gmc_trans a Monte Carlo generator for transverse-momentum-dependent distribution and fragmentation functions

> A. Bacchetta, U. Elschenbroich, N. Makins, G. Schnell, R. Seidl

> > Trento, June 12th 2007

Outline

- Motivation & Basics
- Details of the MC generator
 - Gaussian Ansatz
 - Positivity limits
 - Event generation
- Some results
 - Tuning of transverse momentum dependence
 - (un)weighted Sivers and Collins amplitudes
- Implemented models

Going beyond Collins and Sivers asymmetries

Motivation

- Monte Carlo Simulations are a indispensable tool in modern nuclear and particle physics experiments
- various "physics generators" exists for the various fields (e.g., PYTHIA, LEPTO, AROMA etc.)
- used for predictions, for the understanding of the experiment, and also for the "correction" of data (e.g., acceptance effects, background processes etc.)
- no generator was available for transverse-momentum dependence of distribution and fragmentation functions

Initial goals for gmc_trans

- physics generator for SIDIS pion production
- include transverse-momentum dependence, in particular simulate Collins and Sivers effects
- be fast
- allow comparison of input model and reconstructed amplitudes
- to be used with standard HERMES Monte Carlo
- be extendable (e.g., open for new models)

Basic workings

- use cross section that can (almost) be calculated analytically
- start from 1-hadron SIDIS expressions of Mulders & Tangerman (Nucl.Phys.B461:197-237,1996)
- use Gaussian Ansatz for all transverse-momentum dependencies of DFs and FFs
- unpolarized DFs (as well as helicity distribution) and FFs from fits/parametrizations (e.g., Kretzer FFs etc.)
- "polarized" DFs and FFs either related to unpolarized ones (e.g., saturation of Soffer bound for transversity) or some parametrizations used

Caution: Details to follow!

SIDIS Cross Section incl. TMDs

 $d\sigma_{UT} \equiv d\sigma_{UT}^{\text{Collins}} \cdot \sin(\phi + \phi_S) + d\sigma_{UT}^{\text{Sivers}} \cdot \sin(\phi - \phi_S)$

$$egin{aligned} d\sigma^{
m Collins}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}B(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{k_T\cdot\hat{P}_{h\perp}}{M_h}
ight)\cdot h_1^qH_1^{\perp q}
ight] \ d\sigma^{
m Sivers}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{p_T\cdot\hat{P}_{h\perp}}{M_N}
ight)\cdot f_{1T}^{\perp q}D_1^q
ight] \ d\sigma_{UU}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[f_1^qD_1^q
ight] \end{aligned}$$

where

$$\mathcal{I}ig[\mathcal{W} f Dig] \equiv \int d^2 p_T d^2 k_T \, \delta^{(2)} \left(p_T - rac{P_{h\perp}}{z} - k_T
ight) \left[\mathcal{W} f(x,p_T) \, D(z,k_T)
ight]$$

Gunar Schnell, Universiteit Gent

8

Gaussian Ansatz

- want to deconvolve convolution integral over transverse momenta
- easy Ansatz: Gaussian dependencies of DFs and FFs on intrinsic (quark) transverse momentum:

$$\begin{aligned} \mathcal{I}[f_{1}(x, \boldsymbol{p_{T}}^{2})D_{1}(z, z^{2}\boldsymbol{k_{T}}^{2})] &= f_{1}(x) \cdot D_{1}(z) \cdot \frac{R^{2}}{\pi z^{2}} \cdot e^{-R^{2}\frac{P_{h\perp}^{2}}{z^{2}}} \\ \text{with } f_{1}(x, \boldsymbol{p_{T}}^{2}) &= f_{1}(x)\frac{1}{\pi \langle p_{T}^{2} \rangle} e^{-\frac{\boldsymbol{p_{T}}^{2}}{\langle \boldsymbol{p_{T}}^{2} \rangle}} & \frac{1}{R^{2}} \equiv \langle k_{T}^{2} \rangle + \langle p_{T}^{2} \rangle = \frac{\langle P_{h\perp}^{2} \rangle}{z^{2}} \\ (\text{similar: } D_{1}(z, z^{2}\boldsymbol{k_{T}}^{2})) \end{aligned}$$

Caution: different notations for intrinsic transverse momentum exist!

