. nucleon

Probability density in impact parameter space of longitudinally polarized quarks in a longitudinally polarized nucleon
Burkardt, 2003

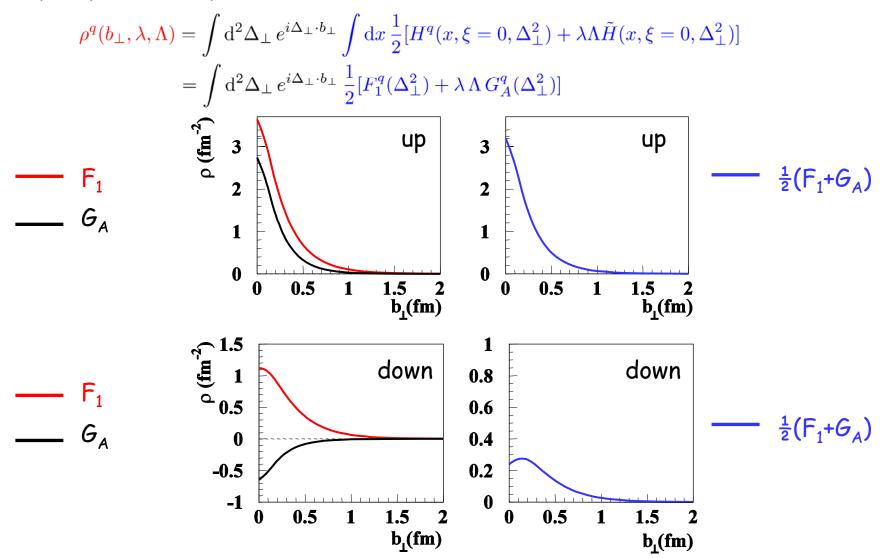


$$\hat{\mathbf{d}} x \, \rho(x, b_{\perp}, \boldsymbol{\lambda}, \boldsymbol{\Lambda}) = \int \mathrm{d}x \, \frac{1}{2} \left[H(x, b^2) \, + \, \boldsymbol{\lambda} \, \boldsymbol{\Lambda} \tilde{H}(x, b^2) \right]$$



Helicity density of partons in the transverse plane

* Interpretation of two-dimensional Fourier Transform of $F_1 \pm G_A$ as helicity distribution in impact parameter space



Summary

 \succ Relativistic effects due to Melosh rotations in LCWF introduce a non trivial spin structure and correlations between quark spin and quark orbital angular momentum

relation for f_1 , g_1 and h_1 for valence quark contribution at the hadronic scale

$$2h_1^u(x) = g_1^u(x) + \frac{2}{3}f_1^u(x) \qquad \qquad 2h_1^d(x) = g_1^d(x) - \frac{1}{3}f_1^d(x)$$

> Significant distortions for transverse spin densities

Unpolarized quarks in a transversely pol. nucleon ⇒ opposite sign for Sivers function of up and down quark as seen by HERMES

Transversely pol. quarks in an unpolarized nucleon

⇒ sizeable Boer-Mulder function effect with the same sign for up and down quark, as seen by lattice results

Transversely pol. quarks in a transversely pol. nucleon

 \Rightarrow correlation between quark orbital angular momentum and spin of the nucleon

> Charge and helicity densities of the nucleon show unexpected distributions for up and down quark distributions