Gunar Schnell, Universiteit Gent

- 0

2

Positivity Constraints

- DFs (FFs) have to fulfill various positivity constraints (resulting cross section must not be negative!)
- based on probability considerations can derive positivity limits for leading-twist functions: Bacchetta et al., Phys.Rev.Lett.85:712-715, 2000
- transversity: e.g., Soffer bound
- Sivers and Collins functions: e.g., loose bounds:

$$egin{array}{ll} rac{|p_T|}{2M_N} f_{1T}^{\perp}(x,p_T^2) &\equiv & f_{1T}^{\perp(1/2)}(x,p_T^2) &\leq rac{1}{2} f_1(x,p_T^2) \ rac{|k_T|}{2M_h} H_1^{\perp}(z,z^2k_T^2) &\equiv & H_1^{\perp(1/2)}(z,z^2k_T^2) &\leq rac{1}{2} D_1(z,z^2k_T^2) \end{array}$$

Positivity and the Gaussian Ansatz

$$\frac{|\boldsymbol{p}_{T}|}{2M_{N}}f_{1T}^{\perp}(x,\boldsymbol{p}_{T}^{2}) \leq \frac{1}{2}f_{1}(x,\boldsymbol{p}_{T}^{2})$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\Rightarrow |p_T| f_{1T}^\perp(x) \leq M_N f_1(x)$

2

Positivity and the Gaussian Ansatz

$$\frac{|\boldsymbol{p}_{T}|}{2M_{N}}f_{1T}^{\perp}(x,\boldsymbol{p}_{T}^{2}) \leq \frac{1}{2}f_{1}(x,\boldsymbol{p}_{T}^{2})$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\Rightarrow |p_T| f_{1T}^\perp(x) \leq M_N f_1(x)$

2

Problem for non-zero Sivers function!

Modify Gaussian width

$$f_{1T}^{\perp}(x, p_T^2) = f_{1T}^{\perp}(x) \ rac{1}{(1-C)\pi \langle p_T^2
angle} \ e^{-rac{p_T^2}{(1-C) \langle p_T^2
angle}}$$

→ positivity limit:

$$f_{1T}^{\perp}(x) \, rac{|p_T|}{2M_N} rac{1}{\pi (1-C) \langle p_T^2
angle} \, e^{-rac{p_T^2}{(1-C) \langle p_T^2
angle}} \ \le \ 1/2 \, f_1(x) \, rac{1}{\pi \langle p_T^2
angle} \, e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

$$ightarrow rac{|p_T|}{1-C} \ e^{-rac{C}{1-C}rac{p_T^2}{\langle p_T^2
angle}} \ \leq \ M_N rac{f_1(x)}{f_{1T}^\perp(x)}$$

SIDIS Cross Section incl. TMDs

 $\sum_{q} \frac{e_q^2}{4\pi} \frac{\alpha^2}{(MExyz)^2} \left[X_{UU} + |\mathbf{S}_T| X_{SIV} \sin(\phi_h - \phi_s) + |\mathbf{S}_T| X_{COL} \sin(\phi_h + \phi_s) \right]$

using Gaussian Ansatz for transverse-momentum dependence of DFs and FFs:

$$\begin{array}{lcl} X_{UU} &=& R^2 e^{-R^2 P_{h\perp}^2/z^2} \left(1 - y + \frac{y^2}{2} \right) f_1(x) \cdot D_1(z) \\ \\ X_{COL} &=& + \frac{|P_{h\perp}|}{M_\pi z} \frac{(1 - C) \langle k_T^2 \rangle}{\left[\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle \right]^2} \exp \left[- \frac{P_{h\perp}^2/z^2}{\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle} \right] \\ & \times & (1 - y) \cdot h_1(x) \cdot H_1^{\perp}(z) \end{array}$$

$$\begin{split} X_{SIV} &= -\frac{|P_{h\perp}|}{M_p z} \frac{(1-C') \langle p_T^2 \rangle}{\left[\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle \right]^2} \exp\left[-\frac{P_{h\perp}^2/z^2}{\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle} \right] \\ &\times \left(1 - y + \frac{y^2}{2} \right) f_{1T}^{\perp}(x) \cdot D_1(z) \end{split}$$

Gu..... _ liversiteit Gent

Sivers (azimuthal) moments use cross section expressions to evaluate azimuthal moments:

$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{\sqrt{(1 - C)\langle p_T^2 \rangle}}{\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$
$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{M_N \sqrt{\pi}}{2\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}$$

$$-\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{2\sqrt{(1-C)\langle p_T^2 \rangle}}{M_N \sqrt{\pi}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)} \\ -\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$

model-dependence on transverse momenta "swallowed" by p_T^2 - moment of Sivers fct.: $f_{1T}^{\perp(1)}$

Sivers (azimuthal) moments use cross section expressions to evaluate azimuthal moments:

$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{\sqrt{(1 - C)\langle p_T^2 \rangle}}{\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$
$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{M_N \sqrt{\pi}}{2\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}$$

$$-\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{2\sqrt{(1 - C)\langle p_T^2 \rangle}}{M_N \sqrt{\pi}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)} \\ -\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$

(similar for Collins moments)

Monte Carlo event generation

- need to generate events according to cross section:
 - throw flavor of struck quark according to integrated (unpolarized) cross section for each quark flavor
 - throw (x, Q^2, z) according to unpolarized cross section
 - throw pion's transverse momentum $P_{h\perp}^2$ according to Gaussian Ansatz
 - generate azimuthal angles (ϕ, ϕ_S) according to polarized cross section
- cross section should be positive automatically if positivity constraints on DFs and FFs are fulfilled, but better check again

Some (more) details

- event generation by accept-or-reject method:
 - first throw flat in (x, Q^2, z) , e.g., get value r1
 - second random number r2 determines accept/reject
 status:

 r2 above curve: reject
 r2 below curve: accept ^{0.75}
- have to know maximum of f(x), i.e., of the cross section (checked at beginning)

can gain some speed by not throwing flat in, e.g., Q²,
 but according to global behaviour

Some Results

Tuning the Gaussians in gmc_trans

constant Gaussian widths, i.e., no dependence on x or z: $\langle p_T \rangle = 0.44$

 $\langle K_T \rangle = 0.44$

tune to data integrated over whole kinematic range

Tuning the Gaussians in gmc_trans $_{x10^2}$

Gunar Schnell, Universiteit Gent

21

Comparison Data-MC: $P_{h\perp}$

Tuning the Gaussians in gmc_trans in general: $\langle P_{h\perp}^2(x,z) \rangle = z^2 \langle p_T^2(x) \rangle + \langle K_T^2(z) \rangle$ so far: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$

constant!

Tuning the Gaussians in gmc_trans so far: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$

 $\langle p_T \rangle = 0.38$ $\langle K_T \rangle = 0.38$

 $\langle p_T^2 \rangle \simeq 0.185$ $\langle K_T^2 \rangle \simeq 0.185$

Tuning the Gaussians in gmc_trans now: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2(z) \rangle$

z-dependent! tuned to HERMES data in acceptance "Hashi set"

Gunar Schnell, Universiteit Gent

Tuning the Gaussians in gmc_trans $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2(z) \rangle$

z-dependent!

"Hashi set"

Generated vs. extracted amplitudes

Gunar Schnell, Universiteit Gent

Comparison for weighted moments

Not so good news for weighted moments

Where to go from here?

Models for integrated DFs and FF

- "usual PDFs" f_1, g_1 from PEPSI library
- D_1 from KKP or Kretzer
- h_1 can be
 - = g_1
 - Soffer bound
 - Leader parametrization

Models for Sivers and Collins Fcts

- Sivers function f_{1T}^{\perp}
 - $f_{1T}^{\perp}(x) \sim f_1(x)$
 - $f_{1T}^{\perp}(x) \sim g_1(x)$
 - Boglione-Mulders parametrization
 f_{1T}^{\perp(1)}(x) ~ f_1(x)
- Collins function: H_1^{\perp}
 - $H_1^{\perp}(z) \sim D_1(z)$
 - Boglione-Mulders
 - Leader

•
$$H_1^{\perp(1)}(z) \sim D_1(z)$$

Models for Sivers and Collins Fcts

- Sivers function f_{1T}^{\perp}
- etris fits/parametrizations

Beyond Collins and Sivers

- certainly would like to model all TMDs, e.g., Boer-Mulders function, to get full cross section
- even go to subleading-twist, e.g., Cahn effect
- first attempts to implement those have been made
- leading twist -- "straight forward" (just a few more convolution integrals)
- subleading twist -- "hmmmm..."
 - biggest problem there: positivity limits don't exist on DF and FF level

Status of unpolarized cross section

- almost implemented:
 - Boer-Mulders effect
 - Cahn effect
 - can adjust Gaussian width, kinematic dependencies and normalization
 - generated values (cross-section and unweighted moments) are available for end-user, however, weighted moments not available

Status of polarized cross section

- hardly implemented:
 - twist-3 AUT $\sin \phi_S$ term (involves transversity)
 - can partially adjust Gaussian width (involves 2 terms - only the one involving the Collins function is adjustable), kinematic dependencies and normalization
 - generated values: cross-section is available for enduser, however, moments are not available

$\sin \phi_S$ - term in A_UT

Gunar Schnell, Universiteit Gent

$\sin\phi_S$ - term in A_UT

$2(2-y)\sqrt{1-y}\frac{M}{Q}\mathcal{I}\left[\frac{\boldsymbol{k_T}\cdot\boldsymbol{p_T}}{2MM_h}\left[2\boldsymbol{h_1}+\boldsymbol{x}(\tilde{\boldsymbol{h}}_T^{\perp}-\tilde{\boldsymbol{h}}_T)\right]\boldsymbol{H}_1^{\perp}-\frac{M_h}{zM}\boldsymbol{h}_1\tilde{\boldsymbol{H}}\right]$

convolution integral and DF & FF known/implemented

twist-3 FF (Koike?) (turned off in gmc_trans)

Cahn Effect

- similar to twist-3 AUT term
- reduced to product of f1 and D1
- neglect any interaction-dependent terms
- get f1 and D1 from PDF/FF library
- however,
 - need additional scaling factor, and
 - need different Gaussian width than normal f1 and D1

The Twist-3 Problems

- need scaling factors, even though Mulders&Tangerman etc. would suggest a normalization that is fixed by involved PDFs and FFs
- same is true for Gaussian widths: need different ones than for "normal" f1 and D1 (or transversity and Collins FF)
- therefore: intrinsicly inconsistent treatment -failure of Gaussian Ansatz?
- in general: encountered severe positivity violations (in particular with Cahn effect)

Summary

- gmc_trans is a working MC generator for TMDs in SIDIS (pion production)
- based on Gaussian Ansatz for transverse momentum dependencies
- Collins and Sivers effect implemented
- z-dependence of Gaussian widths tuned to HERMES data
- implementation of other (partially subleading-twist) terms not straight-forward

Outlook / Wishlist

- finish Boer-Mulders implemention
- implement newest results from fits and model calculations on transversity, Sivers & Collins functions
- implement Kaons and neutron target
 - comparison with HERMES and COMPASS data possible
- add radiative corrections (RADGEN)
- solve twist-3 problems
- gmc_trans for 2-hadron production